Information
References
Contents
Download
[1]G. A. Calin, C.-G. Liu, C. Sevignani, M. Ferracin, N. Felli, C. D. Dumitru, M. Shimizu, A. Cimmino, S. Zupo, M. Dono, M. L. Dell’Aquila, H. Alder, L. Rassenti, T. J. Kipps, F. Bullrich, M. Negrini and C. M. Croce: MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proceedings of the National Academy of Sciences of the United States of America, 101(32), 11755-11760 (2004)
[2]R. C. Lee, R. L. Feinbaum and V. Ambros: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854 (1993)
[3]B. Wightman, I. Ha and G. Ruvkun: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855-862 (1993)
[4]N. Morozova, A. Zinovyev, N. Nonne, L. L. Pritchard, A. N. Gorban and A. Harel-Bellan: Kinetic signatures of microRNA modes of action. RNA, 18(9), 1635-1655 (2012)
[5]V. N. Kim: MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6(5), 376-385 (2005)
[6]P. Brodersen and O. Voinnet: Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews. Molecular Cell Biology, 10(2), 141-148 (2009)
[7]G. A. Calin, C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999-3004 (2004)
[8]S. Volinia, G. A. Calin, C. G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R. L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C. C. Harris and C. M. Croce: A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences, 103(7), 2257-2261 (2006)
[9]M. Garofalo, G. Di Leva, G. Romano, G. Nuovo, S.-S. Suh, A. Ngankeu, C. Taccioli, F. Pichiorri, H. Alder, P. Secchiero, P. Gasparini, A. Gonelli, S. Costinean, M. Acunzo, G. Condorelli and C. M. Croce: miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498-509 (2009)
[10]M. P. Hamilton, K. Rajapakshe, S. M. Hartig, B. Reva, M. D. McLellan, C. Kandoth, L. Ding, T. I. Zack, P. H. Gunaratne, D. A. Wheeler, C. Coarfa and S. E. McGuire: Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nature Communications, 4 (2013) doi:10.1.038/ncomms3730
[11]Q. Huang, K. Gumireddy, M. Schrier, C. le Sage, R. Nagel, S. Nair, D. A. Egan, A. Li, G. Huang, A. J. Klein-Szanto, P. A. Gimotty, D. Katsaros, G. Coukos, L. Zhang, E. Puré and R. Agami: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202-210 (2008)
[12]L. Ma, J. Teruya-Feldstein and R. A. Weinberg: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682-688 (2007)
[13]L. F. Sempere, M. Christensen, A. Silahtaroglu, M. Bak, C. V. Heath, G. Schwartz, W. Wells, S. Kauppinen and C. N. Cole: Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Research, 67(24), 11612-11620 (2007)
[14]C. Blenkiron, L. D. Goldstein, N. P. Thorne, I. Spiteri, S.-F. Chin, M. J. Dunning, N. L. Barbosa-Morais, A. E. Teschendorff, A. R. Green, I. O. Ellis, S. Tavaré, C. Caldas and E. A. Miska: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biology, 8(10), R214 (2007)
[15]M. Hanke, K. Hoefig, H. Merz, A. C. Feller, I. Kausch, D. Jocham, J. M. Warnecke and G. Sczakiel: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urologic Oncology, 28(6), 655-661 (2010)
[16]C. H. Lawrie, S. Gal, H. M. Dunlop, B. Pushkaran, A. P. Liggins, K. Pulford, A. H. Banham, F. Pezzella, J. Boultwood, J. S. Wainscoat, C. S. R. Hatton and A. L. Harris: Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology, 141(5), 672-675 (2008)
[17]M. V. Iorio and C. M. Croce: MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review(1757-4684 (Electronic))
[18]C. P. Gomes, L. Cho Jh Fau - Hood, O. L. Hood L Fau - Franco, R. W. Franco Ol Fau - Pereira, K. Pereira Rw Fau - Wang and K. Wang: A Review of Computational Tools in microRNA Discovery(1664-8021 (Linking))
[19]J. K. Banwait and D. R. Bastola: Contribution of bioinformatics prediction in microRNA-based cancer therapeutics(1872-8294 (Electronic))
[20]L. C. Emmanuel Barillott, Philippe Hupe, Jean-Philippe Vert, Andrei Zinovyevv: Computational Systems Biology of Cancer. CRC Press (2012)
[21]J. M. Thomson, J. Parker, C. M. Perou and S. M. Hammond: A custom microarray platform for analysis of microRNA gene expression. Nature Methods, 1(1), 47-53 (2004)
[22]C.-G. Liu, G. A. Calin, B. Meloon, N. Gamliel, C. Sevignani, M. Ferracin, C. D. Dumitru, M. Shimizu, S. Zupo, M. Dono, H. Alder, F. Bullrich, M. Negrini and C. M. Croce: An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9740-9744 (2004)
[23]Y. Sun, S. Koo, N. White, E. Peralta, C. Esau, N. M. Dean and R. J. Perera: Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Research, 32(22), e188 (2004)
[24]P. T. Nelson, D. A. Baldwin, L. M. Scearce, J. C. Oberholtzer, J. W. Tobias and Z. Mourelatos: Microarray-based, high-throughput gene expression profiling of microRNAs. Nature Methods, 1(2), 155-161 (2004)
[25]O. Barad, E. Meiri, A. Avniel, R. Aharonov, A. Barzilai, I. Bentwich, U. Einav, S. Gilad, P. Hurban, Y. Karov, E. K. Lobenhofer, E. Sharon, Y. M. Shiboleth, M. Shtutman, Z. Bentwich and P. Einat: MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Research, 14(12), 2486-2494 (2004)
[26]J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. Horvitz and T. R. Golub: MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834-838 (2005)
[27]T. Babak, W. Zhang, Q. Morris, B. J. Blencowe and T. R. Hughes: Probing microRNAs with microarrays: tissue specificity and functional inference. RNA (New York, N.Y.), 10(11), 1813-1819 (2004)
[28]M. Riaz, M. T. M. van Jaarsveld, A. Hollestelle, W. J. C. Prager-van der Smissen, A. A. J. Heine, A. W. M. Boersma, J. Liu, J. Helmijr, B. Ozturk, M. Smid, E. A. Wiemer, J. A. Foekens and J. W. M. Martens: miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Research, 15(2), R33 (2013)
[29]S. Volinia, M. Galasso, M. E. Sana, T. F. Wise, J. Palatini, K. Huebner and C. M. Croce: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proceedings of the National Academy of Sciences, 109(8), 3024-3029 (2012)
[30]D.-F. Liu, J.-T. Wu, J.-M. Wang, Q.-Z. Liu, Z.-L. Gao and Y.-X. Liu: MicroRNA expression profile analysis reveals diagnostic biomarker for human prostate cancer. Asian Pacific journal of cancer prevention: APJCP, 13(7), 3313-3317 (2012)
[31]S. Ali, H. Dubaybo, R. E. Brand and F. H. Sarkar: Differential Expression of MicroRNAs in Tissues and Plasma Co-exists as a Biomarker for Pancreatic Cancer. Journal of Cancer Science & Therapy, 7(11), 336-346 (2015)
[32]J. Ma, Y. Lin, M. Zhan, D. L. Mann, S. A. Stass and F. Jiang: Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Laboratory Investigation, 95(10), 1197-1206 (2015)
[33]Y. Chen and R. L. Stallings: Differential Patterns of MicroRNA Expression in Neuroblastoma Are Correlated with Prognosis, Differentiation, and Apoptosis. Cancer Research, 67(3), 976-983 (2007)
[34]E. J. Lee, Y. Gusev, J. Jiang, G. J. Nuovo, M. R. Lerner, W. L. Frankel, D. L. Morgan, R. G. Postier, D. J. Brackett and T. D. Schmittgen: Expression profiling identifies microRNA signature in pancreatic cancer. International Journal of Cancer, 120(5), 1046-1054 (2006)
[35]M. V. Iorio, M. Ferracin, C. G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, S. Menard, J. P. Palazzo, A. Rosenberg, P. Musiani, S. Volinia, I. Nenci, G. A. Calin, P. Querzoli, M. Negrini and C. M. Croce: MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 65(16), 7065-7070 (2005)
[36]Y.-G. Tan, Y.-F. Zhang, C.-J. Guo, M. Yang and M.-Y. Chen: Screening of differentially expressed microRNA in ulcerative colitis related colorectal cancer. Asian Pacific Journal of Tropical Medicine, 6(12), 972-976 (2013)
[37]J.-L. Wang, Y. Hu, X. Kong, Z.-H. Wang, H.-Y. Chen, J. Xu and J.-Y. Fang: Candidate microRNA Biomarkers in Human Gastric Cancer: A Systematic Review and Validation Study. PLoS ONE, 8(9), e73683 (2013)
[38]X. Li, Q. Wang, Y. Zheng, S. Lv, S. Ning, J. Sun, T. Huang, Q. Zheng, H. Ren, J. Xu, X. Wang and Y. Li: Prioritizing human cancer microRNAs based on genes’ functional consistency between microRNA and cancer. Nucleic Acids Research, 39(22), e153-e153 (2011)
[39]L. Zhang, S. Volinia, T. Bonome, G. A. Calin, J. Greshock, N. Yang, C. G. Liu, A. Giannakakis, P. Alexiou, K. Hasegawa, C. N. Johnstone, et al.: Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences, 105(19), 7004-7009 (2008)
[40]B. Seliger, S. Jasinski, S. P. Dressler, F. M. Marincola, C. V. Recktenwald, E. Wang and R. Lichtenfels: Linkage of microRNA and Proteome-Based Profiling Data Sets: A Perspective for the Priorization of Candidate Biomarkers in Renal Cell Carcinoma? Journal of Proteome Research, 10(1), 191-199 (2011)
[41]A. Piepoli, F. Tavano, M. Copetti, T. Mazza, O. Palumbo, A. Panza, F. F. di Mola, V. Pazienza, G. Mazzoccoli, G. Biscaglia, A. Gentile, N. Mastrodonato, M. Carella, F. Pellegrini, P. di Sebastiano and A. Andriulli: Mirna Expression Profiles Identify Drivers in Colorectal and Pancreatic Cancers. PLoS ONE, 7(3), e33663 (2012)
[42]X. Zhang, Y. Peng, Z. Jin, W. Huang, Y. Cheng, Y. Liu, X. Feng, M. Yang, Y. Huang, Z. Zhao, L. Wang, Y. Wei, X. Fan, D. Zheng and S. J. Meltzer: Integrated miRNA profiling and bioinformatics analyses reveal potential causative miRNAs in gastric adenocarcinoma. Oncotarget, 6(32), 32878-32889 (2015)
[43]G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida, J. Aerts, R. Schneider and P. G. Bagos: Using graph theory to analyze biological networks. BioData Mining, 4(1) (2011)
[44]S. Volinia, M. Galasso, S. Costinean, L. Tagliavini, G. Gamberoni, A. Drusco, J. Marchesini, N. Mascellani, M. E. Sana, R. Abu Jarour, C. Desponts, et al.: Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 20(5), 589-599 (2010)
[45]X. Zeng, X. Zhang and Q. Zou: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Briefings in Bioinformatics, 17(2), 193-203 (2016)
[46]J. Li, K. Lei, Z. Wu, W. Li, G. Liu, J. Liu, F. Cheng and Y. Tang: Network-based identification of microRNAs as potential pharmacogenomic biomarkers for anticancer drugs. Oncotarget (2014)
[47]C. P. Goswami and H. Nakshatri: PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. Journal of Clinical Bioinformatics, 2(1), 23 (2012)
[48]D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi and D. P. BarTel: The impact of microRNAs on protein output. Nature, 455(7209), 64-71 (2008)
[49]M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin and N. Rajewsky: Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209), 58-63 (2008)
[50]C. J. Creighton, A. K. Nagaraja, S. M. Hanash, M. M. Matzuk and P. H. Gunaratne: A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA (New York, N.Y.), 14(11), 2290-2296 (2008)
[51]X. Wu and M. Watson: CORNA: testing gene lists for regulation by microRNAs. Bioinformatics, 25(6), 832-833 (2009)
[52]Z. Liang, H. Zhou, Z. He, H. Zheng and J. Wu: mirAct: a web tool for evaluating microRNA activity based on gene expression data. Nucleic Acids Research, 39(suppl), W139-W144 (2011)
[53]X.-M. Zhao, K.-Q. Liu, G. Zhu, F. He, B. Duval, J.-M. Richer, D.-S. Huang, C.-J. Jiang, J.-K. Hao and L. Chen: Identifying cancer-related microRNAs based on gene expression data. Bioinformatics (Oxford, England), 31(8), 1226-1234 (2015)
[54]V. A. Gennarino, G. D’Angelo, G. Dharmalingam, S. Fernandez, G. Russolillo, R. Sanges, M. Mutarelli, V. Belcastro, A. Ballabio, P. Verde, M. Sardiello and S. Banfi: Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Research, 22(6), 1163-1172 (2012)
[55]T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, A. Yefanov, H. Lee, N. Zhang, C. L. Robertson, N. Serova, S. Davis and A. Soboleva: NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Research, 41(Database issue), D991-995 (2013)
[56]T. J. Hudson, W. Anderson, A. Aretz, A. D. Barker, C. Bell, R. R. Bernabé, M. K. Bhan, F. Calvo, I. Eerola, D. S. Gerhard, A. Guttmacher, M. Guyer, F. M. Hemsley, et al.: International network of cancer genome projects. Nature, 464(7291), 993-998 (2010)
[57]Y.-P. Wang and K.-B. Li: Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics, 10(1), 218 (2009)
[58]V. Jayaswal, M. Lutherborrow, D. D. F. Ma and Y. H. Yang: Identification of microRNA-mRNA modules using microarray data. BMC Genomics, 12(1), 138 (2011)
[59]W. Zhang, A. Edwards, W. Fan, E. K. Flemington and K. Zhang: miRNA-mRNA Correlation-Network Modules in Human Prostate Cancer and the Differences between Primary and Metastatic Tumor Subtypes. PLoS ONE, 7(6), e40130 (2012)
[60]A. Jacobsen, J. Silber, G. Harinath, J. T. Huse, N. Schultz and C. Sander: Analysis of microRNA-target interactions across diverse cancer types. Nature Structural & Molecular Biology, 20(11), 1325-1332 (2013)
[61]C. Cava, G. Bertoli, M. Ripamonti, G. Mauri, I. Zoppis, P. A. D. Rosa, M. C. Gilardi and I. Castiglioni: Integration of mRNA Expression Profile, Copy Number Alterations, and microRNA Expression Levels in Breast Cancer to Improve Grade Definition. PLOS ONE, 9(5), e97681 (2014)
[62]N. Hecker, C. Stephan, H.-J. Mollenkopf, K. Jung, R. Preissner and H.-A. Meyer: A New Algorithm for Integrated Analysis of miRNA-mRNA Interactions Based on Individual Classification Reveals Insights into Bladder Cancer. PLoS ONE, 8(5), e64543 (2013)
[63]J. Xu, C.-X. Li, J.-Y. Lv, Y.-S. Li, Y. Xiao, T.-T. Shao, X. Huo, X. Li, Y. Zou, Q.-L. Han, X. Li, L.-H. Wang and H. Ren: Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Molecular Cancer Therapeutics, 10(10), 1857-1866 (2011)
[64]J. C. Huang, T. Babak, T. W. Corson, G. Chua, S. Khan, B. L. Gallie, T. R. Hughes, B. J. Blencowe, B. J. Frey and Q. D. Morris: Using expression profiling data to identify human microRNA targets. Nature Methods, 4(12), 1045-1049 (2007)
[65]B. Liu, L. Liu, A. Tsykin, G. J. Goodall, J. E. Green, M. Zhu, C. H. Kim and J. Li: Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics, 26(24), 3105-3111 (2010)
[66]B. Liu, J. Li, A. Tsykin, L. Liu, A. B. Gaur and G. J. Goodall: Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics, 10(1), 408 (2009)
[67]B. Liu, J. Li and A. Tsykin: Discovery of functional miRNA–mRNA regulatory modules with computational methods. Journal of Biomedical Informatics, 42(4), 685-691 (2009)
[68]L. Martignetti, K. Laud-Duval, F. Tirode, G. Pierron, S. Reynaud, E. Barillot, O. Delattre and A. Zinovyev: Antagonism Pattern Detection between MicroRNA and Target Expression in Ewing’s Sarcoma. PLoS ONE, 7(7), e41770 (2012)
[69]G. Sales, A. Coppe, A. Bisognin, M. Biasiolo, S. Bortoluzzi and C. Romualdi: MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Research, 38(Web Server), W352-W359 (2010)
[70]I. Ulitsky, L. C. Laurent and R. Shamir: Towards computational prediction of microRNA function and activity. Nucleic Acids Research, 38(15), e160-e160 (2010)
[71]M. Lionetti, M. Biasiolo, L. Agnelli, K. Todoerti, L. Mosca, S. Fabris, G. Sales, G. L. Deliliers, S. Bicciato, L. Lombardi, S. Bortoluzzi and A. Neri: Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood, 114(25), e20-e26 (2009)
[72]L. Ma, Y. Huang, W. Zhu, S. Zhou, J. Zhou, F. Zeng, X. Liu, Y. Zhang and J. Yu: An Integrated Analysis of miRNA and mRNA Expressions in Non-Small Cell Lung Cancers. PLoS ONE, 6(10), e26502 (2011)
[73]L. Cascione, P. Gasparini, F. Lovat, S. Carasi, A. Pulvirenti, A. Ferro, H. Alder, G. He, A. Vecchione, C. M. Croce, C. L. Shapiro and K. Huebner: Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer. PLoS ONE, 8(2), e55910 (2013)
[74]S. Pizzini, A. Bisognin, S. Mandruzzato, M. Biasiolo, A. Facciolli, L. Perilli, E. Rossi, G. Esposito, M. Rugge, P. Pilati, S. Mocellin, D. Nitti, S. Bortoluzzi and P. Zanovello: Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics, 14(1), 589 (2013)
[75]J. Fu, W. Tang, P. Du, G. Wang, W. Chen, J. Li, Y. Zhu, J. Gao and L. Cui: Identifying MicroRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Systems Biology, 6(1), 68 (2012)
[76]S. Nam, M. Li, K. Choi, C. Balch, S. Kim and K. P. Nephew: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Research, 37(Web Server issue), W356-362 (2009)
[77]F. M. Buffa, C. Camps, L. Winchester, C. E. Snell, H. E. Gee, H. Sheldon, M. Taylor, A. L. Harris and J. Ragoussis: microRNA-Associated Progression Pathways and Potential Therapeutic Targets Identified by Integrated mRNA and microRNA Expression Profiling in Breast Cancer. Cancer Research, 71(17), 5635-5645 (2011)
[78]C. H. Bang-Berthelsen, L. Pedersen, T. Fløyel, P. H. Hagedorn, T. Gylvin and F. Pociot: Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics, 12(1), 97 (2011)
[79]S. Vasudevan, Y. Tong and J. A. Steitz: Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science, 318(5858), 1931-1934 (2007)
[80]J. Yu, D. G. Ryan, S. Getsios, M. Oliveira-Fernandes, A. Fatima and R. M. Lavker: MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proceedings of the National Academy of Sciences, 105(49), 19300-19305 (2008)
[81]X. Liu, A. Nelson, X. Wang, N. Kanaji, M. Kim, T. Sato, M. Nakanishi, Y. Li, J. Sun, J. Michalski, A. Patil, H. Basma and S. I. Rennard: MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochemical and Biophysical Research Communications, 380(1), 177-182 (2009)
[82]C. A. Gebeshuber, K. Zatloukal and J. Martinez: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO reports, 10(4), 400-405 (2009).
[83]E. Enerly, I. Steinfeld, K. Kleivi, S.-K. Leivonen, M. R. Aure, H. G. Russnes, J. A. Rønneberg, H. Johnsen, R. Navon, E. Rødland, R. Mäkelä, B. Naume, M. Perälä, O. Kallioniemi, V. N. Kristensen, Z. Yakhini and A.-L. Børresen-Dale: miRNA-mRNA Integrated Analysis Reveals Roles for miRNAs in Primary Breast Tumors. PLoS ONE, 6(2), e16915 (2011)
[84]W. Zhang, J. Zang, X. Jing, Z. Sun, W. Yan, D. Yang, B. Shen and F. Guo: Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. Journal of Translational Medicine, 12(1), 66 (2014)
[85]Y. Hua, S. Duan, A. E. Murmann, N. Larsen, J. Kjems, A. H. Lund and M. E. Peter: miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells. PLoS ONE, 6(10), e26521 (2011)
[86]R. E. Engstrom, B. J. Mondino, B. J. Glasgow, H. Pitchekian-Halabi and S. A. Adamu: Immune response to Staphylococcus aureus endophthalmitis in a rabbit model. Investigative Ophthalmology & Visual Science, 32(5), 1523-1533 (1991)
[87]G. Genovese, A. Ergun, S. A. Shukla, B. Campos, J. Hanna, P. Ghosh, S. N. Quayle, K. Rai, S. Colla, H. Ying, C.-J. Wu, S. Sarkar, Y. Xiao, J. Zhang, H. Zhang, L. Kwong, K. Dunn, W. R. Wiedemeyer, C. Brennan, H. Zheng, D. L. Rimm, J. J. Collins and L. Chin: microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-β signaling in glioblastoma. Cancer Discovery, 2(8), 736-749 (2012)
[88]S. Zadran, F. Remacle and R. D. Levine: miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19160-19165 (2013)
[89]V. Sehgal, E. G. Seviour, T. J. Moss, G. B. Mills, R. Azencott and P. T. Ram: Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers. PLOS ONE, 10(10), e0140072 (2015)
[90]N. Bossel Ben-Moshe, R. Avraham, M. Kedmi, A. Zeisel, A. Yitzhaky, Y. Yarden and E. Domany: Context-specific microRNA analysis: identification of functional microRNAs and their mRNA targets. Nucleic Acids Research, 40(21), 10614-10627 (2012)
[91]L. Martignetti, B. Tesson, A. Almeida, A. Zinovyev, G. C. Tucker, T. Dubois and E. Barillot: Detection of miRNA regulatory effect on triple negative breast cancer transcriptome. BMC Genomics, 16(Suppl 6), S4 (2015)
[92]L. Cantini, L. Cantini, C. Isella, C. Petti, G. Picco, S. Chiola, E. Ficarra, M. Caselle and E. Medico: MMRA MicroRNA Master Regulator Analysis. Protocol Exchange (2015)
[93]L. Cantini, C. Isella, C. Petti, G. Picco, S. Chiola, E. Ficarra, M. Caselle and E. Medico: MicroRNA–mRNA interactions underlying colorectal cancer molecular subtypes. Nature Communications, 6, 8878 (2015)
[94]A. Bisognin, G. Sales, A. Coppe, S. Bortoluzzi and C. Romualdi: MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Research, 40(Web Server issue), W13-21 (2012)
[95]G. T. Huang, C. Athanassiou and P. V. Benos: mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Research, 39(suppl), W416-W423 (2011)
[96]H. Ying, J. Lv, T. Ying, J. Li, Q. Yang and Y. Ma: MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 34(5), 3219-3225 (2013)
[97]D. Samantarrai, M. Sahu, J. Roy, B. B. Mohanty, G. Singh, C. Bhushan and B. Mallick: Unraveling novel TF-miRNA regulatory crosstalk in metastasis of Soft Tissue Sarcoma. Scientific Reports, 5, 9742 (2015)
[98]L. Cantini, E. Medico, S. Fortunato and M. Caselle: Detection of gene communities in multi-networks reveals cancer drivers. Scientific Reports, 5, 17386 (2015)
[99]H. Yu, K. Tu, Y.-J. Wang, J.-Z. Mao, L. Xie, Y.-Y. Li and Y.-X. Li: Combinatorial network of transcriptional regulation and microRNA regulation in human cancer. BMC Systems Biology, 6(1), 61 (2012)
[100]U. Alon: An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, Boca Raton, FL (2007)
[101]U. Alon: Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6), 450-461 (2007)
[102]Q. Wu, H. Qin, Q. Zhao and X. X. He: Emerging role of transcription factor⌌microRNA⌌target gene feed⌌forward loops in cancer (Review). Biomedical Reports (2015)
[103]S. Mangan and U. Alon: Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21), 11980-11985 (2003)
[104]J. Tsang, J. Zhu and A. van Oudenaarden: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Molecular Cell, 26(5), 753-767 (2007)
[105]A. Re, D. Corá, D. Taverna and M. Caselle: Genome-wide survey of microRNA–transcription factor feed-forward regulatory circuits in human. Molecular BioSystems, 5(8), 854 (2009)
[106]M. Osella, C. Bosia, D. Corá and M. Caselle: The Role of Incoherent MicroRNA-Mediated Feedforward Loops in Noise Buffering. PLoS Computational Biology, 7(3), e1001101 (2011)
[107]J. Sun, X. Gong, B. Purow and Z. Zhao: Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma. PLoS Computational Biology, 8(7), e1002488 (2012)
[108]A. S. Afshar, J. Xu and J. Goutsias: Integrative Identification of Deregulated MiRNA/TF-Mediated Gene Regulatory Loops and Networks in Prostate Cancer. PLoS ONE, 9(6), e100806 (2014)
[109]C.-Y. Chen, S.-T. Chen, C.-S. Fuh, H.-F. Juan and H.-C. Huang: Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC bioinformatics, 12 Suppl 1, S41 (2011)
[110]M. El Baroudi, D. Corà, C. Bosia, M. Osella and M. Caselle: A Curated Database of miRNA Mediated Feed-Forward Loops Involving MYC as Master Regulator. PLoS ONE, 6(3), e14742 (2011)
[111]W. Jiang, R. Mitra, C.-C. Lin, Q. Wang, F. Cheng and Z. Zhao: Systematic dissection of dysregulated transcription factor-miRNA feed-forward loops across tumor types. Briefings in Bioinformatics (2015)
[112]Z. Yan, P. K. Shah, S. B. Amin, M. K. Samur, N. Huang, X. Wang, V. Misra, H. Ji, D. Gabuzda and C. Li: Integrative analysis of gene and miRNA expression profiles with transcription factor-miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Research, 40(17), e135-e135 (2012)
[113]S. Volinia and C. M. Croce: Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proceedings of the National Academy of Sciences, 110(18), 7413-7417 (2013)
[114]D. Rajamani and M. K. Bhasin: Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Medicine, 8(1), 38 (2016)
[115]D. Yang, Y. Sun, L. Hu, H. Zheng, P. Ji, Chad V. Pecot, Y. Zhao, S. Reynolds, H. Cheng, R. Rupaimoole, D. Cogdell, M. Nykter, R. Broaddus, C. Rodriguez-Aguayo, G. Lopez-Berestein, J. Liu, I. Shmulevich, AnilK. Sood, K. Chen and W. Zhang: Integrated Analyses Identify a Master MicroRNA Regulatory Network for the Mesenchymal Subtype in Serous Ovarian Cancer. Cancer Cell, 23(2), 186-199 (2013)
[116]M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P. Berninger, A. Rothballer, M. Ascano, A.-C. Jungkamp, M. Munschauer, A. Ulrich, G. S. Wardle, S. Dewell, M. Zavolan and T. Tuschl: Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell, 141(1), 129-141 (2010)
[117]T. A. Farazi, J. J. Ten Hoeve, M. Brown, A. Mihailovic, H. M. Horlings, M. J. van de Vijver, T. Tuschl and L. F. A. Wessels: Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. Genome Biology, 15(1), R9 (2014)
[118]C. Blenkiron and E. A. Miska: miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Human Molecular Genetics, 16(R1), R106-R113 (2007)
[119]J. Zhang, T. Duy Le, L. Liu, J. He and J. Li: Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Molecular bioSystems, 12(2), 454-463 (2016)
[120]Z. Liu, J. Zhang, X. Yuan, B. Liu, Y. Liu, A. Li, Y. Zhang, X. Sun and S. Tuo: Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers. Molecular bioSystems, 11(8), 2227-2237 (2015)
[121]J. Xu, C. X. Li, Y. S. Li, J. Y. Lv, Y. Ma, T. T. Shao, L. D. Xu, Y. Y. Wang, L. Du, Y. P. Zhang, W. Jiang, C. Q. Li, Y. Xiao and X. Li: MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Research, 39(3), 825-836 (2011)
[122]A. F. Olena and J. G. Patton: Genomic organization of microRNAs. Journal of Cellular Physiology, n/a-n/a (2009)
[123]X. Yuan, C. Liu, P. Yang, S. He, Q. Liao, S. Kang and Y. Zhao: Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC systems biology, 3, 65 (2009)
[124]J. Hausser and M. Zavolan: Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nature Reviews Genetics, 15(9), 599-612 (2014)
[125]T. A. Farazi, H. M. Horlings, J. J. ten Hoeve, A. Mihailovic, H. Halfwerk, P. Morozov, M. Brown, M. Hafner, F. Reyal, M. van Kouwenhove, B. Kreike, D. Sie, V. Hovestadt, L. F. A. Wessels, M. J. van de Vijver and T. Tuschl: MicroRNA Sequence and Expression Analysis in Breast Tumors by Deep Sequencing. Cancer Research, 71(13), 4443-4453 (2011)
[126]S. V. Laddha, S. Nayak, D. Paul, R. Reddy, C. Sharma, P. Jha, M. Hariharan, A. Agrawal, S. Chowdhury, C. Sarkar and A. Mukhopadhyay: Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biology Direct, 8(1) (2013)
[127]S. I. Rothschild: microRNA therapies in cancer. Molecular and Cellular Therapies, 2(1), 7 (2014)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
A review of computational approaches detecting microRNAs involved in cancer
1 Institut Curie, INSERM U900, PSL Research University, Mines ParisTech, 26, rue d'Ulm, F-75248 Paris, France,
2 Department of Physics, University of Torino and INFN, Via Pietro Giuria 1, 10125 Torino, Italy,
3 Institut Curie, CNRS UMR 3306, INSERM U1005, Centre Universitaire, Batiment 110, 91405 Orsay, France
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs playing an essential role in gene expression regulation. Multiple studies have demonstrated that miRNAs are dysregulated in cancer initiation and progression, pointing out their potential as biomarkers for diagnosis, prognosis and response to treatment. With the introduction of high-throughput technologies several computational approaches have been proposed to identify cancer-associated miRNAs. Here, we present a systematic and comprehensive overview of the current knowledge concerning the computational detection of miRNAs involved in tumor onset and subtyping, with possible theranostic employment. An overview of the state of art in this field is thus proposed with the aim of supporting researchers, especially experimentalists and pathologists, in choosing the optimal approach for their case of study.
Keywords
- miRNA
- microRNA
- tool
- systems biology
- biomarkers
- computational biology
- cancer
- Review
References
- [1] G. A. Calin, C.-G. Liu, C. Sevignani, M. Ferracin, N. Felli, C. D. Dumitru, M. Shimizu, A. Cimmino, S. Zupo, M. Dono, M. L. Dell’Aquila, H. Alder, L. Rassenti, T. J. Kipps, F. Bullrich, M. Negrini and C. M. Croce: MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proceedings of the National Academy of Sciences of the United States of America, 101(32), 11755-11760 (2004)
- [2] R. C. Lee, R. L. Feinbaum and V. Ambros: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854 (1993)
- [3] B. Wightman, I. Ha and G. Ruvkun: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855-862 (1993)
- [4] N. Morozova, A. Zinovyev, N. Nonne, L. L. Pritchard, A. N. Gorban and A. Harel-Bellan: Kinetic signatures of microRNA modes of action. RNA, 18(9), 1635-1655 (2012)
- [5] V. N. Kim: MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6(5), 376-385 (2005)
- [6] P. Brodersen and O. Voinnet: Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews. Molecular Cell Biology, 10(2), 141-148 (2009)
- [7] G. A. Calin, C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2999-3004 (2004)
- [8] S. Volinia, G. A. Calin, C. G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R. L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C. C. Harris and C. M. Croce: A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences, 103(7), 2257-2261 (2006)
- [9] M. Garofalo, G. Di Leva, G. Romano, G. Nuovo, S.-S. Suh, A. Ngankeu, C. Taccioli, F. Pichiorri, H. Alder, P. Secchiero, P. Gasparini, A. Gonelli, S. Costinean, M. Acunzo, G. Condorelli and C. M. Croce: miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell, 16(6), 498-509 (2009)Cited within: 0Google Scholar
- [10] M. P. Hamilton, K. Rajapakshe, S. M. Hartig, B. Reva, M. D. McLellan, C. Kandoth, L. Ding, T. I. Zack, P. H. Gunaratne, D. A. Wheeler, C. Coarfa and S. E. McGuire: Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif. Nature Communications, 4 (2013) doi:10.1.038/ncomms3730
- [11] Q. Huang, K. Gumireddy, M. Schrier, C. le Sage, R. Nagel, S. Nair, D. A. Egan, A. Li, G. Huang, A. J. Klein-Szanto, P. A. Gimotty, D. Katsaros, G. Coukos, L. Zhang, E. Puré and R. Agami: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202-210 (2008)
- [12] L. Ma, J. Teruya-Feldstein and R. A. Weinberg: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682-688 (2007)
- [13] L. F. Sempere, M. Christensen, A. Silahtaroglu, M. Bak, C. V. Heath, G. Schwartz, W. Wells, S. Kauppinen and C. N. Cole: Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Research, 67(24), 11612-11620 (2007)
- [14] C. Blenkiron, L. D. Goldstein, N. P. Thorne, I. Spiteri, S.-F. Chin, M. J. Dunning, N. L. Barbosa-Morais, A. E. Teschendorff, A. R. Green, I. O. Ellis, S. Tavaré, C. Caldas and E. A. Miska: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biology, 8(10), R214 (2007)
- [15] M. Hanke, K. Hoefig, H. Merz, A. C. Feller, I. Kausch, D. Jocham, J. M. Warnecke and G. Sczakiel: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urologic Oncology, 28(6), 655-661 (2010)
- [16] C. H. Lawrie, S. Gal, H. M. Dunlop, B. Pushkaran, A. P. Liggins, K. Pulford, A. H. Banham, F. Pezzella, J. Boultwood, J. S. Wainscoat, C. S. R. Hatton and A. L. Harris: Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology, 141(5), 672-675 (2008)
- [17] M. V. Iorio and C. M. Croce: MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review(1757-4684 (Electronic))
- [18] C. P. Gomes, L. Cho Jh Fau - Hood, O. L. Hood L Fau - Franco, R. W. Franco Ol Fau - Pereira, K. Pereira Rw Fau - Wang and K. Wang: A Review of Computational Tools in microRNA Discovery(1664-8021 (Linking))
- [19] J. K. Banwait and D. R. Bastola: Contribution of bioinformatics prediction in microRNA-based cancer therapeutics(1872-8294 (Electronic))
- [20] L. C. Emmanuel Barillott, Philippe Hupe, Jean-Philippe Vert, Andrei Zinovyevv: Computational Systems Biology of Cancer. CRC Press (2012)
- [21] J. M. Thomson, J. Parker, C. M. Perou and S. M. Hammond: A custom microarray platform for analysis of microRNA gene expression. Nature Methods, 1(1), 47-53 (2004)
- [22] C.-G. Liu, G. A. Calin, B. Meloon, N. Gamliel, C. Sevignani, M. Ferracin, C. D. Dumitru, M. Shimizu, S. Zupo, M. Dono, H. Alder, F. Bullrich, M. Negrini and C. M. Croce: An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9740-9744 (2004)
- [23] Y. Sun, S. Koo, N. White, E. Peralta, C. Esau, N. M. Dean and R. J. Perera: Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Research, 32(22), e188 (2004)
- [24] P. T. Nelson, D. A. Baldwin, L. M. Scearce, J. C. Oberholtzer, J. W. Tobias and Z. Mourelatos: Microarray-based, high-throughput gene expression profiling of microRNAs. Nature Methods, 1(2), 155-161 (2004)
- [25] O. Barad, E. Meiri, A. Avniel, R. Aharonov, A. Barzilai, I. Bentwich, U. Einav, S. Gilad, P. Hurban, Y. Karov, E. K. Lobenhofer, E. Sharon, Y. M. Shiboleth, M. Shtutman, Z. Bentwich and P. Einat: MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Research, 14(12), 2486-2494 (2004)
- [26] J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. Horvitz and T. R. Golub: MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834-838 (2005)
- [27] T. Babak, W. Zhang, Q. Morris, B. J. Blencowe and T. R. Hughes: Probing microRNAs with microarrays: tissue specificity and functional inference. RNA (New York, N.Y.), 10(11), 1813-1819 (2004)
- [28] M. Riaz, M. T. M. van Jaarsveld, A. Hollestelle, W. J. C. Prager-van der Smissen, A. A. J. Heine, A. W. M. Boersma, J. Liu, J. Helmijr, B. Ozturk, M. Smid, E. A. Wiemer, J. A. Foekens and J. W. M. Martens: miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Research, 15(2), R33 (2013)
- [29] S. Volinia, M. Galasso, M. E. Sana, T. F. Wise, J. Palatini, K. Huebner and C. M. Croce: Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proceedings of the National Academy of Sciences, 109(8), 3024-3029 (2012)
- [30] D.-F. Liu, J.-T. Wu, J.-M. Wang, Q.-Z. Liu, Z.-L. Gao and Y.-X. Liu: MicroRNA expression profile analysis reveals diagnostic biomarker for human prostate cancer. Asian Pacific journal of cancer prevention: APJCP, 13(7), 3313-3317 (2012)
- [31] S. Ali, H. Dubaybo, R. E. Brand and F. H. Sarkar: Differential Expression of MicroRNAs in Tissues and Plasma Co-exists as a Biomarker for Pancreatic Cancer. Journal of Cancer Science & Therapy, 7(11), 336-346 (2015)Cited within: 0Google Scholar
- [32] J. Ma, Y. Lin, M. Zhan, D. L. Mann, S. A. Stass and F. Jiang: Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Laboratory Investigation, 95(10), 1197-1206 (2015)
- [33] Y. Chen and R. L. Stallings: Differential Patterns of MicroRNA Expression in Neuroblastoma Are Correlated with Prognosis, Differentiation, and Apoptosis. Cancer Research, 67(3), 976-983 (2007)
- [34] E. J. Lee, Y. Gusev, J. Jiang, G. J. Nuovo, M. R. Lerner, W. L. Frankel, D. L. Morgan, R. G. Postier, D. J. Brackett and T. D. Schmittgen: Expression profiling identifies microRNA signature in pancreatic cancer. International Journal of Cancer, 120(5), 1046-1054 (2006)
- [35] M. V. Iorio, M. Ferracin, C. G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, S. Menard, J. P. Palazzo, A. Rosenberg, P. Musiani, S. Volinia, I. Nenci, G. A. Calin, P. Querzoli, M. Negrini and C. M. Croce: MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Research, 65(16), 7065-7070 (2005)
- [36] Y.-G. Tan, Y.-F. Zhang, C.-J. Guo, M. Yang and M.-Y. Chen: Screening of differentially expressed microRNA in ulcerative colitis related colorectal cancer. Asian Pacific Journal of Tropical Medicine, 6(12), 972-976 (2013)
- [37] J.-L. Wang, Y. Hu, X. Kong, Z.-H. Wang, H.-Y. Chen, J. Xu and J.-Y. Fang: Candidate microRNA Biomarkers in Human Gastric Cancer: A Systematic Review and Validation Study. PLoS ONE, 8(9), e73683 (2013)
- [38] X. Li, Q. Wang, Y. Zheng, S. Lv, S. Ning, J. Sun, T. Huang, Q. Zheng, H. Ren, J. Xu, X. Wang and Y. Li: Prioritizing human cancer microRNAs based on genes’ functional consistency between microRNA and cancer. Nucleic Acids Research, 39(22), e153-e153 (2011)
- [39] L. Zhang, S. Volinia, T. Bonome, G. A. Calin, J. Greshock, N. Yang, C. G. Liu, A. Giannakakis, P. Alexiou, K. Hasegawa, C. N. Johnstone, et al.: Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences, 105(19), 7004-7009 (2008)
- [40] B. Seliger, S. Jasinski, S. P. Dressler, F. M. Marincola, C. V. Recktenwald, E. Wang and R. Lichtenfels: Linkage of microRNA and Proteome-Based Profiling Data Sets: A Perspective for the Priorization of Candidate Biomarkers in Renal Cell Carcinoma? Journal of Proteome Research, 10(1), 191-199 (2011)
- [41] A. Piepoli, F. Tavano, M. Copetti, T. Mazza, O. Palumbo, A. Panza, F. F. di Mola, V. Pazienza, G. Mazzoccoli, G. Biscaglia, A. Gentile, N. Mastrodonato, M. Carella, F. Pellegrini, P. di Sebastiano and A. Andriulli: Mirna Expression Profiles Identify Drivers in Colorectal and Pancreatic Cancers. PLoS ONE, 7(3), e33663 (2012)
- [42] X. Zhang, Y. Peng, Z. Jin, W. Huang, Y. Cheng, Y. Liu, X. Feng, M. Yang, Y. Huang, Z. Zhao, L. Wang, Y. Wei, X. Fan, D. Zheng and S. J. Meltzer: Integrated miRNA profiling and bioinformatics analyses reveal potential causative miRNAs in gastric adenocarcinoma. Oncotarget, 6(32), 32878-32889 (2015)
- [43] G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida, J. Aerts, R. Schneider and P. G. Bagos: Using graph theory to analyze biological networks. BioData Mining, 4(1) (2011)
- [44] S. Volinia, M. Galasso, S. Costinean, L. Tagliavini, G. Gamberoni, A. Drusco, J. Marchesini, N. Mascellani, M. E. Sana, R. Abu Jarour, C. Desponts, et al.: Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 20(5), 589-599 (2010)
- [45] X. Zeng, X. Zhang and Q. Zou: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Briefings in Bioinformatics, 17(2), 193-203 (2016)
- [46] J. Li, K. Lei, Z. Wu, W. Li, G. Liu, J. Liu, F. Cheng and Y. Tang: Network-based identification of microRNAs as potential pharmacogenomic biomarkers for anticancer drugs. Oncotarget (2014)
- [47] C. P. Goswami and H. Nakshatri: PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. Journal of Clinical Bioinformatics, 2(1), 23 (2012)
- [48] D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi and D. P. BarTel: The impact of microRNAs on protein output. Nature, 455(7209), 64-71 (2008)
- [49] M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin and N. Rajewsky: Widespread changes in protein synthesis induced by microRNAs. Nature, 455(7209), 58-63 (2008)
- [50] C. J. Creighton, A. K. Nagaraja, S. M. Hanash, M. M. Matzuk and P. H. Gunaratne: A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. RNA (New York, N.Y.), 14(11), 2290-2296 (2008)
- [51] X. Wu and M. Watson: CORNA: testing gene lists for regulation by microRNAs. Bioinformatics, 25(6), 832-833 (2009)
- [52] Z. Liang, H. Zhou, Z. He, H. Zheng and J. Wu: mirAct: a web tool for evaluating microRNA activity based on gene expression data. Nucleic Acids Research, 39(suppl), W139-W144 (2011)
- [53] X.-M. Zhao, K.-Q. Liu, G. Zhu, F. He, B. Duval, J.-M. Richer, D.-S. Huang, C.-J. Jiang, J.-K. Hao and L. Chen: Identifying cancer-related microRNAs based on gene expression data. Bioinformatics (Oxford, England), 31(8), 1226-1234 (2015)
- [54] V. A. Gennarino, G. D’Angelo, G. Dharmalingam, S. Fernandez, G. Russolillo, R. Sanges, M. Mutarelli, V. Belcastro, A. Ballabio, P. Verde, M. Sardiello and S. Banfi: Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Research, 22(6), 1163-1172 (2012)
- [55] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, A. Yefanov, H. Lee, N. Zhang, C. L. Robertson, N. Serova, S. Davis and A. Soboleva: NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Research, 41(Database issue), D991-995 (2013)
- [56] T. J. Hudson, W. Anderson, A. Aretz, A. D. Barker, C. Bell, R. R. Bernabé, M. K. Bhan, F. Calvo, I. Eerola, D. S. Gerhard, A. Guttmacher, M. Guyer, F. M. Hemsley, et al.: International network of cancer genome projects. Nature, 464(7291), 993-998 (2010)
- [57] Y.-P. Wang and K.-B. Li: Correlation of expression profiles between microRNAs and mRNA targets using NCI-60 data. BMC Genomics, 10(1), 218 (2009)
- [58] V. Jayaswal, M. Lutherborrow, D. D. F. Ma and Y. H. Yang: Identification of microRNA-mRNA modules using microarray data. BMC Genomics, 12(1), 138 (2011)
- [59] W. Zhang, A. Edwards, W. Fan, E. K. Flemington and K. Zhang: miRNA-mRNA Correlation-Network Modules in Human Prostate Cancer and the Differences between Primary and Metastatic Tumor Subtypes. PLoS ONE, 7(6), e40130 (2012)
- [60] A. Jacobsen, J. Silber, G. Harinath, J. T. Huse, N. Schultz and C. Sander: Analysis of microRNA-target interactions across diverse cancer types. Nature Structural & Molecular Biology, 20(11), 1325-1332 (2013)Cited within: 0Google Scholar
- [61] C. Cava, G. Bertoli, M. Ripamonti, G. Mauri, I. Zoppis, P. A. D. Rosa, M. C. Gilardi and I. Castiglioni: Integration of mRNA Expression Profile, Copy Number Alterations, and microRNA Expression Levels in Breast Cancer to Improve Grade Definition. PLOS ONE, 9(5), e97681 (2014)
- [62] N. Hecker, C. Stephan, H.-J. Mollenkopf, K. Jung, R. Preissner and H.-A. Meyer: A New Algorithm for Integrated Analysis of miRNA-mRNA Interactions Based on Individual Classification Reveals Insights into Bladder Cancer. PLoS ONE, 8(5), e64543 (2013)
- [63] J. Xu, C.-X. Li, J.-Y. Lv, Y.-S. Li, Y. Xiao, T.-T. Shao, X. Huo, X. Li, Y. Zou, Q.-L. Han, X. Li, L.-H. Wang and H. Ren: Prioritizing candidate disease miRNAs by topological features in the miRNA target-dysregulated network: case study of prostate cancer. Molecular Cancer Therapeutics, 10(10), 1857-1866 (2011)
- [64] J. C. Huang, T. Babak, T. W. Corson, G. Chua, S. Khan, B. L. Gallie, T. R. Hughes, B. J. Blencowe, B. J. Frey and Q. D. Morris: Using expression profiling data to identify human microRNA targets. Nature Methods, 4(12), 1045-1049 (2007)
- [65] B. Liu, L. Liu, A. Tsykin, G. J. Goodall, J. E. Green, M. Zhu, C. H. Kim and J. Li: Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics, 26(24), 3105-3111 (2010)
- [66] B. Liu, J. Li, A. Tsykin, L. Liu, A. B. Gaur and G. J. Goodall: Exploring complex miRNA-mRNA interactions with Bayesian networks by splitting-averaging strategy. BMC Bioinformatics, 10(1), 408 (2009)
- [67] B. Liu, J. Li and A. Tsykin: Discovery of functional miRNA–mRNA regulatory modules with computational methods. Journal of Biomedical Informatics, 42(4), 685-691 (2009)
- [68] L. Martignetti, K. Laud-Duval, F. Tirode, G. Pierron, S. Reynaud, E. Barillot, O. Delattre and A. Zinovyev: Antagonism Pattern Detection between MicroRNA and Target Expression in Ewing’s Sarcoma. PLoS ONE, 7(7), e41770 (2012)
- [69] G. Sales, A. Coppe, A. Bisognin, M. Biasiolo, S. Bortoluzzi and C. Romualdi: MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Research, 38(Web Server), W352-W359 (2010)
- [70] I. Ulitsky, L. C. Laurent and R. Shamir: Towards computational prediction of microRNA function and activity. Nucleic Acids Research, 38(15), e160-e160 (2010)
- [71] M. Lionetti, M. Biasiolo, L. Agnelli, K. Todoerti, L. Mosca, S. Fabris, G. Sales, G. L. Deliliers, S. Bicciato, L. Lombardi, S. Bortoluzzi and A. Neri: Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood, 114(25), e20-e26 (2009)
- [72] L. Ma, Y. Huang, W. Zhu, S. Zhou, J. Zhou, F. Zeng, X. Liu, Y. Zhang and J. Yu: An Integrated Analysis of miRNA and mRNA Expressions in Non-Small Cell Lung Cancers. PLoS ONE, 6(10), e26502 (2011)
- [73] L. Cascione, P. Gasparini, F. Lovat, S. Carasi, A. Pulvirenti, A. Ferro, H. Alder, G. He, A. Vecchione, C. M. Croce, C. L. Shapiro and K. Huebner: Integrated MicroRNA and mRNA Signatures Associated with Survival in Triple Negative Breast Cancer. PLoS ONE, 8(2), e55910 (2013)
- [74] S. Pizzini, A. Bisognin, S. Mandruzzato, M. Biasiolo, A. Facciolli, L. Perilli, E. Rossi, G. Esposito, M. Rugge, P. Pilati, S. Mocellin, D. Nitti, S. Bortoluzzi and P. Zanovello: Impact of microRNAs on regulatory networks and pathways in human colorectal carcinogenesis and development of metastasis. BMC Genomics, 14(1), 589 (2013)
- [75] J. Fu, W. Tang, P. Du, G. Wang, W. Chen, J. Li, Y. Zhu, J. Gao and L. Cui: Identifying MicroRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Systems Biology, 6(1), 68 (2012)
- [76] S. Nam, M. Li, K. Choi, C. Balch, S. Kim and K. P. Nephew: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Research, 37(Web Server issue), W356-362 (2009)
- [77] F. M. Buffa, C. Camps, L. Winchester, C. E. Snell, H. E. Gee, H. Sheldon, M. Taylor, A. L. Harris and J. Ragoussis: microRNA-Associated Progression Pathways and Potential Therapeutic Targets Identified by Integrated mRNA and microRNA Expression Profiling in Breast Cancer. Cancer Research, 71(17), 5635-5645 (2011)
- [78] C. H. Bang-Berthelsen, L. Pedersen, T. Fløyel, P. H. Hagedorn, T. Gylvin and F. Pociot: Independent component and pathway-based analysis of miRNA-regulated gene expression in a model of type 1 diabetes. BMC Genomics, 12(1), 97 (2011)
- [79] S. Vasudevan, Y. Tong and J. A. Steitz: Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science, 318(5858), 1931-1934 (2007)
- [80] J. Yu, D. G. Ryan, S. Getsios, M. Oliveira-Fernandes, A. Fatima and R. M. Lavker: MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proceedings of the National Academy of Sciences, 105(49), 19300-19305 (2008)
- [81] X. Liu, A. Nelson, X. Wang, N. Kanaji, M. Kim, T. Sato, M. Nakanishi, Y. Li, J. Sun, J. Michalski, A. Patil, H. Basma and S. I. Rennard: MicroRNA-146a modulates human bronchial epithelial cell survival in response to the cytokine-induced apoptosis. Biochemical and Biophysical Research Communications, 380(1), 177-182 (2009)
- [82] C. A. Gebeshuber, K. Zatloukal and J. Martinez: miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO reports, 10(4), 400-405 (2009).
- [83] E. Enerly, I. Steinfeld, K. Kleivi, S.-K. Leivonen, M. R. Aure, H. G. Russnes, J. A. Rønneberg, H. Johnsen, R. Navon, E. Rødland, R. Mäkelä, B. Naume, M. Perälä, O. Kallioniemi, V. N. Kristensen, Z. Yakhini and A.-L. Børresen-Dale: miRNA-mRNA Integrated Analysis Reveals Roles for miRNAs in Primary Breast Tumors. PLoS ONE, 6(2), e16915 (2011)
- [84] W. Zhang, J. Zang, X. Jing, Z. Sun, W. Yan, D. Yang, B. Shen and F. Guo: Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. Journal of Translational Medicine, 12(1), 66 (2014)
- [85] Y. Hua, S. Duan, A. E. Murmann, N. Larsen, J. Kjems, A. H. Lund and M. E. Peter: miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells. PLoS ONE, 6(10), e26521 (2011)
- [86] R. E. Engstrom, B. J. Mondino, B. J. Glasgow, H. Pitchekian-Halabi and S. A. Adamu: Immune response to Staphylococcus aureus endophthalmitis in a rabbit model. Investigative Ophthalmology & Visual Science, 32(5), 1523-1533 (1991)Cited within: 0Google Scholar
- [87] G. Genovese, A. Ergun, S. A. Shukla, B. Campos, J. Hanna, P. Ghosh, S. N. Quayle, K. Rai, S. Colla, H. Ying, C.-J. Wu, S. Sarkar, Y. Xiao, J. Zhang, H. Zhang, L. Kwong, K. Dunn, W. R. Wiedemeyer, C. Brennan, H. Zheng, D. L. Rimm, J. J. Collins and L. Chin: microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-β signaling in glioblastoma. Cancer Discovery, 2(8), 736-749 (2012)
- [88] S. Zadran, F. Remacle and R. D. Levine: miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19160-19165 (2013)
- [89] V. Sehgal, E. G. Seviour, T. J. Moss, G. B. Mills, R. Azencott and P. T. Ram: Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers. PLOS ONE, 10(10), e0140072 (2015)
- [90] N. Bossel Ben-Moshe, R. Avraham, M. Kedmi, A. Zeisel, A. Yitzhaky, Y. Yarden and E. Domany: Context-specific microRNA analysis: identification of functional microRNAs and their mRNA targets. Nucleic Acids Research, 40(21), 10614-10627 (2012)
- [91] L. Martignetti, B. Tesson, A. Almeida, A. Zinovyev, G. C. Tucker, T. Dubois and E. Barillot: Detection of miRNA regulatory effect on triple negative breast cancer transcriptome. BMC Genomics, 16(Suppl 6), S4 (2015)
- [92] L. Cantini, L. Cantini, C. Isella, C. Petti, G. Picco, S. Chiola, E. Ficarra, M. Caselle and E. Medico: MMRA MicroRNA Master Regulator Analysis. Protocol Exchange (2015)
- [93] L. Cantini, C. Isella, C. Petti, G. Picco, S. Chiola, E. Ficarra, M. Caselle and E. Medico: MicroRNA–mRNA interactions underlying colorectal cancer molecular subtypes. Nature Communications, 6, 8878 (2015)
- [94] A. Bisognin, G. Sales, A. Coppe, S. Bortoluzzi and C. Romualdi: MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Research, 40(Web Server issue), W13-21 (2012)
- [95] G. T. Huang, C. Athanassiou and P. V. Benos: mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Research, 39(suppl), W416-W423 (2011)
- [96] H. Ying, J. Lv, T. Ying, J. Li, Q. Yang and Y. Ma: MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 34(5), 3219-3225 (2013)
- [97] D. Samantarrai, M. Sahu, J. Roy, B. B. Mohanty, G. Singh, C. Bhushan and B. Mallick: Unraveling novel TF-miRNA regulatory crosstalk in metastasis of Soft Tissue Sarcoma. Scientific Reports, 5, 9742 (2015)
- [98] L. Cantini, E. Medico, S. Fortunato and M. Caselle: Detection of gene communities in multi-networks reveals cancer drivers. Scientific Reports, 5, 17386 (2015)
- [99] H. Yu, K. Tu, Y.-J. Wang, J.-Z. Mao, L. Xie, Y.-Y. Li and Y.-X. Li: Combinatorial network of transcriptional regulation and microRNA regulation in human cancer. BMC Systems Biology, 6(1), 61 (2012)
- [100] U. Alon: An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC, Boca Raton, FL (2007)
- [101] U. Alon: Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6), 450-461 (2007)
- [102] Q. Wu, H. Qin, Q. Zhao and X. X. He: Emerging role of transcription factor⌌microRNA⌌target gene feed⌌forward loops in cancer (Review). Biomedical Reports (2015)
- [103] S. Mangan and U. Alon: Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21), 11980-11985 (2003)
- [104] J. Tsang, J. Zhu and A. van Oudenaarden: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Molecular Cell, 26(5), 753-767 (2007)
- [105] A. Re, D. Corá, D. Taverna and M. Caselle: Genome-wide survey of microRNA–transcription factor feed-forward regulatory circuits in human. Molecular BioSystems, 5(8), 854 (2009)
- [106] M. Osella, C. Bosia, D. Corá and M. Caselle: The Role of Incoherent MicroRNA-Mediated Feedforward Loops in Noise Buffering. PLoS Computational Biology, 7(3), e1001101 (2011)
- [107] J. Sun, X. Gong, B. Purow and Z. Zhao: Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma. PLoS Computational Biology, 8(7), e1002488 (2012)
- [108] A. S. Afshar, J. Xu and J. Goutsias: Integrative Identification of Deregulated MiRNA/TF-Mediated Gene Regulatory Loops and Networks in Prostate Cancer. PLoS ONE, 9(6), e100806 (2014)
- [109] C.-Y. Chen, S.-T. Chen, C.-S. Fuh, H.-F. Juan and H.-C. Huang: Coregulation of transcription factors and microRNAs in human transcriptional regulatory network. BMC bioinformatics, 12 Suppl 1, S41 (2011)
- [110] M. El Baroudi, D. Corà, C. Bosia, M. Osella and M. Caselle: A Curated Database of miRNA Mediated Feed-Forward Loops Involving MYC as Master Regulator. PLoS ONE, 6(3), e14742 (2011)
- [111] W. Jiang, R. Mitra, C.-C. Lin, Q. Wang, F. Cheng and Z. Zhao: Systematic dissection of dysregulated transcription factor-miRNA feed-forward loops across tumor types. Briefings in Bioinformatics (2015)
- [112] Z. Yan, P. K. Shah, S. B. Amin, M. K. Samur, N. Huang, X. Wang, V. Misra, H. Ji, D. Gabuzda and C. Li: Integrative analysis of gene and miRNA expression profiles with transcription factor-miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Research, 40(17), e135-e135 (2012)
- [113] S. Volinia and C. M. Croce: Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proceedings of the National Academy of Sciences, 110(18), 7413-7417 (2013)
- [114] D. Rajamani and M. K. Bhasin: Identification of key regulators of pancreatic cancer progression through multidimensional systems-level analysis. Genome Medicine, 8(1), 38 (2016)
- [115] D. Yang, Y. Sun, L. Hu, H. Zheng, P. Ji, Chad V. Pecot, Y. Zhao, S. Reynolds, H. Cheng, R. Rupaimoole, D. Cogdell, M. Nykter, R. Broaddus, C. Rodriguez-Aguayo, G. Lopez-Berestein, J. Liu, I. Shmulevich, AnilK. Sood, K. Chen and W. Zhang: Integrated Analyses Identify a Master MicroRNA Regulatory Network for the Mesenchymal Subtype in Serous Ovarian Cancer. Cancer Cell, 23(2), 186-199 (2013)
- [116] M. Hafner, M. Landthaler, L. Burger, M. Khorshid, J. Hausser, P. Berninger, A. Rothballer, M. Ascano, A.-C. Jungkamp, M. Munschauer, A. Ulrich, G. S. Wardle, S. Dewell, M. Zavolan and T. Tuschl: Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell, 141(1), 129-141 (2010)
- [117] T. A. Farazi, J. J. Ten Hoeve, M. Brown, A. Mihailovic, H. M. Horlings, M. J. van de Vijver, T. Tuschl and L. F. A. Wessels: Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets. Genome Biology, 15(1), R9 (2014)
- [118] C. Blenkiron and E. A. Miska: miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Human Molecular Genetics, 16(R1), R106-R113 (2007)
- [119] J. Zhang, T. Duy Le, L. Liu, J. He and J. Li: Identifying miRNA synergistic regulatory networks in heterogeneous human data via network motifs. Molecular bioSystems, 12(2), 454-463 (2016)
- [120] Z. Liu, J. Zhang, X. Yuan, B. Liu, Y. Liu, A. Li, Y. Zhang, X. Sun and S. Tuo: Detecting pan-cancer conserved microRNA modules from microRNA expression profiles across multiple cancers. Molecular bioSystems, 11(8), 2227-2237 (2015)
- [121] J. Xu, C. X. Li, Y. S. Li, J. Y. Lv, Y. Ma, T. T. Shao, L. D. Xu, Y. Y. Wang, L. Du, Y. P. Zhang, W. Jiang, C. Q. Li, Y. Xiao and X. Li: MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Research, 39(3), 825-836 (2011)
- [122] A. F. Olena and J. G. Patton: Genomic organization of microRNAs. Journal of Cellular Physiology, n/a-n/a (2009)
- [123] X. Yuan, C. Liu, P. Yang, S. He, Q. Liao, S. Kang and Y. Zhao: Clustered microRNAs’ coordination in regulating protein-protein interaction network. BMC systems biology, 3, 65 (2009)
- [124] J. Hausser and M. Zavolan: Identification and consequences of miRNA–target interactions — beyond repression of gene expression. Nature Reviews Genetics, 15(9), 599-612 (2014)
- [125] T. A. Farazi, H. M. Horlings, J. J. ten Hoeve, A. Mihailovic, H. Halfwerk, P. Morozov, M. Brown, M. Hafner, F. Reyal, M. van Kouwenhove, B. Kreike, D. Sie, V. Hovestadt, L. F. A. Wessels, M. J. van de Vijver and T. Tuschl: MicroRNA Sequence and Expression Analysis in Breast Tumors by Deep Sequencing. Cancer Research, 71(13), 4443-4453 (2011)
- [126] S. V. Laddha, S. Nayak, D. Paul, R. Reddy, C. Sharma, P. Jha, M. Hariharan, A. Agrawal, S. Chowdhury, C. Sarkar and A. Mukhopadhyay: Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers. Biology Direct, 8(1) (2013)
- [127] S. I. Rothschild: microRNA therapies in cancer. Molecular and Cellular Therapies, 2(1), 7 (2014)
