Information
References
Contents
Download
[1]J. E. Shaw, R. A. Sicree and P. Z. Zimmet: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 87(1), 4-14 (2010)
[2]G. Boden: Obesity and free fatty acids. Endocrinol Metab Clin North Am, 37(3), 635-46, viii-ix (2008)
[3]N. T. Nguyen, C. P. Magno, K. T. Lane, M. W. Hinojosa and J. S. Lane: Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J Am Coll Surg, 207(6), 928-34 (2008)
[4]M. N. Barber, S. Risis, C. Yang, P. J. Meikle, M. Staples, M. A. Febbraio and C. R. Bruce: Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One, 7(7), e41456 (2012)
[5]F. Samad, K. D. Hester, G. Yang, Y. A. Hannun and J. Bielawski: Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes, 55(9), 2579-87 (2006)
[6]M. J. Watt, A. C. Barnett, C. R. Bruce, S. Schenk, J. F. Horowitz and A. J. Hoy: Regulation of plasma ceramide levels with fatty acid oversupply: evidence that the liver detects and secretes de novo synthesised ceramide. Diabetologia, 55(10), 2741-6 (2012)
[7]G. van Echten-Deckert and T. Herget: Sphingolipid metabolism in neural cells. Biochim Biophys Acta, 1758(12), 1978-94 (2006)
[8]T. Wennekes, R. J. van den Berg, R. G. Boot, G. A. van der Marel, H. S. Overkleeft and J. M. Aerts: Glycosphingolipids--nature, function, and pharmacological modulation. Angew Chem Int Ed Engl, 48(47), 8848-69 (2009)
[9]Y. H. Zeidan and Y. A. Hannun: Translational aspects of sphingolipid metabolism. Trends Mol Med, 13(8), 327-36 (2007)
[10]S. Narayan and E. A. Thomas: Sphingolipid abnormalities in psychiatric disorders: a missing link in pathology? Front Biosci (Landmark Ed), 16, 1797-810 (2011)
[11]Y. A. Hannun: Functions of ceramide in coordinating cellular responses to stress. Science, 274(5294), 1855-9 (1996)
[12]C. Luberto, J. M. Kraveka and Y. A. Hannun: Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res, 27(7-8), 609-17 (2002)
[13]P. P. Ruvolo: Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res, 47(5), 383-92 (2003)
[14]C. Garcia-Ruiz, A. Colell, M. Mari, A. Morales and J. C. Fernandez-Checa: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem, 272(17), 11369-77 (1997)
[15]E. H. Schuchman: The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. Int J Clin Pharmacol Ther, 47 Suppl 1, S48-57 (2009)
[16]K. Ogawa-Goto and T. Abe: Gangliosides and glycosphingolipids of peripheral nervous system myelins--a minireview. Neurochem Res, 23(3), 305-10 (1998)
[17]T. Kolter and K. Sandhoff: Sphingolipid metabolism diseases. Biochim Biophys Acta, 1758(12), 2057-79 (2006)
[18]M. Eckhardt: The role and metabolism of sulfatide in the nervous system. Mol Neurobiol, 37(2-3), 93-103 (2008)
[19]E. Meacci, F. Cencetti, C. Donati, F. Nuti, L. Becciolini and P. Bruni: Sphingosine kinase activity is required for sphingosine-mediated phospholipase D activation in C2C12 myoblasts. Biochem J, 381(Pt 3), 655-63 (2004)
[20]M. N. Nikolova-Karakashian and M. B. Reid: Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxid Redox Signal, 15(9), 2501-17 (2011)
[21]D. S. Wijesinghe, A. Massiello, P. Subramanian, Z. Szulc, A. Bielawska and C. E. Chalfant: Substrate specificity of human ceramide kinase. J Lipid Res, 46(12), 2706-16 (2005)
[22]E. Ikonen and S. Vainio: Lipid microdomains and insulin resistance: is there a connection? Sci STKE, 2005(268), pe3 (2005)
[23]J. Inokuchi: Insulin resistance as a membrane microdomain disorder. Biol Pharm Bull, 29(8), 1532-7 (2006)
[24]K. M. Boini, C. Zhang, M. Xia, J. L. Poklis and P. L. Li: Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J Pharmacol Exp Ther, 334(3), 839-46 (2010)
[25]K. M. Boini, C. Zhang, M. Xia, W. Q. Han, C. Brimson, J. L. Poklis and P. L. Li: Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochim Biophys Acta, 1801(12), 1294-304 (2010)
[26]S. M. Walls, Jr., S. J. Attle, G. B. Brulte, M. L. Walls, K. D. Finley, D. A. Chatfield, D. R. Herr and G. L. Harris: Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. PLoS Genet, 9(12), e1003970 (2013)
[27]E. W. Kraegen, G. J. Cooney, J. M. Ye, A. L. Thompson and S. M. Furler: The role of lipids in the pathogenesis of muscle insulin resistance and beta cell failure in type II diabetes and obesity. Exp Clin Endocrinol Diabetes, 109 Suppl 2, S189-201 (2001)
[28]R. H. Unger: Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology, 144(12), 5159-65 (2003)
[29]W. L. Holland, J. T. Brozinick, L. P. Wang, E. D. Hawkins, K. M. Sargent, Y. Liu, K. Narra, K. L. Hoehn, T. A. Knotts, A. Siesky, D. H. Nelson, S. K. Karathanasis, G. K. Fontenot, M. J. Birnbaum and S. A. Summers: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab, 5(3), 167-79 (2007)
[30]R. A. Memon, W. M. Holleran, A. H. Moser, T. Seki, Y. Uchida, J. Fuller, J. K. Shigenaga, C. Grunfeld and K. R. Feingold: Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler Thromb Vasc Biol, 18(8), 1257-65 (1998)
[31]W. Zheng, J. Kollmeyer, H. Symolon, A. Momin, E. Munter, E. Wang, S. Kelly, J. C. Allegood, Y. Liu, Q. Peng, H. Ramaraju, M. C. Sullards, M. Cabot and A. H. Merrill, Jr.: Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta, 1758(12), 1864-84 (2006)
[32]J. L. Halaas, K. S. Gajiwala, M. Maffei, S. L. Cohen, B. T. Chait, D. Rabinowitz, R. L. Lallone, S. K. Burley and J. M. Friedman: Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269(5223), 543-6 (1995)
[33]Y. Minokoshi, M. S. Haque and T. Shimazu: Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes, 48(2), 287-91 (1999)
[34]E. Bonzon-Kulichenko, D. Schwudke, N. Gallardo, E. Molto, T. Fernandez-Agullo, A. Shevchenko and A. Andres: Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology, 150(1), 169-78 (2009)
[35]H. Ma, V. Gomez, L. Lu, X. Yang, X. Wu and S. Y. Xiao: Expression of adiponectin and its receptors in livers of morbidly obese patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol, 24(2), 233-7 (2009)
[36]C. K. Huang, R. Goel, P. C. Chang, C. H. Lo and A. Shabbir: Single-incision transumbilical (SITU) surgery after SITU laparoscopic Roux-en-Y gastric bypass. J Laparoendosc Adv Surg Tech A, 22(8), 764-7 (2012)
[37]M. Xia, K. M. Boini, J. M. Abais, M. Xu, Y. Zhang and P. L. Li: Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. Am J Pathol, 184(5), 1617-28 (2014)
[38]S. A. Summers: Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res, 45(1), 42-72 (2006)
[39]J. M. Abais, M. Xia, Y. Zhang, K. M. Boini and P. L. Li: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal, 22(13), 1111-29 (2015)
[40]B. Vandanmagsar, Y. H. Youm, A. Ravussin, J. E. Galgani, K. Stadler, R. L. Mynatt, E. Ravussin, J. M. Stephens and V. D. Dixit: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 17(2), 179-88 (2011)
[41]K. M. Boini, M. Xia, J. M. Abais, G. Li, A. L. Pitzer, T. W. Gehr, Y. Zhang and P. L. Li: Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochim Biophys Acta, 1843(5), 836-45 (2014)
[42]Y. Lee, H. Hirose, M. Ohneda, J. H. Johnson, J. D. McGarry and R. H. Unger: Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A, 91(23), 10878-82 (1994)
[43]H. Malhi and G. J. Gores: Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis, 28(4), 360-9 (2008)
[44]N. A. Bourbon, L. Sandirasegarane and M. Kester: Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem, 277(5), 3286-92 (2002)
[45]C. Shah, G. Yang, I. Lee, J. Bielawski, Y. A. Hannun and F. Samad: Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem, 283(20), 13538-48 (2008)
[46]B. Liu, L. M. Obeid and Y. A. Hannun: Sphingomyelinases in cell regulation. Semin Cell Dev Biol, 8(3), 311-322 (1997)
[47]Z. Li, M. J. Basterr, T. K. Hailemariam, M. R. Hojjati, S. Lu, J. Liu, R. Liu, H. Zhou and X. C. Jiang: The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis. Biochim Biophys Acta, 1735(2), 130-4 (2005)
[48]T. S. Park, R. L. Panek, S. B. Mueller, J. C. Hanselman, W. S. Rosebury, A. W. Robertson, E. K. Kindt, R. Homan, S. K. Karathanasis and M. D. Rekhter: Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 110(22), 3465-71 (2004)
[49]J. M. Holopainen, J. Y. Lehtonen and P. K. Kinnunen: Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids, 88(1), 1-13 (1997)
[50]S. L. Schissel, J. Tweedie-Hardman, J. H. Rapp, G. Graham, K. J. Williams and I. Tabas: Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest, 98(6), 1455-64 (1996)
[51]S. Y. Morita, K. Okuhira, N. Tsuchimoto, A. Vertut-Doi, H. Saito, M. Nakano and T. Handa: Effects of sphingomyelin on apolipoprotein E- and lipoprotein lipase-mediated cell uptake of lipid particles. Biochim Biophys Acta, 1631(2), 169-76 (2003)
[52]Y. Yatomi, T. Ohmori, G. Rile, F. Kazama, H. Okamoto, T. Sano, K. Satoh, S. Kume, G. Tigyi, Y. Igarashi and Y. Ozaki: Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood, 96(10), 3431-8 (2000)
[53]Q. Yang, T. E. Graham, N. Mody, F. Preitner, O. D. Peroni, J. M. Zabolotny, K. Kotani, L. Quadro and B. B. Kahn: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436(7049), 356-62 (2005)
[54]J. Boon, A. J. Hoy, R. Stark, R. D. Brown, R. C. Meex, D. C. Henstridge, S. Schenk, P. J. Meikle, J. F. Horowitz, B. A. Kingwell, C. R. Bruce and M. J. Watt: Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes, 62(2), 401-10 (2013)
[55]X. Lopez, A. B. Goldfine, W. L. Holland, R. Gordillo and P. E. Scherer: Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J Pediatr Endocrinol Metab, 26(9-10), 995-8 (2013)
[56]H. Huang, T. Kasumov, P. Gatmaitan, H. M. Heneghan, S. R. Kashyap, P. R. Schauer, S. A. Brethauer and J. P. Kirwan: Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring), 19(11), 2235-40 (2011)
[57]W. Truong, J. A. Emamaullee, S. Merani, C. C. Anderson and A. M. James Shapiro: Human islet function is not impaired by the sphingosine-1-phosphate receptor modulator FTY720. Am J Transplant, 7(8), 2031-8 (2007)
[58]T. Yamashita, A. Hashiramoto, M. Haluzik, H. Mizukami, S. Beck, A. Norton, M. Kono, S. Tsuji, J. L. Daniotti, N. Werth, R. Sandhoff, K. Sandhoff and R. L. Proia: Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A, 100(6), 3445-9 (2003)
[59]J. M. Aerts, R. Ottenhoff, A. S. Powlson, A. Grefhorst, M. van Eijk, P. F. Dubbelhuis, J. Aten, F. Kuipers, M. J. Serlie, T. Wennekes, J. K. Sethi, S. O’Rahilly and H. S. Overkleeft: Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes, 56(5), 1341-9 (2007)
[60]L. Lee, A. Abe and J. A. Shayman: Improved inhibitors of glucosylceramide synthase. J Biol Chem, 274(21), 14662-9 (1999)
[61]H. Zhao, M. Przybylska, I. H. Wu, J. Zhang, C. Siegel, S. Komarnitsky, N. S. Yew and S. H. Cheng: Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes, 56(5), 1210-8 (2007)
[62]J. M. Haus, S. R. Kashyap, T. Kasumov, R. Zhang, K. R. Kelly, R. A. Defronzo and J. P. Kirwan: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes, 58(2), 337-43 (2009)
[63]E. Hajduch, A. Balendran, I. H. Batty, G. J. Litherland, A. S. Blair, C. P. Downes and H. S. Hundal: Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia, 44(2), 173-83 (2001)
[64]S. A. Summers, L. A. Garza, H. Zhou and M. J. Birnbaum: Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol, 18(9), 5457-64 (1998)
[65]D. J. Powell, S. Turban, A. Gray, E. Hajduch and H. S. Hundal: Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J, 382(Pt 2), 619-29 (2004)
[66]Q. J. Zhang, W. L. Holland, L. Wilson, J. M. Tanner, D. Kearns, J. M. Cahoon, D. Pettey, J. Losee, B. Duncan, D. Gale, C. A. Kowalski, N. Deeter, A. Nichols, M. Deesing, C. Arrant, T. Ruan, C. Boehme, D. R. McCamey, J. Rou, K. Ambal, K. K. Narra, S. A. Summers, E. D. Abel and J. D. Symons: Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes, 61(7), 1848-59 (2012)
[67]L. J. Spijkers, R. F. van den Akker, B. J. Janssen, J. J. Debets, J. G. De Mey, E. S. Stroes, B. J. van den Born, D. S. Wijesinghe, C. E. Chalfant, L. MacAleese, G. B. Eijkel, R. M. Heeren, A. E. Alewijnse and S. L. Peters: Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One, 6(7), e21817 (2011)
[68]C. Berry, R. Touyz, A. F. Dominiczak, R. C. Webb and D. G. Johns: Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol, 281(6), H2337-65 (2001)
[69]R. M. Fryer, A. Muthukumarana, P. C. Harrison, S. Nodop Mazurek, R. R. Chen, K. E. Harrington, R. M. Dinallo, J. C. Horan, L. Patnaude, L. K. Modis and G. A. Reinhart: The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P(1)) and hypertension (S1P(3)) in rat. PLoS One, 7(12), e52985 (2012)
[70]M. Czarny and J. E. Schnitzer: Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol, 287(3), H1344-52 (2004)
[71]M. Fenger, A. Linneberg, T. Jorgensen, S. Madsbad, K. Sobye, J. Eugen-Olsen and J. Jeppesen: Genetics of the ceramide/sphingosine-1-phosphate rheostat in blood pressure regulation and hypertension. BMC Genet, 12, 44 (2011)
[72]G. P. Kaushal, A. B. Singh and S. V. Shah: Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am J Physiol, 274(3 Pt 2), F587-95 (1998)
[73]N. Ueda, G. P. Kaushal and S. V. Shah: Apoptotic mechanisms in acute renal failure. Am J Med, 108(5), 403-15 (2000)
[74]F. Yi, A. Y. Zhang, J. L. Janscha, P. L. Li and A. P. Zou: Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int, 66(5), 1977-87 (2004)
[75]T. Yin, G. Sandhu, C. D. Wolfgang, A. Burrier, R. L. Webb, D. F. Rigel, T. Hai and J. Whelan: Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem, 272(32), 19943-50 (1997)
[76]W. Liu, T. Lan, X. Xie, K. Huang, J. Peng, J. Huang, X. Shen, P. Liu and H. Huang: S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. Exp Cell Res, 318(8), 936-43 (2012)
[77]R. L. Klein, S. M. Hammad, N. L. Baker, K. J. Hunt, M. M. Al Gadban, P. A. Cleary, G. Virella, M. F. Lopes-Virella and D. E. R. Group: Decreased plasma levels of select very long chain ceramide species are associated with the development of nephropathy in type 1 diabetes. Metabolism, 63(10), 1287-95 (2014)
[78]R. Ross: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362(6423), 801-9 (1993)
[79]J. L. Witztum and D. Steinberg: Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest, 88(6), 1785-92 (1991)
[80]S. Yla-Herttuala, W. Palinski, M. E. Rosenfeld, S. Parthasarathy, T. E. Carew, S. Butler, J. L. Witztum and D. Steinberg: Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest, 84(4), 1086-95 (1989)
[81]H. A. Newman, C. E. Mc and D. B. Zilversmit: The synthesis of C14-lipids in rabbit atheromatous lesions. J Biol Chem, 236, 1264-8 (1961)
[82]O. W. Portman and D. R. Illingworth: Arterial metabolism in primates. Primates Med, 9, 145-223 (1976)
[83]E. B. Smith: Intimal and medial lipids in human aortas. Lancet, 1(7128), 799-803 (1960)
[84]J. R. Guyton and K. F. Klemp: Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol, 16(1), 4-11 (1996)
[85]S. Eisenberg, Y. Stein and O. Stein: Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age. J Clin Invest, 48(12), 2320-9 (1969)
[86]D. B. Zilversmit, C. E. Mc, P. H. Jordan, W. S. Henly and R. F. Ackerman: The synthesis of phospholipids in human atheromatous lesions. Circulation, 23, 370-5 (1961)
[87]T. Jeong, S. L. Schissel, I. Tabas, H. J. Pownall, A. R. Tall and X. Jiang: Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J Clin Invest, 101(4), 905-12 (1998)
[88]A. S. Plump, J. D. Smith, T. Hayek, K. Aalto-Setala, A. Walsh, J. G. Verstuyft, E. M. Rubin and J. L. Breslow: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell, 71(2), 343-53 (1992)
[89]S. H. Zhang, R. L. Reddick, J. A. Piedrahita and N. Maeda: Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 258(5081), 468-71 (1992)
[90]X. C. Jiang, F. Paultre, T. A. Pearson, R. G. Reed, C. K. Francis, M. Lin, L. Berglund and A. R. Tall: Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol, 20(12), 2614-8 (2000)
[91]T. S. Park, W. Rosebury, E. K. Kindt, M. C. Kowala and R. L. Panek: Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res, 58(1), 45-51 (2008)
[92]E. N. Glaros, W. S. Kim and B. Garner: Myriocin-mediated up-regulation of hepatocyte apoA-I synthesis is associated with ERK inhibition. Clin Sci (Lond), 118(12), 727-36 (2010)
[93]R. Klingenberg, J. R. Nofer, M. Rudling, F. Bea, E. Blessing, M. Preusch, H. J. Grone, H. A. Katus, G. K. Hansson and T. J. Dengler: Sphingosine-1-phosphate analogue FTY720 causes lymphocyte redistribution and hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol, 27(11), 2392-9 (2007)
[94]H. O. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin and A. D. Baron: Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes, 49(7), 1231-8 (2000)
[95]J. D. Symons, S. L. McMillin, C. Riehle, J. Tanner, M. Palionyte, E. Hillas, D. Jones, R. C. Cooksey, M. J. Birnbaum, D. A. McClain, Q. J. Zhang, D. Gale, L. J. Wilson and E. D. Abel: Contribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure. Circ Res, 104(9), 1085-94 (2009)
[96]W. K. Alderton, C. E. Cooper and R. G. Knowles: Nitric oxide synthases: structure, function and inhibition. Biochem J, 357(Pt 3), 593-615 (2001)
[97]J. A. Chavez and S. A. Summers: Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta, 1801(3), 252-65 (2010)
[98]Y. Wu, P. Song, J. Xu, M. Zhang and M. H. Zou: Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem, 282(13), 9777-88 (2007)
[99]M. Xia, C. Zhang, K. M. Boini, A. M. Thacker and P. L. Li: Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovasc Res, 89(2), 401-9 (2011)
[100]C. Lipina and H. S. Hundal: Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia, 54(7), 1596-607 (2011)
[101]K. Hanada: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta, 1632(1-3), 16-30 (2003)
[102]W. L. Holland, R. A. Miller, Z. V. Wang, K. Sun, B. M. Barth, H. H. Bui, K. E. Davis, B. T. Bikman, N. Halberg, J. M. Rutkowski, M. R. Wade, V. M. Tenorio, M. S. Kuo, J. T. Brozinick, B. B. Zhang, M. J. Birnbaum, S. A. Summers and P. E. Scherer: Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med, 17(1), 55-63 (2011)
[103]G. M. Deevska, K. A. Rozenova, N. V. Giltiay, M. A. Chambers, J. White, B. B. Boyanovsky, J. Wei, A. Daugherty, E. J. Smart, M. B. Reid, A. H. Merrill, Jr. and M. Nikolova-Karakashian: Acid Sphingomyelinase Deficiency Prevents Diet-induced Hepatic Triacylglycerol Accumulation and Hyperglycemia in Mice. J Biol Chem, 284(13), 8359-68 (2009)
[104]J. Kornhuber, P. Tripal, M. Reichel, L. Terfloth, S. Bleich, J. Wiltfang and E. Gulbins: Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J Med Chem, 51(2), 219-37 (2008)
[105]J. Kornhuber, P. Tripal, M. Reichel, C. Muhle, C. Rhein, M. Muehlbacher, T. W. Groemer and E. Gulbins: Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem, 26(1), 9-20 (2010)
[106]S. Tagami, J. Inokuchi Ji, K. Kabayama, H. Yoshimura, F. Kitamura, S. Uemura, C. Ogawa, A. Ishii, M. Saito, Y. Ohtsuka, S. Sakaue and Y. Igarashi: Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem, 277(5), 3085-92 (2002)
[107]T. Sato, Y. Nihei, M. Nagafuku, S. Tagami, R. Chin, M. Kawamura, S. Miyazaki, M. Suzuki, S. Sugahara, Y. Takahashi, A. Saito, Y. Igarashi and J. Inokuchi: Circulating levels of ganglioside GM3 in metabolic syndrome: A pilot study. Obes Res Clin Pract, 2(4), I-II (2008)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Sphingolipids in obesity and related complications
1 Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
2 Department of Nephrology, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
Abstract
Sphingolipids are biologically active lipids ubiquitously produced in all vertebrate cells. Aside from their role as structural components of cell membranes, sphingolipids also function as intracellular and extracellular mediators that regulate many important physiological cellular processes including cell survival, proliferation, apoptosis, differentiation, migration and immune processes. Recent studies have also indicated that disruption of sphingolipid metabolism is strongly associated with different diseases that exhibit diverse neurological and metabolic consequences. Here, we briefly summarize current evidence for understanding of sphingolipid pathways in obesity and its associated complications. The regulation of sphingolipids and their enzymes may have a great impact on the development of novel therapeutic modalities for a variety of metabolic diseases.
Keywords
- Sphingolipids
- Obesity
- Ceramide
- Metabolic Diseases
- Review
References
- [1] J. E. Shaw, R. A. Sicree and P. Z. Zimmet: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 87(1), 4-14 (2010)
- [2] G. Boden: Obesity and free fatty acids. Endocrinol Metab Clin North Am, 37(3), 635-46, viii-ix (2008)
- [3] N. T. Nguyen, C. P. Magno, K. T. Lane, M. W. Hinojosa and J. S. Lane: Association of hypertension, diabetes, dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J Am Coll Surg, 207(6), 928-34 (2008)
- [4] M. N. Barber, S. Risis, C. Yang, P. J. Meikle, M. Staples, M. A. Febbraio and C. R. Bruce: Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS One, 7(7), e41456 (2012)
- [5] F. Samad, K. D. Hester, G. Yang, Y. A. Hannun and J. Bielawski: Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes, 55(9), 2579-87 (2006)
- [6] M. J. Watt, A. C. Barnett, C. R. Bruce, S. Schenk, J. F. Horowitz and A. J. Hoy: Regulation of plasma ceramide levels with fatty acid oversupply: evidence that the liver detects and secretes de novo synthesised ceramide. Diabetologia, 55(10), 2741-6 (2012)
- [7] G. van Echten-Deckert and T. Herget: Sphingolipid metabolism in neural cells. Biochim Biophys Acta, 1758(12), 1978-94 (2006)
- [8] T. Wennekes, R. J. van den Berg, R. G. Boot, G. A. van der Marel, H. S. Overkleeft and J. M. Aerts: Glycosphingolipids--nature, function, and pharmacological modulation. Angew Chem Int Ed Engl, 48(47), 8848-69 (2009)
- [9] Y. H. Zeidan and Y. A. Hannun: Translational aspects of sphingolipid metabolism. Trends Mol Med, 13(8), 327-36 (2007)
- [10] S. Narayan and E. A. Thomas: Sphingolipid abnormalities in psychiatric disorders: a missing link in pathology? Front Biosci (Landmark Ed), 16, 1797-810 (2011)
- [11] Y. A. Hannun: Functions of ceramide in coordinating cellular responses to stress. Science, 274(5294), 1855-9 (1996)
- [12] C. Luberto, J. M. Kraveka and Y. A. Hannun: Ceramide regulation of apoptosis versus differentiation: a walk on a fine line. Lessons from neurobiology. Neurochem Res, 27(7-8), 609-17 (2002)
- [13] P. P. Ruvolo: Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol Res, 47(5), 383-92 (2003)
- [14] C. Garcia-Ruiz, A. Colell, M. Mari, A. Morales and J. C. Fernandez-Checa: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem, 272(17), 11369-77 (1997)
- [15] E. H. Schuchman: The pathogenesis and treatment of acid sphingomyelinase-deficient Niemann-Pick disease. Int J Clin Pharmacol Ther, 47 Suppl 1, S48-57 (2009)
- [16] K. Ogawa-Goto and T. Abe: Gangliosides and glycosphingolipids of peripheral nervous system myelins--a minireview. Neurochem Res, 23(3), 305-10 (1998)
- [17] T. Kolter and K. Sandhoff: Sphingolipid metabolism diseases. Biochim Biophys Acta, 1758(12), 2057-79 (2006)
- [18] M. Eckhardt: The role and metabolism of sulfatide in the nervous system. Mol Neurobiol, 37(2-3), 93-103 (2008)
- [19] E. Meacci, F. Cencetti, C. Donati, F. Nuti, L. Becciolini and P. Bruni: Sphingosine kinase activity is required for sphingosine-mediated phospholipase D activation in C2C12 myoblasts. Biochem J, 381(Pt 3), 655-63 (2004)
- [20] M. N. Nikolova-Karakashian and M. B. Reid: Sphingolipid metabolism, oxidant signaling, and contractile function of skeletal muscle. Antioxid Redox Signal, 15(9), 2501-17 (2011)
- [21] D. S. Wijesinghe, A. Massiello, P. Subramanian, Z. Szulc, A. Bielawska and C. E. Chalfant: Substrate specificity of human ceramide kinase. J Lipid Res, 46(12), 2706-16 (2005)
- [22] E. Ikonen and S. Vainio: Lipid microdomains and insulin resistance: is there a connection? Sci STKE, 2005(268), pe3 (2005)
- [23] J. Inokuchi: Insulin resistance as a membrane microdomain disorder. Biol Pharm Bull, 29(8), 1532-7 (2006)
- [24] K. M. Boini, C. Zhang, M. Xia, J. L. Poklis and P. L. Li: Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. J Pharmacol Exp Ther, 334(3), 839-46 (2010)
- [25] K. M. Boini, C. Zhang, M. Xia, W. Q. Han, C. Brimson, J. L. Poklis and P. L. Li: Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochim Biophys Acta, 1801(12), 1294-304 (2010)
- [26] S. M. Walls, Jr., S. J. Attle, G. B. Brulte, M. L. Walls, K. D. Finley, D. A. Chatfield, D. R. Herr and G. L. Harris: Identification of sphingolipid metabolites that induce obesity via misregulation of appetite, caloric intake and fat storage in Drosophila. PLoS Genet, 9(12), e1003970 (2013)
- [27] E. W. Kraegen, G. J. Cooney, J. M. Ye, A. L. Thompson and S. M. Furler: The role of lipids in the pathogenesis of muscle insulin resistance and beta cell failure in type II diabetes and obesity. Exp Clin Endocrinol Diabetes, 109 Suppl 2, S189-201 (2001)
- [28] R. H. Unger: Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology, 144(12), 5159-65 (2003)
- [29] W. L. Holland, J. T. Brozinick, L. P. Wang, E. D. Hawkins, K. M. Sargent, Y. Liu, K. Narra, K. L. Hoehn, T. A. Knotts, A. Siesky, D. H. Nelson, S. K. Karathanasis, G. K. Fontenot, M. J. Birnbaum and S. A. Summers: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab, 5(3), 167-79 (2007)
- [30] R. A. Memon, W. M. Holleran, A. H. Moser, T. Seki, Y. Uchida, J. Fuller, J. K. Shigenaga, C. Grunfeld and K. R. Feingold: Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler Thromb Vasc Biol, 18(8), 1257-65 (1998)
- [31] W. Zheng, J. Kollmeyer, H. Symolon, A. Momin, E. Munter, E. Wang, S. Kelly, J. C. Allegood, Y. Liu, Q. Peng, H. Ramaraju, M. C. Sullards, M. Cabot and A. H. Merrill, Jr.: Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta, 1758(12), 1864-84 (2006)
- [32] J. L. Halaas, K. S. Gajiwala, M. Maffei, S. L. Cohen, B. T. Chait, D. Rabinowitz, R. L. Lallone, S. K. Burley and J. M. Friedman: Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269(5223), 543-6 (1995)
- [33] Y. Minokoshi, M. S. Haque and T. Shimazu: Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes, 48(2), 287-91 (1999)
- [34] E. Bonzon-Kulichenko, D. Schwudke, N. Gallardo, E. Molto, T. Fernandez-Agullo, A. Shevchenko and A. Andres: Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology, 150(1), 169-78 (2009)
- [35] H. Ma, V. Gomez, L. Lu, X. Yang, X. Wu and S. Y. Xiao: Expression of adiponectin and its receptors in livers of morbidly obese patients with non-alcoholic fatty liver disease. J Gastroenterol Hepatol, 24(2), 233-7 (2009)
- [36] C. K. Huang, R. Goel, P. C. Chang, C. H. Lo and A. Shabbir: Single-incision transumbilical (SITU) surgery after SITU laparoscopic Roux-en-Y gastric bypass. J Laparoendosc Adv Surg Tech A, 22(8), 764-7 (2012)
- [37] M. Xia, K. M. Boini, J. M. Abais, M. Xu, Y. Zhang and P. L. Li: Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. Am J Pathol, 184(5), 1617-28 (2014)
- [38] S. A. Summers: Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res, 45(1), 42-72 (2006)
- [39] J. M. Abais, M. Xia, Y. Zhang, K. M. Boini and P. L. Li: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal, 22(13), 1111-29 (2015)
- [40] B. Vandanmagsar, Y. H. Youm, A. Ravussin, J. E. Galgani, K. Stadler, R. L. Mynatt, E. Ravussin, J. M. Stephens and V. D. Dixit: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 17(2), 179-88 (2011)
- [41] K. M. Boini, M. Xia, J. M. Abais, G. Li, A. L. Pitzer, T. W. Gehr, Y. Zhang and P. L. Li: Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochim Biophys Acta, 1843(5), 836-45 (2014)
- [42] Y. Lee, H. Hirose, M. Ohneda, J. H. Johnson, J. D. McGarry and R. H. Unger: Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A, 91(23), 10878-82 (1994)
- [43] H. Malhi and G. J. Gores: Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis, 28(4), 360-9 (2008)
- [44] N. A. Bourbon, L. Sandirasegarane and M. Kester: Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem, 277(5), 3286-92 (2002)
- [45] C. Shah, G. Yang, I. Lee, J. Bielawski, Y. A. Hannun and F. Samad: Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem, 283(20), 13538-48 (2008)
- [46] B. Liu, L. M. Obeid and Y. A. Hannun: Sphingomyelinases in cell regulation. Semin Cell Dev Biol, 8(3), 311-322 (1997)
- [47] Z. Li, M. J. Basterr, T. K. Hailemariam, M. R. Hojjati, S. Lu, J. Liu, R. Liu, H. Zhou and X. C. Jiang: The effect of dietary sphingolipids on plasma sphingomyelin metabolism and atherosclerosis. Biochim Biophys Acta, 1735(2), 130-4 (2005)
- [48] T. S. Park, R. L. Panek, S. B. Mueller, J. C. Hanselman, W. S. Rosebury, A. W. Robertson, E. K. Kindt, R. Homan, S. K. Karathanasis and M. D. Rekhter: Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation, 110(22), 3465-71 (2004)
- [49] J. M. Holopainen, J. Y. Lehtonen and P. K. Kinnunen: Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids, 88(1), 1-13 (1997)
- [50] S. L. Schissel, J. Tweedie-Hardman, J. H. Rapp, G. Graham, K. J. Williams and I. Tabas: Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest, 98(6), 1455-64 (1996)
- [51] S. Y. Morita, K. Okuhira, N. Tsuchimoto, A. Vertut-Doi, H. Saito, M. Nakano and T. Handa: Effects of sphingomyelin on apolipoprotein E- and lipoprotein lipase-mediated cell uptake of lipid particles. Biochim Biophys Acta, 1631(2), 169-76 (2003)
- [52] Y. Yatomi, T. Ohmori, G. Rile, F. Kazama, H. Okamoto, T. Sano, K. Satoh, S. Kume, G. Tigyi, Y. Igarashi and Y. Ozaki: Sphingosine 1-phosphate as a major bioactive lysophospholipid that is released from platelets and interacts with endothelial cells. Blood, 96(10), 3431-8 (2000)
- [53] Q. Yang, T. E. Graham, N. Mody, F. Preitner, O. D. Peroni, J. M. Zabolotny, K. Kotani, L. Quadro and B. B. Kahn: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436(7049), 356-62 (2005)
- [54] J. Boon, A. J. Hoy, R. Stark, R. D. Brown, R. C. Meex, D. C. Henstridge, S. Schenk, P. J. Meikle, J. F. Horowitz, B. A. Kingwell, C. R. Bruce and M. J. Watt: Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes, 62(2), 401-10 (2013)
- [55] X. Lopez, A. B. Goldfine, W. L. Holland, R. Gordillo and P. E. Scherer: Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J Pediatr Endocrinol Metab, 26(9-10), 995-8 (2013)
- [56] H. Huang, T. Kasumov, P. Gatmaitan, H. M. Heneghan, S. R. Kashyap, P. R. Schauer, S. A. Brethauer and J. P. Kirwan: Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring), 19(11), 2235-40 (2011)
- [57] W. Truong, J. A. Emamaullee, S. Merani, C. C. Anderson and A. M. James Shapiro: Human islet function is not impaired by the sphingosine-1-phosphate receptor modulator FTY720. Am J Transplant, 7(8), 2031-8 (2007)
- [58] T. Yamashita, A. Hashiramoto, M. Haluzik, H. Mizukami, S. Beck, A. Norton, M. Kono, S. Tsuji, J. L. Daniotti, N. Werth, R. Sandhoff, K. Sandhoff and R. L. Proia: Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A, 100(6), 3445-9 (2003)
- [59] J. M. Aerts, R. Ottenhoff, A. S. Powlson, A. Grefhorst, M. van Eijk, P. F. Dubbelhuis, J. Aten, F. Kuipers, M. J. Serlie, T. Wennekes, J. K. Sethi, S. O’Rahilly and H. S. Overkleeft: Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes, 56(5), 1341-9 (2007)
- [60] L. Lee, A. Abe and J. A. Shayman: Improved inhibitors of glucosylceramide synthase. J Biol Chem, 274(21), 14662-9 (1999)
- [61] H. Zhao, M. Przybylska, I. H. Wu, J. Zhang, C. Siegel, S. Komarnitsky, N. S. Yew and S. H. Cheng: Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes, 56(5), 1210-8 (2007)
- [62] J. M. Haus, S. R. Kashyap, T. Kasumov, R. Zhang, K. R. Kelly, R. A. Defronzo and J. P. Kirwan: Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes, 58(2), 337-43 (2009)
- [63] E. Hajduch, A. Balendran, I. H. Batty, G. J. Litherland, A. S. Blair, C. P. Downes and H. S. Hundal: Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia, 44(2), 173-83 (2001)
- [64] S. A. Summers, L. A. Garza, H. Zhou and M. J. Birnbaum: Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol, 18(9), 5457-64 (1998)
- [65] D. J. Powell, S. Turban, A. Gray, E. Hajduch and H. S. Hundal: Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J, 382(Pt 2), 619-29 (2004)
- [66] Q. J. Zhang, W. L. Holland, L. Wilson, J. M. Tanner, D. Kearns, J. M. Cahoon, D. Pettey, J. Losee, B. Duncan, D. Gale, C. A. Kowalski, N. Deeter, A. Nichols, M. Deesing, C. Arrant, T. Ruan, C. Boehme, D. R. McCamey, J. Rou, K. Ambal, K. K. Narra, S. A. Summers, E. D. Abel and J. D. Symons: Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes, 61(7), 1848-59 (2012)
- [67] L. J. Spijkers, R. F. van den Akker, B. J. Janssen, J. J. Debets, J. G. De Mey, E. S. Stroes, B. J. van den Born, D. S. Wijesinghe, C. E. Chalfant, L. MacAleese, G. B. Eijkel, R. M. Heeren, A. E. Alewijnse and S. L. Peters: Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One, 6(7), e21817 (2011)
- [68] C. Berry, R. Touyz, A. F. Dominiczak, R. C. Webb and D. G. Johns: Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol, 281(6), H2337-65 (2001)
- [69] R. M. Fryer, A. Muthukumarana, P. C. Harrison, S. Nodop Mazurek, R. R. Chen, K. E. Harrington, R. M. Dinallo, J. C. Horan, L. Patnaude, L. K. Modis and G. A. Reinhart: The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P(1)) and hypertension (S1P(3)) in rat. PLoS One, 7(12), e52985 (2012)
- [70] M. Czarny and J. E. Schnitzer: Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol, 287(3), H1344-52 (2004)
- [71] M. Fenger, A. Linneberg, T. Jorgensen, S. Madsbad, K. Sobye, J. Eugen-Olsen and J. Jeppesen: Genetics of the ceramide/sphingosine-1-phosphate rheostat in blood pressure regulation and hypertension. BMC Genet, 12, 44 (2011)
- [72] G. P. Kaushal, A. B. Singh and S. V. Shah: Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am J Physiol, 274(3 Pt 2), F587-95 (1998)
- [73] N. Ueda, G. P. Kaushal and S. V. Shah: Apoptotic mechanisms in acute renal failure. Am J Med, 108(5), 403-15 (2000)
- [74] F. Yi, A. Y. Zhang, J. L. Janscha, P. L. Li and A. P. Zou: Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int, 66(5), 1977-87 (2004)
- [75] T. Yin, G. Sandhu, C. D. Wolfgang, A. Burrier, R. L. Webb, D. F. Rigel, T. Hai and J. Whelan: Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem, 272(32), 19943-50 (1997)
- [76] W. Liu, T. Lan, X. Xie, K. Huang, J. Peng, J. Huang, X. Shen, P. Liu and H. Huang: S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. Exp Cell Res, 318(8), 936-43 (2012)
- [77] R. L. Klein, S. M. Hammad, N. L. Baker, K. J. Hunt, M. M. Al Gadban, P. A. Cleary, G. Virella, M. F. Lopes-Virella and D. E. R. Group: Decreased plasma levels of select very long chain ceramide species are associated with the development of nephropathy in type 1 diabetes. Metabolism, 63(10), 1287-95 (2014)
- [78] R. Ross: The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362(6423), 801-9 (1993)
- [79] J. L. Witztum and D. Steinberg: Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest, 88(6), 1785-92 (1991)
- [80] S. Yla-Herttuala, W. Palinski, M. E. Rosenfeld, S. Parthasarathy, T. E. Carew, S. Butler, J. L. Witztum and D. Steinberg: Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest, 84(4), 1086-95 (1989)
- [81] H. A. Newman, C. E. Mc and D. B. Zilversmit: The synthesis of C14-lipids in rabbit atheromatous lesions. J Biol Chem, 236, 1264-8 (1961)
- [82] O. W. Portman and D. R. Illingworth: Arterial metabolism in primates. Primates Med, 9, 145-223 (1976)
- [83] E. B. Smith: Intimal and medial lipids in human aortas. Lancet, 1(7128), 799-803 (1960)
- [84] J. R. Guyton and K. F. Klemp: Development of the lipid-rich core in human atherosclerosis. Arterioscler Thromb Vasc Biol, 16(1), 4-11 (1996)
- [85] S. Eisenberg, Y. Stein and O. Stein: Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age. J Clin Invest, 48(12), 2320-9 (1969)
- [86] D. B. Zilversmit, C. E. Mc, P. H. Jordan, W. S. Henly and R. F. Ackerman: The synthesis of phospholipids in human atheromatous lesions. Circulation, 23, 370-5 (1961)
- [87] T. Jeong, S. L. Schissel, I. Tabas, H. J. Pownall, A. R. Tall and X. Jiang: Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J Clin Invest, 101(4), 905-12 (1998)
- [88] A. S. Plump, J. D. Smith, T. Hayek, K. Aalto-Setala, A. Walsh, J. G. Verstuyft, E. M. Rubin and J. L. Breslow: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell, 71(2), 343-53 (1992)
- [89] S. H. Zhang, R. L. Reddick, J. A. Piedrahita and N. Maeda: Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science, 258(5081), 468-71 (1992)
- [90] X. C. Jiang, F. Paultre, T. A. Pearson, R. G. Reed, C. K. Francis, M. Lin, L. Berglund and A. R. Tall: Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol, 20(12), 2614-8 (2000)
- [91] T. S. Park, W. Rosebury, E. K. Kindt, M. C. Kowala and R. L. Panek: Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoE-deficient mice. Pharmacol Res, 58(1), 45-51 (2008)
- [92] E. N. Glaros, W. S. Kim and B. Garner: Myriocin-mediated up-regulation of hepatocyte apoA-I synthesis is associated with ERK inhibition. Clin Sci (Lond), 118(12), 727-36 (2010)
- [93] R. Klingenberg, J. R. Nofer, M. Rudling, F. Bea, E. Blessing, M. Preusch, H. J. Grone, H. A. Katus, G. K. Hansson and T. J. Dengler: Sphingosine-1-phosphate analogue FTY720 causes lymphocyte redistribution and hypercholesterolemia in ApoE-deficient mice. Arterioscler Thromb Vasc Biol, 27(11), 2392-9 (2007)
- [94] H. O. Steinberg, G. Paradisi, G. Hook, K. Crowder, J. Cronin and A. D. Baron: Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes, 49(7), 1231-8 (2000)
- [95] J. D. Symons, S. L. McMillin, C. Riehle, J. Tanner, M. Palionyte, E. Hillas, D. Jones, R. C. Cooksey, M. J. Birnbaum, D. A. McClain, Q. J. Zhang, D. Gale, L. J. Wilson and E. D. Abel: Contribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure. Circ Res, 104(9), 1085-94 (2009)
- [96] W. K. Alderton, C. E. Cooper and R. G. Knowles: Nitric oxide synthases: structure, function and inhibition. Biochem J, 357(Pt 3), 593-615 (2001)
- [97] J. A. Chavez and S. A. Summers: Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms. Biochim Biophys Acta, 1801(3), 252-65 (2010)
- [98] Y. Wu, P. Song, J. Xu, M. Zhang and M. H. Zou: Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J Biol Chem, 282(13), 9777-88 (2007)
- [99] M. Xia, C. Zhang, K. M. Boini, A. M. Thacker and P. L. Li: Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovasc Res, 89(2), 401-9 (2011)
- [100] C. Lipina and H. S. Hundal: Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia, 54(7), 1596-607 (2011)
- [101] K. Hanada: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta, 1632(1-3), 16-30 (2003)
- [102] W. L. Holland, R. A. Miller, Z. V. Wang, K. Sun, B. M. Barth, H. H. Bui, K. E. Davis, B. T. Bikman, N. Halberg, J. M. Rutkowski, M. R. Wade, V. M. Tenorio, M. S. Kuo, J. T. Brozinick, B. B. Zhang, M. J. Birnbaum, S. A. Summers and P. E. Scherer: Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med, 17(1), 55-63 (2011)
- [103] G. M. Deevska, K. A. Rozenova, N. V. Giltiay, M. A. Chambers, J. White, B. B. Boyanovsky, J. Wei, A. Daugherty, E. J. Smart, M. B. Reid, A. H. Merrill, Jr. and M. Nikolova-Karakashian: Acid Sphingomyelinase Deficiency Prevents Diet-induced Hepatic Triacylglycerol Accumulation and Hyperglycemia in Mice. J Biol Chem, 284(13), 8359-68 (2009)
- [104] J. Kornhuber, P. Tripal, M. Reichel, L. Terfloth, S. Bleich, J. Wiltfang and E. Gulbins: Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J Med Chem, 51(2), 219-37 (2008)
- [105] J. Kornhuber, P. Tripal, M. Reichel, C. Muhle, C. Rhein, M. Muehlbacher, T. W. Groemer and E. Gulbins: Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem, 26(1), 9-20 (2010)
- [106] S. Tagami, J. Inokuchi Ji, K. Kabayama, H. Yoshimura, F. Kitamura, S. Uemura, C. Ogawa, A. Ishii, M. Saito, Y. Ohtsuka, S. Sakaue and Y. Igarashi: Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem, 277(5), 3085-92 (2002)
- [107] T. Sato, Y. Nihei, M. Nagafuku, S. Tagami, R. Chin, M. Kawamura, S. Miyazaki, M. Suzuki, S. Sugahara, Y. Takahashi, A. Saito, Y. Igarashi and J. Inokuchi: Circulating levels of ganglioside GM3 in metabolic syndrome: A pilot study. Obes Res Clin Pract, 2(4), I-II (2008)
