IMR Press / JIN / Volume 22 / Issue 6 / DOI: 10.31083/j.jin2206144
Open Access Original Research
Marrow Mesenchymal Stem Cell-Derived Exosomes Upregulate Astrocytic Glutamate Transporter-1 Expression via miR-124/mTOR Pathway against Oxygen-Glucose Deprivation/Reperfusion Injury
Show Less
1 Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 214023 Wuxi, Jiangsu, China
*Correspondence: weiy_huang@126.com (Weiyi Huang); wxbrain@163.com (Junfei Shao)
These authors contributed equally.
J. Integr. Neurosci. 2023, 22(6), 144; https://doi.org/10.31083/j.jin2206144
Submitted: 4 May 2023 | Revised: 11 July 2023 | Accepted: 13 July 2023 | Published: 23 October 2023
Copyright: © 2023 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.
Abstract

Background: Experimental investigations have reported the efficacy of marrow mesenchymal stem cell-derived exosomes (MSC-Exos) for the treatment of ischemic stroke. The therapeutic mechanism, however, is still unknown. The purpose of the study is to show whether MSC-Exos increases astrocytic glutamate transporter-1 (GLT-1) expression in response to ischemic stroke and to investigate further mechanisms. Methods and Results: An in vitro ischemia model (oxygen-glucose deprivation/reperfusion, OGD/R) was used. MSC-Exos was identified by Western blot (WB) and transmission electron microscopy (TEM). To further investigate the mechanism, MSC-Exos, miR-124 inhibitor, and mimics, and a mTOR pathway inhibitor (rapamycin, Rap) were used. The interaction between GLT-1 and miR-124 was analyzed by luciferase reporter assay. The GLT-1 RNA expression and miR-124 was assessed by quantitative real-time polymerase chain reaction (qRTPCR). The protein expressions of GLT-1, S6, and pS6 were detected by WB. Results demonstrated that MSC-Exos successfully inhibited the decrease of GLT-1 and miR-124 expression and the increase of pS6 expression in astrocytes after OGD/R. miR-124 inhibitor suppressed the effect of MSC-Exos on GLT-1 upregulation after OGD/R. Rapamycin notably decreased pS6 expression with significantly higher GLT-1 expression in astrocytes injured by OGD/R. Luciferase activity of the reporter harboring the wild-type or mutant GLT-1 3UTR was not inhibited by miR-124 mimics. Further results showed that the inhibiting effect of MSC-Exos on pS6 expression and promoting effect of MSC-Exos on GLT-1 expression could be reversed by miR-124 inhibitor after OGD/R; meanwhile, the above conditions could be reversed again by rapamycin. Conclusions: Results show that miR-124 and the mTOR pathway are involved in regulation of MSC-Exos on GLT-1 expression in astrocytes injured by OGD/R. miR-124 does not directly target GLT-1. MSC-Exos upregulates GLT-1 expression via the miR-124/mTOR pathway in astrocytes injured by OGD/R.

Keywords
ischemic stroke
marrow mesenchymal stem cells
exosome
oxygen-glucose deprivation/reperfusion
GLT-1
Funding
81701216/National Natural Science Foundation of China
2020THRC-DJ-SNW/Wuxi Taihu Lake Talent Plan
HB2020021/Reserve Talents of Double Hundred Talent Plan
WMCG202320/General Program of Wuxi Medical Center, Nanjing Medical University
M202225/General Program of Wuxi Commission of Health
Figures
Fig. 1.
Share
Back to top