Frontiers in Bioscience-Elite (FBE) is published by IMR Press from Volume 13 Issue 2 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Vitamin-D regulation of bone mineralization and remodelling during growth
*Author to whom correspondence should be addressed.
Academic Editor: Cory Xian
Vitamin D status relates to two bone diseases, osteomalacia and osteoporosis which arise from distinct pathophysiogical pathways. They can occur in children as well as adults. Osteomalacia or rickets arises from a delay in mineralization and can be caused by severe vitamin D deficiency where the key to curing osteomalacia is the endocrine action of circulating 1,25-dihydroxyvitamin D to normalize the active intestinal transport of calcium and phosphate. Osteoporosis or sub-optimal bone mineral accretion during growth is a risk factor for fracture in children. Current evidence suggests serum 25- hydroxyvitamin D levels between 20 and 80 nmol/L are associated with decreased bone mineral content as a result, at least partly, of reduced vitamin D metabolism and activity within bone cells. The local synthesis of 1,25- dihydroxyvitamin D within bone is necessary to modulate bone resorption and promote bone formation. Thus an adequate vitamin D status is necessary for vitamin D activity within bone to establish a healthy skeleton.