Information
References
Contents
Download
[1]S. Yla-Herttuala: Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20, 1831-1832 (2012)
[2]T. Wirth, N. Parker and S. Yla-Herttuala: History of gene therapy. Gene 525, 162-169 (2013)
[3]E. Aguilar-Cordova: Vectorology recapitulates virology--will it capitulate oncology? Nat Biotechnol 21, 756-757 (2003)
[4]R. Gardlik, R. Palffy, J. Hodosy, J. Lukacs, J. Turna and P. Celec: Vectors and delivery systems in gene therapy. Med Sci Monit 11, Ra110-121 (2005)
[5]S. Nayak and R. W. Herzog: Progress and prospects: immune responses to viral vectors. Gene Ther 17, 295-304 (2010)
[6]H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin and D. G. Anderson: Non-viral vectors for gene-based therapy. Nat Rev Genet 15, 541-555 (2014)
[7]S. Cornelie, J. Hoebeke, A. M. Schacht, B. Bertin, J. Vicogne, M. Capron and G. Riveau: Direct evidence that toll-like receptor 9 (TLR9) functionally binds plasmid DNA by specific cytosine-phosphate-guanine motif recognition. J Biol Chem 279, 15124-1519 (2004)
[8]M. Rutz, J. Metzger, T. Gellert, P. Luppa, G. B. Lipford, H. Wagner and S. Bauer: Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34, 2541-2550 (2004)
[9]B. Spies, H. Hochrein, M. Vabulas, K. Huster, D. H. Busch, F. Schmitz, A. Heit and H. Wagner: Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol 171, 5908-5912 (2003)
[10]M. Ogris and E. Wagner: Targeting tumors with non-viral gene delivery systems. Drug Discov Today 7, 479-485 (2002)
[11]W. Schaffner: Direct transfer of cloned genes from bacteria to mammalian cells. Proc Natl Acad Sci U S A 77, 2163-2167 (1980)
[12]S. Weiss and T. Chakraborty: Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Curr Opin Biotechnol 12, 467-472 (2001)
[13]I. P. Nascimento and L. C. Leite: Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 45, 1102-1111 (2012)
[14]H. Loessner and S. Weiss: Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opin Biol Ther 4, 157-168 (2004)
[15]G. Vassaux, J. Nitcheu, S. Jezzard and N. R. Lemoine: Bacterial gene therapy strategies. J Pathol 208, 290-298 (2006)
[16]A. Mengesha, L. Dubois, R. K. Chiu, K. Paesmans, B. G. Wouters, P. Lambin and J. Theys: Potential and limitations of bacterial-mediated cancer therapy. Front Biosci 12, 3880-3891 (2007)
[17]K. L. Roland and K. E. Brenneman: Salmonella as a vaccine delivery vehicle. Expert Rev Vaccines 12, 1033-1045 (2013)
[18]R. Palffy, R. Gardlik, J. Hodosy, M. Behuliak, P. Resko, J. Radvansky and P. Celec: Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther 13, 101-105 (2006)
[19]P. Courvalin, S. Goussard and C. Grillot-Courvalin: Gene transfer from bacteria to mammalian cells. C R Acad Sci III 318, 1207-1212 (1995)
[20]S. Pilgrim, J. Stritzker, C. Schoen, A. Kolb-Maurer, G. Geginat, M. J. Loessner, I. Gentschev and W. Goebel: Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther 10, 2036-2045 (2003)
[21]C. Grillot-Courvalin, S. Goussard and P. Courvalin: Bacteria as gene delivery vectors for mammalian cells. Curr Opin Biotechnol 10, 477-481 (1999)
[22]C. Grillot-Courvalin, S. Goussard, F. Huetz, D. M. Ojcius and P. Courvalin: Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16, 862-866 (1998)
[23]R. Palffy, R. Gardlik, M. Behuliak, P. Jani, D. Balakova, L. Kadasi, J. Turna and P. Celec: Salmonella-mediated gene therapy in experimental colitis in mice. Exp Biol Med (Maywood) 236, 177-183 (2011)
[24]R. Palffy, M. Behuliak, R. Gardlik, P. Jani, L. Kadasi, J. Turna and P. Celec: Oral in vivo bactofection in dextran sulfate sodium treated female Wistar rats. Folia Biol (Krakow) 58, 171-176 (2010)
[25]J. Babickova, L. Tothova, E. Lengyelova, A. Bartonova, J. Hodosy, R. Gardlik and P. Celec: Sex Differences in Experimentally Induced Colitis in Mice: a Role for Estrogens. Inflammation 38, 1996-2006 (2015)
[26]R. Gardlik and J. H. Fruehauf: Bacterial vectors and delivery systems in cancer therapy. IDrugs 13, 701-706 (2010)
[27]L. Tothova, J. Hodosy, N. Kamodyova, P. Janega, L. Slobodnikova, A. Liptakova, P. Boor and P. Celec: Bactofection with toll-like receptor 4 in a murine model of urinary tract infection. Curr Microbiol 62, 1739-1742 (2011)
[28]R. Gardlik: Inducing pluripotency using in vivo gene therapy. Med Hypotheses 79, 197-201 (2012)
[29]A. Wagnerova and R. Gardlik: In vivo reprogramming in inflammatory bowel disease. Gene Ther 20, 1111-1118 (2013)
[30]R. Gardlik, A. Wagnerova and P. Celec: Effects of bacteriamediated reprogramming and antibiotic pretreatment on the course of colitis in mice. Mol Med Rep 10, 983-988 (2014)
[31]P. Celec, R. Gardlik, R. Palffy, J. Hodosy, S. Stuchlik, H. Drahovska, M. Stuchlikova, G. Minarik, J. Lukacs, I. Jurkovicova, I. Hulin, J. Turna, J. Jakubovsky, M. Kopani, L. Danisovic, D. Jandzik, M. Kudela and Y. Yonemitsu: The use of transformed Escherichia coli for experimental angiogenesis induced by regulated in situ production of vascular endothelial growth factor--an alternative gene therapy. Med Hypotheses 64, 505-511 (2005)
[32]H. Loessner, A. Endmann, S. Leschner, H. Bauer, A. Zelmer, S. zur Lage, K. Westphal and S. Weiss: Improving live attenuated bacterial carriers for vaccination and therapy. Int J Med Microbiol 298, 21-26 (2008)
[33]H. Loessner, A. Endmann, S. Leschner, K. Westphal, M. Rohde, T. Miloud, G. Hammerling, K. Neuhaus and S. Weiss: Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol 9, 1529-1537 (2007)
[34]H. Loessner, S. Leschner, A. Endmann, K. Westphal, K. Wolf, K. Kochruebe, T. Miloud, J. Altenbuchner and S. Weiss: Drug-inducible remote control of gene expression by probiotic Escherichia coli Nissle 1917 in intestine, tumor and gall bladder of mice. Microbes Infect 11, 1097-1105 (2009)
[35]S. N. Jiang, S. H. Park, H. J. Lee, J. H. Zheng, H. S. Kim, H. S. Bom, Y. Hong, M. Szardenings, M. G. Shin, S. C. Kim, V. Ntziachristos, H. E. Choy and J. J. Min: Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther 21, 1985-1995 (2013)
[36]M. Cronin, R. M. Stanton, K. P. Francis and M. Tangney: Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther 19, 731-740 (2012)
[37]J. Theys, O. Pennington, L. Dubois, G. Anlezark, T. Vaughan, A. Mengesha, W. Landuyt, J. Anne, P. J. Burke, P. Durre, B. G. Wouters, N. P. Minton and P. Lambin: Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer 95, 1212-1219 (2006)
[38]J. Theys and P. Lambin: Clostridium to treat cancer: dream or reality? Ann Transl Med 3, S21 (2015)
[39]S. Patyar, R. Joshi, D. S. Byrav, A. Prakash, B. Medhi and B. K. Das: Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 17, 21 (2010)
[40]A. T. St Jean, C. A. Swofford, J. T. Panteli, Z. J. Brentzel and N. S. Forbes: Bacterial delivery of Staphylococcus aureus alpha-hemolysin causes regression and necrosis in murine tumors. Mol Ther 22, 1266-1274 (2014)
[41]E. Spisni, M. C. Valerii, L. De Fazio, E. Cavazza, F. Borsetti, A. Sgromo, M. Candela, M. Centanni, F. Rizello and A. Strillacci: Cyclooxygenase-2 silencing for the treatment of colitis: a combined in vivo strategy based on RNA interference and engineered Escherichia coli. Mol Ther 23, 278-289 (2015)
[42]R. Gardlik, A. Bartonova and P. Celec: Therapeutic DNA vaccination and RNA interference in inflammatory bowel disease. Int J Mol Med 32, 492-496 (2013)
[43]R. Gardlik, J. Hodosy, R. Palffy, M. Behuliak, P. Janega and P. Celec: Effects of orally administered bacteria carrying HIF-1alpha gene in an experimental model of intestinal ischemia. Arch Med Res 41, 332-337 (2010)
[44]R. Gardlik: A non-specific effect of orally administered Escherichia coli. Bioeng Bugs 2, 288-290 (2011)
[45]T. Shimosato, H. Kitazawa, S. Katoh, M. Tohno, I. D. Iliev, C. Nagasawa, T. Kimura, Y. Kawai and T. Saito: Augmentation of T(H)-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling. Biochem Biophys Res Commun 326, 782-787 (2005)
[46]M. Cronin, D. Morrissey, S. Rajendran, S. M. El Mashad, D. van Sinderen, G. C. O’Sullivan and M. Tangney: Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18, 1397-1407 (2010)
[47]J. Theys, S. Barbe, W. Landuyt, S. Nuyts, L. Van Mellaert, B. Wouters, J. Anne and P. Lambin: Tumor-specific gene delivery using genetically engineered bacteria. Curr Gene Ther 3, 207-221 (2003)
[48]A. W. Paton, M. P. Jennings, R. Morona, H. Wang, A. Focareta, L. F. Roddam and J. C. Paton: Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 128, 1219-1228 (2005)
[49]J. Cummins and M.-W. Ho: Genetically modified probiotics should be banned. Microbial Ecology in Health and Disease 17, 66-68 (2005)
[50]M. Tangney: Gene therapy for cancer: dairy bacteria as delivery vectors. Discov Med 10, 195-200 (2010)
[51]T. Takiishi, H. Korf, T. L. Van Belle, S. Robert, F. A. Grieco, S. Caluwaerts, L. Galleri, I. Spagnuolo, L. Steidler, K. Van Huynegem, P. Demetter, C. Wasserfall, M. A. Atkinson, F. Dotta, P. Rottiers, C. Gysemans and C. Mathieu: Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122, 1717-1725 (2012)
[52]S. Caluwaerts, K. Vandenbroucke, L. Steidler, S. Neirynck, P. Vanhoenacker, S. Corveleyn, B. Watkins, S. Sonis, B. Coulie and P. Rottiers: AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 46, 564-570 (2010)
[53]K. Vandenbroucke, H. de Haard, E. Beirnaert, T. Dreier, M. Lauwereys, L. Huyck, J. Van Huysse, P. Demetter, L. Steidler, E. Remaut, C. Cuvelier and P. Rottiers: Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3, 49-56 (2010)
[54]C. Grillot-Courvalin, S. Goussard and P. Courvalin: Wild-type intracellular bacteria deliver DNA into mammalian cells. Cell Microbiol 4, 177-186 (2002)
[55]S. Xiang, J. Fruehauf and C. J. Li: Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol 24, 697-702 (2006)
[56]S. Xiang, A. C. Keates, J. Fruehauf, Y. Yang, H. Guo, T. Nguyen and C. J. Li: In vitro and in vivo gene silencing by TransKingdom RNAi (tkRNAi). Methods Mol Biol 487, 147-160 (2009)
[57]A. C. Keates, J. Fruehauf, S. Xiang and C. J. Li: TransKingdom RNA interference: a bacterial approach to challenges in RNAi therapy and delivery. Biotechnol Genet Eng Rev 25, 113-127 (2008)
[58]R. Gardlik, P. Celec and M. Bernadic: Targeting angiogenesis for cancer (gene) therapy. Bratisl Lek Listy 112, 428-434 (2011)
[59]P. Celec and Y. Yonemitsu: Vascular endothelial growth factor targeted RNA interference as a modulator of angiogenesis. Biomed Pharmacother 62, 349-351 (2008)
[60]R. Gardlik, M. Behuliak, R. Palffy, P. Celec and C. J. Li: Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther 18, 425-431 (2011)
[61]I. Youngster, G. H. Russell, C. Pindar, T. Ziv-Baran, J. Sauk and E. L. Hohmann: Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. Jama 312, 1772-1778 (2014)
[62]T. C. Shen, L. Albenberg, K. Bittinger, C. Chehoud, Y. Y. Chen, C. A. Judge, L. Chau, J. Ni, M. Sheng, A. Lin, B. J. Wilkins, E. L. Buza, J. D. Lewis, Y. Daikhin, I. Nissim, M. Yudkoff, F. D. Bushman and G. D. Wu: Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 125, 2841-2850 (2015)
[63]A. D. Kostic, R. J. Xavier and D. Gevers: The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489-1499 (2014)
[64]W. Kruis, P. Fric, J. Pokrotnieks, M. Lukas, B. Fixa, M. Kascak, M. A. Kamm, J. Weismueller, C. Beglinger, M. Stolte, C. Wolff and J. Schulze: Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617-1623 (2004)
[65]R. A. Whelan, S. Rausch, F. Ebner, D. Gunzel, J. F. Richter, N. A. Hering, J. D. Schulzke, A. A. Kuhl, A. Keles, P. Janczyk, K. Nockler, L. H. Wieler and S. Hartmann: A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Mol Ther 22, 1730-1740 (2014)
[66]R. Gardlik, R. Palffy and P. Celec: Recombinant probiotic therapy in experimental colitis in mice. Folia Biol (Praha) 58, 238-245 (2012)
[67]L. Steidler, S. Neirynck, N. Huyghebaert, V. Snoeck, A. Vermeire, B. Goddeeris, E. Cox, J. P. Remon and E. Remaut: Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21, 785-789 (2003)
[68]L. Steidler, W. Hans, L. Schotte, S. Neirynck, F. Obermeier, W. Falk, W. Fiers and E. Remaut: Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352-1355 (2000)
[69]T. H. Joeres-Nguyen-Xuan, S. K. Boehm, L. Joeres, J. Schulze and W. Kruis: Survival of the probiotic Escherichia coli Nissle 1917 (EcN) in the gastrointestinal tract given in combination with oral mesalamine to healthy volunteers. Inflamm Bowel Dis 16, 256-262 (2010)
[70]Z. Chen, L. Guo, Y. Zhang, R. L. Walzem, J. S. Pendergast, R. L. Printz, L. C. Morris, E. Matafonova, X. Stien, L. Kang, D. Coulon, O. P. McGuinness, K. D. Niswender and S. S. Davies: Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124, 3391-3406 (2014)
[71]J. W. Kotula, S. J. Kerns, L. A. Shaket, L. Siraj, J. J. Collins, J. C. Way and P. A. Silver: Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 111, 4838-4843 (2014)
[72]W. Weber, M. Daoud-El Baba and M. Fussenegger: Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc Natl Acad Sci U S A 104, 10435-10440 (2007)
[73]W. Weber, R. Schoenmakers, M. Spielmann, M. D. El-Baba, M. Folcher, B. Keller, C. C. Weber, N. Link, P. van de Wetering, C. Heinzen, B. Jolivet, U. Sequin, D. Aubel, C. J. Thompson and M. Fussenegger: Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res 31, e71 (2003)
[74]I. Y. Hwang, M. H. Tan, E. Koh, C. L. Ho, C. L. Poh and M. W. Chang: Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol 3, 228-237 (2014)
[75]G. Ada and I. Ramshaw: DNA vaccination. Expert Opin Emerg Drugs 8, 27-35 (2003)
[76]K. A. Cornell, H. G. Bouwer, D. J. Hinrichs and R. A. Barry: Genetic immunization of mice against Listeria monocytogenes using plasmid DNA encoding listeriolysin O. J Immunol 163, 322-329 (1999)
[77]D. R. Sizemore, A. A. Branstrom and J. C. Sadoff: Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299-302 (1995)
[78]D. R. Sizemore, A. A. Branstrom and J. C. Sadoff: Attenuated bacteria as a DNA delivery vehicle for DNA-mediated immunization. Vaccine 15, 804-807 (1997)
[79]A. Darji, C. A. Guzman, B. Gerstel, P. Wachholz, K. N. Timmis, J. Wehland, T. Chakraborty and S. Weiss: Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91, 765-775 (1997)
[80]A. Darji, S. zur Lage, A. I. Garbe, T. Chakraborty and S. Weiss: Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol 27, 341-349 (2000)
[81]E. I. Igwe, G. Geginat and H. Russmann: Concomitant cytosolic delivery of two immunodominant listerial antigens by Salmonella enterica serovar typhimurium confers superior protection against murine listeriosis. Infect Immun 70, 7114-7119 (2002)
[82]G. J. Fennelly, S. A. Khan, M. A. Abadi, T. F. Wild and B. R. Bloom: Mucosal DNA vaccine immunization against measles with a highly attenuated Shigella flexneri vector. J Immunol 162, 1603-1610 (1999)
[83]W. H. Vecino, N. M. Quanquin, L. Martinez-Sobrido, A. Fernandez-Sesma, A. Garcia-Sastre, W. R. Jacobs, Jr. and G. J. Fennelly: Mucosal immunization with attenuated Shigella flexneri harboring an influenza hemagglutinin DNA vaccine protects mice against a lethal influenza challenge. Virology 325, 192-199 (2004)
[84]J. E. Galen, J. Y. Wang, J. A. Carrasco, S. A. Lloyd, G. Mellado-Sanchez, J. Diaz-McNair, O. Franco, A. D. Buskirk, J. P. Nataro and M. F. Pasetti: A bivalent typhoid live vector vaccine expressing both chromosome- and plasmid-encoded Yersinia pestis antigens fully protects against murine lethal pulmonary plague infection. Infect Immun 83, 161-172 (2015
[85]G. Dietrich, A. Bubert, I. Gentschev, Z. Sokolovic, A. Simm, A. Catic, S. H. Kaufmann, J. Hess, A. A. Szalay and W. Goebel: Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat Biotechnol 16, 181-185 (1998)
[86]P. Paglia, E. Medina, I. Arioli, C. A. Guzman and M. P. Colombo: Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92, 3172-3176 (1998)
[87]M. Tangney, J. P. van Pijkeren and C. G. Gahan: The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy. Bioeng Bugs 1, 284-287 (2010)
[88]G. Dietrich, S. Spreng, I. Gentschev and W. Goebel: Bacterial systems for the delivery of eukaryotic antigen expression vectors. Antisense Nucleic Acid Drug Dev 10, 391-399 (2000)
[89]V. Shahabi, P. C. Maciag, S. Rivera and A. Wallecha: Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs 1, 235-243 (2010)
[90]S. Ahmad, G. Casey, M. Cronin, S. Rajendran, P. Sweeney, M. Tangney and G. C. O’Sullivan: Induction of effective antitumor response after mucosal bacterial vector mediated DNA vaccination with endogenous prostate cancer specific antigen. J Urol 186, 687-693 (2011)
[91]S. Weiss and S. Krusch: Bacteria-mediated transfer of eukaryotic expression plasmids into mammalian host cells. Biol Chem 382, 533-541 (2001)
[92]L. Ma, Q. Ding, X. Feng and F. Li: The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection. Inflammation 36, 1160-1170 (2013)
[93]J. E. Galen and R. Curtiss, 3rd: The delicate balance in genetically engineering live vaccines. Vaccine 32, 4376-4385 (2014)
[94]A. J. da Silva, T. C. Zangirolami, M. T. Novo-Mansur, C. Giordano Rde and E. A. Martins: Live bacterial vaccine vectors: an overview. Braz J Microbiol 45, 1117-1129 (2014)
[95]L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini and F. Zhang: Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013)
[96]H. Wang, H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang and R. Jaenisch: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918 (2013)
[97]F. E. Ahmed: Genetically modified probiotics in foods. Trends Biotechnol 21, 491-497 (2003)
[98]J. Nemunaitis, C. Cunningham, N. Senzer, J. Kuhn, J. Cramm, C. Litz, R. Cavagnolo, A. Cahill, C. Clairmont and M. Sznol: Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10, 737-744 (2003)
[99]H. Braat, P. Rottiers, D. W. Hommes, N. Huyghebaert, E. Remaut, J. P. Remon, S. J. van Deventer, S. Neirynck, M. P. Peppelenbosch and L. Steidler: A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4, 754-759 (2006)
[100]W. Kong, M. Brovold, B. A. Koeneman, J. Clark-Curtiss and R. Curtiss, 3rd: Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 109, 19414-19419 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Gene therapy using bacterial vectors
1 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
2 Institute for Clinical and Translational Medicine, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
3 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
4 Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
Abstract
Bacteria can be used for gene therapy via two strategies – either by transfection of eukaryotic host cells using bacteria – bactofection or by alternative gene therapy that does not alter the host genome, but uses the prokaryotic expression system that can be controlled or stopped from outside. While bactofection is optimal for gene substitution and DNA vaccination, alternative gene therapy is suitable for in situ delivery of proteins and treatment with intracellular bactochondria. A specific form of bacteria-mediated gene therapy is the transkingdom RNA interference. In this review advantages and issues related to bacterial vectors as well as the major applications in biomedical research are summarized. Despite numerous published experiments, especially in the treatment of solid tumors and gut infections, the progress in the clinics lags behind and major improvements in the safety and even more in the efficiency of these approaches are needed.
Keywords
- Bactofection
- Alternative Gene Therapy
- Transgene Expression
- DNA vaccination
- Review
References
- [1] S. Yla-Herttuala: Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20, 1831-1832 (2012)
- [2] T. Wirth, N. Parker and S. Yla-Herttuala: History of gene therapy. Gene 525, 162-169 (2013)
- [3] E. Aguilar-Cordova: Vectorology recapitulates virology--will it capitulate oncology? Nat Biotechnol 21, 756-757 (2003)
- [4] R. Gardlik, R. Palffy, J. Hodosy, J. Lukacs, J. Turna and P. Celec: Vectors and delivery systems in gene therapy. Med Sci Monit 11, Ra110-121 (2005)
- [5] S. Nayak and R. W. Herzog: Progress and prospects: immune responses to viral vectors. Gene Ther 17, 295-304 (2010)
- [6] H. Yin, R. L. Kanasty, A. A. Eltoukhy, A. J. Vegas, J. R. Dorkin and D. G. Anderson: Non-viral vectors for gene-based therapy. Nat Rev Genet 15, 541-555 (2014)
- [7] S. Cornelie, J. Hoebeke, A. M. Schacht, B. Bertin, J. Vicogne, M. Capron and G. Riveau: Direct evidence that toll-like receptor 9 (TLR9) functionally binds plasmid DNA by specific cytosine-phosphate-guanine motif recognition. J Biol Chem 279, 15124-1519 (2004)
- [8] M. Rutz, J. Metzger, T. Gellert, P. Luppa, G. B. Lipford, H. Wagner and S. Bauer: Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34, 2541-2550 (2004)
- [9] B. Spies, H. Hochrein, M. Vabulas, K. Huster, D. H. Busch, F. Schmitz, A. Heit and H. Wagner: Vaccination with plasmid DNA activates dendritic cells via Toll-like receptor 9 (TLR9) but functions in TLR9-deficient mice. J Immunol 171, 5908-5912 (2003)
- [10] M. Ogris and E. Wagner: Targeting tumors with non-viral gene delivery systems. Drug Discov Today 7, 479-485 (2002)
- [11] W. Schaffner: Direct transfer of cloned genes from bacteria to mammalian cells. Proc Natl Acad Sci U S A 77, 2163-2167 (1980)
- [12] S. Weiss and T. Chakraborty: Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Curr Opin Biotechnol 12, 467-472 (2001)
- [13] I. P. Nascimento and L. C. Leite: Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 45, 1102-1111 (2012)
- [14] H. Loessner and S. Weiss: Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opin Biol Ther 4, 157-168 (2004)
- [15] G. Vassaux, J. Nitcheu, S. Jezzard and N. R. Lemoine: Bacterial gene therapy strategies. J Pathol 208, 290-298 (2006)
- [16] A. Mengesha, L. Dubois, R. K. Chiu, K. Paesmans, B. G. Wouters, P. Lambin and J. Theys: Potential and limitations of bacterial-mediated cancer therapy. Front Biosci 12, 3880-3891 (2007)
- [17] K. L. Roland and K. E. Brenneman: Salmonella as a vaccine delivery vehicle. Expert Rev Vaccines 12, 1033-1045 (2013)
- [18] R. Palffy, R. Gardlik, J. Hodosy, M. Behuliak, P. Resko, J. Radvansky and P. Celec: Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther 13, 101-105 (2006)
- [19] P. Courvalin, S. Goussard and C. Grillot-Courvalin: Gene transfer from bacteria to mammalian cells. C R Acad Sci III 318, 1207-1212 (1995)
- [20] S. Pilgrim, J. Stritzker, C. Schoen, A. Kolb-Maurer, G. Geginat, M. J. Loessner, I. Gentschev and W. Goebel: Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther 10, 2036-2045 (2003)
- [21] C. Grillot-Courvalin, S. Goussard and P. Courvalin: Bacteria as gene delivery vectors for mammalian cells. Curr Opin Biotechnol 10, 477-481 (1999)
- [22] C. Grillot-Courvalin, S. Goussard, F. Huetz, D. M. Ojcius and P. Courvalin: Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16, 862-866 (1998)
- [23] R. Palffy, R. Gardlik, M. Behuliak, P. Jani, D. Balakova, L. Kadasi, J. Turna and P. Celec: Salmonella-mediated gene therapy in experimental colitis in mice. Exp Biol Med (Maywood) 236, 177-183 (2011)
- [24] R. Palffy, M. Behuliak, R. Gardlik, P. Jani, L. Kadasi, J. Turna and P. Celec: Oral in vivo bactofection in dextran sulfate sodium treated female Wistar rats. Folia Biol (Krakow) 58, 171-176 (2010)
- [25] J. Babickova, L. Tothova, E. Lengyelova, A. Bartonova, J. Hodosy, R. Gardlik and P. Celec: Sex Differences in Experimentally Induced Colitis in Mice: a Role for Estrogens. Inflammation 38, 1996-2006 (2015)
- [26] R. Gardlik and J. H. Fruehauf: Bacterial vectors and delivery systems in cancer therapy. IDrugs 13, 701-706 (2010)
- [27] L. Tothova, J. Hodosy, N. Kamodyova, P. Janega, L. Slobodnikova, A. Liptakova, P. Boor and P. Celec: Bactofection with toll-like receptor 4 in a murine model of urinary tract infection. Curr Microbiol 62, 1739-1742 (2011)
- [28] R. Gardlik: Inducing pluripotency using in vivo gene therapy. Med Hypotheses 79, 197-201 (2012)
- [29] A. Wagnerova and R. Gardlik: In vivo reprogramming in inflammatory bowel disease. Gene Ther 20, 1111-1118 (2013)
- [30] R. Gardlik, A. Wagnerova and P. Celec: Effects of bacteriamediated reprogramming and antibiotic pretreatment on the course of colitis in mice. Mol Med Rep 10, 983-988 (2014)
- [31] P. Celec, R. Gardlik, R. Palffy, J. Hodosy, S. Stuchlik, H. Drahovska, M. Stuchlikova, G. Minarik, J. Lukacs, I. Jurkovicova, I. Hulin, J. Turna, J. Jakubovsky, M. Kopani, L. Danisovic, D. Jandzik, M. Kudela and Y. Yonemitsu: The use of transformed Escherichia coli for experimental angiogenesis induced by regulated in situ production of vascular endothelial growth factor--an alternative gene therapy. Med Hypotheses 64, 505-511 (2005)
- [32] H. Loessner, A. Endmann, S. Leschner, H. Bauer, A. Zelmer, S. zur Lage, K. Westphal and S. Weiss: Improving live attenuated bacterial carriers for vaccination and therapy. Int J Med Microbiol 298, 21-26 (2008)
- [33] H. Loessner, A. Endmann, S. Leschner, K. Westphal, M. Rohde, T. Miloud, G. Hammerling, K. Neuhaus and S. Weiss: Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo. Cell Microbiol 9, 1529-1537 (2007)
- [34] H. Loessner, S. Leschner, A. Endmann, K. Westphal, K. Wolf, K. Kochruebe, T. Miloud, J. Altenbuchner and S. Weiss: Drug-inducible remote control of gene expression by probiotic Escherichia coli Nissle 1917 in intestine, tumor and gall bladder of mice. Microbes Infect 11, 1097-1105 (2009)
- [35] S. N. Jiang, S. H. Park, H. J. Lee, J. H. Zheng, H. S. Kim, H. S. Bom, Y. Hong, M. Szardenings, M. G. Shin, S. C. Kim, V. Ntziachristos, H. E. Choy and J. J. Min: Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. Mol Ther 21, 1985-1995 (2013)
- [36] M. Cronin, R. M. Stanton, K. P. Francis and M. Tangney: Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther 19, 731-740 (2012)
- [37] J. Theys, O. Pennington, L. Dubois, G. Anlezark, T. Vaughan, A. Mengesha, W. Landuyt, J. Anne, P. J. Burke, P. Durre, B. G. Wouters, N. P. Minton and P. Lambin: Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br J Cancer 95, 1212-1219 (2006)
- [38] J. Theys and P. Lambin: Clostridium to treat cancer: dream or reality? Ann Transl Med 3, S21 (2015)
- [39] S. Patyar, R. Joshi, D. S. Byrav, A. Prakash, B. Medhi and B. K. Das: Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 17, 21 (2010)
- [40] A. T. St Jean, C. A. Swofford, J. T. Panteli, Z. J. Brentzel and N. S. Forbes: Bacterial delivery of Staphylococcus aureus alpha-hemolysin causes regression and necrosis in murine tumors. Mol Ther 22, 1266-1274 (2014)
- [41] E. Spisni, M. C. Valerii, L. De Fazio, E. Cavazza, F. Borsetti, A. Sgromo, M. Candela, M. Centanni, F. Rizello and A. Strillacci: Cyclooxygenase-2 silencing for the treatment of colitis: a combined in vivo strategy based on RNA interference and engineered Escherichia coli. Mol Ther 23, 278-289 (2015)
- [42] R. Gardlik, A. Bartonova and P. Celec: Therapeutic DNA vaccination and RNA interference in inflammatory bowel disease. Int J Mol Med 32, 492-496 (2013)
- [43] R. Gardlik, J. Hodosy, R. Palffy, M. Behuliak, P. Janega and P. Celec: Effects of orally administered bacteria carrying HIF-1alpha gene in an experimental model of intestinal ischemia. Arch Med Res 41, 332-337 (2010)
- [44] R. Gardlik: A non-specific effect of orally administered Escherichia coli. Bioeng Bugs 2, 288-290 (2011)
- [45] T. Shimosato, H. Kitazawa, S. Katoh, M. Tohno, I. D. Iliev, C. Nagasawa, T. Kimura, Y. Kawai and T. Saito: Augmentation of T(H)-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling. Biochem Biophys Res Commun 326, 782-787 (2005)
- [46] M. Cronin, D. Morrissey, S. Rajendran, S. M. El Mashad, D. van Sinderen, G. C. O’Sullivan and M. Tangney: Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 18, 1397-1407 (2010)
- [47] J. Theys, S. Barbe, W. Landuyt, S. Nuyts, L. Van Mellaert, B. Wouters, J. Anne and P. Lambin: Tumor-specific gene delivery using genetically engineered bacteria. Curr Gene Ther 3, 207-221 (2003)
- [48] A. W. Paton, M. P. Jennings, R. Morona, H. Wang, A. Focareta, L. F. Roddam and J. C. Paton: Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 128, 1219-1228 (2005)
- [49] J. Cummins and M.-W. Ho: Genetically modified probiotics should be banned. Microbial Ecology in Health and Disease 17, 66-68 (2005)
- [50] M. Tangney: Gene therapy for cancer: dairy bacteria as delivery vectors. Discov Med 10, 195-200 (2010)
- [51] T. Takiishi, H. Korf, T. L. Van Belle, S. Robert, F. A. Grieco, S. Caluwaerts, L. Galleri, I. Spagnuolo, L. Steidler, K. Van Huynegem, P. Demetter, C. Wasserfall, M. A. Atkinson, F. Dotta, P. Rottiers, C. Gysemans and C. Mathieu: Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest 122, 1717-1725 (2012)
- [52] S. Caluwaerts, K. Vandenbroucke, L. Steidler, S. Neirynck, P. Vanhoenacker, S. Corveleyn, B. Watkins, S. Sonis, B. Coulie and P. Rottiers: AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol 46, 564-570 (2010)
- [53] K. Vandenbroucke, H. de Haard, E. Beirnaert, T. Dreier, M. Lauwereys, L. Huyck, J. Van Huysse, P. Demetter, L. Steidler, E. Remaut, C. Cuvelier and P. Rottiers: Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 3, 49-56 (2010)
- [54] C. Grillot-Courvalin, S. Goussard and P. Courvalin: Wild-type intracellular bacteria deliver DNA into mammalian cells. Cell Microbiol 4, 177-186 (2002)
- [55] S. Xiang, J. Fruehauf and C. J. Li: Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol 24, 697-702 (2006)
- [56] S. Xiang, A. C. Keates, J. Fruehauf, Y. Yang, H. Guo, T. Nguyen and C. J. Li: In vitro and in vivo gene silencing by TransKingdom RNAi (tkRNAi). Methods Mol Biol 487, 147-160 (2009)
- [57] A. C. Keates, J. Fruehauf, S. Xiang and C. J. Li: TransKingdom RNA interference: a bacterial approach to challenges in RNAi therapy and delivery. Biotechnol Genet Eng Rev 25, 113-127 (2008)
- [58] R. Gardlik, P. Celec and M. Bernadic: Targeting angiogenesis for cancer (gene) therapy. Bratisl Lek Listy 112, 428-434 (2011)
- [59] P. Celec and Y. Yonemitsu: Vascular endothelial growth factor targeted RNA interference as a modulator of angiogenesis. Biomed Pharmacother 62, 349-351 (2008)
- [60] R. Gardlik, M. Behuliak, R. Palffy, P. Celec and C. J. Li: Gene therapy for cancer: bacteria-mediated anti-angiogenesis therapy. Gene Ther 18, 425-431 (2011)
- [61] I. Youngster, G. H. Russell, C. Pindar, T. Ziv-Baran, J. Sauk and E. L. Hohmann: Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. Jama 312, 1772-1778 (2014)
- [62] T. C. Shen, L. Albenberg, K. Bittinger, C. Chehoud, Y. Y. Chen, C. A. Judge, L. Chau, J. Ni, M. Sheng, A. Lin, B. J. Wilkins, E. L. Buza, J. D. Lewis, Y. Daikhin, I. Nissim, M. Yudkoff, F. D. Bushman and G. D. Wu: Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 125, 2841-2850 (2015)
- [63] A. D. Kostic, R. J. Xavier and D. Gevers: The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489-1499 (2014)
- [64] W. Kruis, P. Fric, J. Pokrotnieks, M. Lukas, B. Fixa, M. Kascak, M. A. Kamm, J. Weismueller, C. Beglinger, M. Stolte, C. Wolff and J. Schulze: Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617-1623 (2004)
- [65] R. A. Whelan, S. Rausch, F. Ebner, D. Gunzel, J. F. Richter, N. A. Hering, J. D. Schulzke, A. A. Kuhl, A. Keles, P. Janczyk, K. Nockler, L. H. Wieler and S. Hartmann: A transgenic probiotic secreting a parasite immunomodulator for site-directed treatment of gut inflammation. Mol Ther 22, 1730-1740 (2014)
- [66] R. Gardlik, R. Palffy and P. Celec: Recombinant probiotic therapy in experimental colitis in mice. Folia Biol (Praha) 58, 238-245 (2012)
- [67] L. Steidler, S. Neirynck, N. Huyghebaert, V. Snoeck, A. Vermeire, B. Goddeeris, E. Cox, J. P. Remon and E. Remaut: Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21, 785-789 (2003)
- [68] L. Steidler, W. Hans, L. Schotte, S. Neirynck, F. Obermeier, W. Falk, W. Fiers and E. Remaut: Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352-1355 (2000)
- [69] T. H. Joeres-Nguyen-Xuan, S. K. Boehm, L. Joeres, J. Schulze and W. Kruis: Survival of the probiotic Escherichia coli Nissle 1917 (EcN) in the gastrointestinal tract given in combination with oral mesalamine to healthy volunteers. Inflamm Bowel Dis 16, 256-262 (2010)
- [70] Z. Chen, L. Guo, Y. Zhang, R. L. Walzem, J. S. Pendergast, R. L. Printz, L. C. Morris, E. Matafonova, X. Stien, L. Kang, D. Coulon, O. P. McGuinness, K. D. Niswender and S. S. Davies: Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J Clin Invest 124, 3391-3406 (2014)
- [71] J. W. Kotula, S. J. Kerns, L. A. Shaket, L. Siraj, J. J. Collins, J. C. Way and P. A. Silver: Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 111, 4838-4843 (2014)
- [72] W. Weber, M. Daoud-El Baba and M. Fussenegger: Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc Natl Acad Sci U S A 104, 10435-10440 (2007)
- [73] W. Weber, R. Schoenmakers, M. Spielmann, M. D. El-Baba, M. Folcher, B. Keller, C. C. Weber, N. Link, P. van de Wetering, C. Heinzen, B. Jolivet, U. Sequin, D. Aubel, C. J. Thompson and M. Fussenegger: Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res 31, e71 (2003)
- [74] I. Y. Hwang, M. H. Tan, E. Koh, C. L. Ho, C. L. Poh and M. W. Chang: Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol 3, 228-237 (2014)
- [75] G. Ada and I. Ramshaw: DNA vaccination. Expert Opin Emerg Drugs 8, 27-35 (2003)
- [76] K. A. Cornell, H. G. Bouwer, D. J. Hinrichs and R. A. Barry: Genetic immunization of mice against Listeria monocytogenes using plasmid DNA encoding listeriolysin O. J Immunol 163, 322-329 (1999)
- [77] D. R. Sizemore, A. A. Branstrom and J. C. Sadoff: Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299-302 (1995)
- [78] D. R. Sizemore, A. A. Branstrom and J. C. Sadoff: Attenuated bacteria as a DNA delivery vehicle for DNA-mediated immunization. Vaccine 15, 804-807 (1997)
- [79] A. Darji, C. A. Guzman, B. Gerstel, P. Wachholz, K. N. Timmis, J. Wehland, T. Chakraborty and S. Weiss: Oral somatic transgene vaccination using attenuated S. typhimurium. Cell 91, 765-775 (1997)
- [80] A. Darji, S. zur Lage, A. I. Garbe, T. Chakraborty and S. Weiss: Oral delivery of DNA vaccines using attenuated Salmonella typhimurium as carrier. FEMS Immunol Med Microbiol 27, 341-349 (2000)
- [81] E. I. Igwe, G. Geginat and H. Russmann: Concomitant cytosolic delivery of two immunodominant listerial antigens by Salmonella enterica serovar typhimurium confers superior protection against murine listeriosis. Infect Immun 70, 7114-7119 (2002)
- [82] G. J. Fennelly, S. A. Khan, M. A. Abadi, T. F. Wild and B. R. Bloom: Mucosal DNA vaccine immunization against measles with a highly attenuated Shigella flexneri vector. J Immunol 162, 1603-1610 (1999)
- [83] W. H. Vecino, N. M. Quanquin, L. Martinez-Sobrido, A. Fernandez-Sesma, A. Garcia-Sastre, W. R. Jacobs, Jr. and G. J. Fennelly: Mucosal immunization with attenuated Shigella flexneri harboring an influenza hemagglutinin DNA vaccine protects mice against a lethal influenza challenge. Virology 325, 192-199 (2004)
- [84] J. E. Galen, J. Y. Wang, J. A. Carrasco, S. A. Lloyd, G. Mellado-Sanchez, J. Diaz-McNair, O. Franco, A. D. Buskirk, J. P. Nataro and M. F. Pasetti: A bivalent typhoid live vector vaccine expressing both chromosome- and plasmid-encoded Yersinia pestis antigens fully protects against murine lethal pulmonary plague infection. Infect Immun 83, 161-172 (2015
- [85] G. Dietrich, A. Bubert, I. Gentschev, Z. Sokolovic, A. Simm, A. Catic, S. H. Kaufmann, J. Hess, A. A. Szalay and W. Goebel: Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat Biotechnol 16, 181-185 (1998)
- [86] P. Paglia, E. Medina, I. Arioli, C. A. Guzman and M. P. Colombo: Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92, 3172-3176 (1998)
- [87] M. Tangney, J. P. van Pijkeren and C. G. Gahan: The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy. Bioeng Bugs 1, 284-287 (2010)
- [88] G. Dietrich, S. Spreng, I. Gentschev and W. Goebel: Bacterial systems for the delivery of eukaryotic antigen expression vectors. Antisense Nucleic Acid Drug Dev 10, 391-399 (2000)
- [89] V. Shahabi, P. C. Maciag, S. Rivera and A. Wallecha: Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs 1, 235-243 (2010)
- [90] S. Ahmad, G. Casey, M. Cronin, S. Rajendran, P. Sweeney, M. Tangney and G. C. O’Sullivan: Induction of effective antitumor response after mucosal bacterial vector mediated DNA vaccination with endogenous prostate cancer specific antigen. J Urol 186, 687-693 (2011)
- [91] S. Weiss and S. Krusch: Bacteria-mediated transfer of eukaryotic expression plasmids into mammalian host cells. Biol Chem 382, 533-541 (2001)
- [92] L. Ma, Q. Ding, X. Feng and F. Li: The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection. Inflammation 36, 1160-1170 (2013)
- [93] J. E. Galen and R. Curtiss, 3rd: The delicate balance in genetically engineering live vaccines. Vaccine 32, 4376-4385 (2014)
- [94] A. J. da Silva, T. C. Zangirolami, M. T. Novo-Mansur, C. Giordano Rde and E. A. Martins: Live bacterial vaccine vectors: an overview. Braz J Microbiol 45, 1117-1129 (2014)
- [95] L. Cong, F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini and F. Zhang: Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013)
- [96] H. Wang, H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang and R. Jaenisch: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910-918 (2013)
- [97] F. E. Ahmed: Genetically modified probiotics in foods. Trends Biotechnol 21, 491-497 (2003)
- [98] J. Nemunaitis, C. Cunningham, N. Senzer, J. Kuhn, J. Cramm, C. Litz, R. Cavagnolo, A. Cahill, C. Clairmont and M. Sznol: Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 10, 737-744 (2003)
- [99] H. Braat, P. Rottiers, D. W. Hommes, N. Huyghebaert, E. Remaut, J. P. Remon, S. J. van Deventer, S. Neirynck, M. P. Peppelenbosch and L. Steidler: A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4, 754-759 (2006)
- [100] W. Kong, M. Brovold, B. A. Koeneman, J. Clark-Curtiss and R. Curtiss, 3rd: Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 109, 19414-19419 (2012)
