Information
References
Contents
Download
[1]A. Toker and S. Marmiroli: Signaling specificity in the Akt pathway in biology and disease, Advances in biological regulation 55, 28-38 (2014)
[2]A. R. Clark and A. Toker: Signalling specificity in the Akt pathway in breast cancer, Biochem Soc Trans 42, 1349-1355 (2014)
[3]M. Hanada, J. Feng and B. A. Hemmings: Structure, regulation and function of PKB/AKT--a major therapeutic target, Biochim Biophys Acta 1697, 3-16 (2004)
[4]D. R. Alessi, S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffney, C. B. Reese and P. Cohen: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα, Current Biology 7, 261-269 (1997)
[5]D. D. Sarbassov, D. A. Guertin, S. M. Ali and D. M. Sabatini: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex, Science 307, 1098-1101 (2005)
[6]J. Feng, J. Park, P. Cron, D. Hess and B. A. Hemmings: Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase, J Biol Chem 279, 41189-41196 (2004)
[7]B. Hassan, A. Akcakanat, A. M. Holder and F. Meric-Bernstam: Targeting the PI3-kinase/Akt/mTOR signaling pathway, Surg Oncol Clin N Am 22, 641-664 (2013)
[8]T. Maehama and J. E. Dixon: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate, J Biol Chem 273, 13375-13378 (1998)
[9]J. Brognard, E. Sierecki, T. Gao and A. C. Newton: PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms, Mol Cell 25, 917-931 (2007)
[10]J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S. I. Wang, J. Puc, C. Miliaresis, L. Rodgers, R. McCombie, S. H. Bigner, B. C. Giovanella, M. Ittmann, B. Tycko, H. Hibshoosh, M. H. Wigler and R. Parsons: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer, Science 275, 1943-1947 (1997)
[11]X. Jiang, S. Chen, J. M. Asara and S. P. Balk: Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits, J Biol Chem 285, 14980-14989 (2010)
[12]B. Kwabi-Addo, D. Giri, K. Schmidt, K. Podsypanina, R. Parsons, N. Greenberg and M. Ittmann: Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression, Proc Natl Acad Sci U S A 98, 11563-11568 (2001)
[13]M. Keniry and R. Parsons: The role of PTEN signaling perturbations in cancer and in targeted therapy, Oncogene 27, 5477-5485 (2008)
[14]H. J. Lim, P. Crowe and J. L. Yang: Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer, J Cancer Res Clin Oncol 141, 671-689 (2015)
[15]R. Dienstmann, J. Rodon, V. Serra and J. Tabernero: Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors, Mol Cancer Ther 13, 1021-1031 (2014)
[16]B. T. Hennessy, D. L. Smith, P. T. Ram, Y. Lu and G. B. Mills: Exploiting the PI3K/AKT pathway for cancer drug discovery, Nat Rev Drug Discov 4, 988-1004 (2005)
[17]P. Liu, M. Begley, W. Michowski, H. Inuzuka, M. Ginzberg, D. Gao, P. Tsou, W. Gan, A. Papa and B. M. Kim: Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus, Nature 508, 541-545 (2014)
[18]G. Di Maira, M. Salvi, G. Arrigoni, O. Marin, S. Sarno, F. Brustolon, L. Pinna and M. Ruzzene: Protein kinase CK2 phosphorylates and upregulates Akt/PKB, Cell Death & Differentiation 12, 668-677 (2005)
[19]C. Girardi, P. James, S. Zanin, L. A. Pinna and M. Ruzzene: Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1843, 1865-1874 (2014)
[20]Y. R. Chin and A. Toker: The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration, Mol Cell 38, 333-344 (2010)
[21]T. Gao, F. Furnari and A. C. Newton: PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth, Mol Cell 18, 13-24 (2005)
[22]G. Di Maira, F. Brustolon, L. A. Pinna and M. Ruzzene: Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells, Cellular and molecular life sciences 66, 3363-3373 (2009)
[23]D. P. Bartel, MicroRNAs, Cell 116, 281-297 (2004)
[24]R. Hamano, H. Miyata, M. Yamasaki, Y. Kurokawa, J. Hara, J. H. Moon, K. Nakajima, S. Takiguchi, Y. Fujiwara, M. Mori and Y. Doki: Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway, Clin Cancer Res 17, 3029-3038 (2011)
[25]J. Li, Y. Chen, J. Zhao, F. Kong and Y. Zhang: miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression, Cancer Lett 304, 52-59 (2011)
[26]L. Wang, J. Yao, X. Zhang, B. Guo, X. Le, M. Cubberly, Z. Li, K. Nan, T. Song and C. Huang: miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2, Mol Cancer Res 12, 190-202 (2014)
[27]H. J. Zhao, L. L. Ren, Z. H. Wang, T. T. Sun, Y. N. Yu, Y. C. Wang, T. T. Yan, W. Zou, J. He, Y. Zhang, J. Hong and J. Y. Fang: MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway, Theranostics 4, 1193-1208 (2014)
[28]W. T. Liao, T. T. Li, Z. G. Wang, S. Y. Wang, M. R. He, Y. P. Ye, L. Qi, Y. M. Cui, P. Wu, H. L. Jiao, C. Zhang, Y. J. Xie, J. X. Wang and Y. Q. Ding: microRNA-224 promotes cell proliferation and tumor growth in human colorectal cancer by repressing PHLPP1 and PHLPP2, Clin Cancer Res 19, 4662-4672 (2013)
[29]J. Cai, L. Fang, Y. Huang, R. Li, J. Yuan, Y. Yang, X. Zhu, B. Chen, J. Wu and M. Li: miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer, Cancer Res 73, 5402-5415 (2013)
[30]Z. Mei, Y. He, J. Feng, J. Shi, Y. Du, L. Qian, Q. Huang and Z. Jie: MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2, FEBS Lett 588, 3055-3061 (2014)
[31]X. P. Mao, L. S. Zhang, B. Huang, S. Y. Zhou, J. Liao, L. W. Chen, S. P. Qiu and J. X. Chen: Mir-135a enhances cellular proliferation through post-transcriptionally regulating PHLPP2 and FOXO1 in human bladder cancer, J Transl Med 13, 86-015-0438-8 (2015)
[32]C. Polytarchou, D. Iliopoulos, M. Hatziapostolou, F. Kottakis, I. Maroulakou, K. Struhl and P. N. Tsichlis: Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation, Cancer Res 71, 4720-4731 (2011)
[33]M. M. Gottesman, T. Fojo and S. E. Bates: Multidrug resistance in cancer: role of ATP-dependent transporters, Nat Rev Cancer 2, 48-58 (2002)
[34]S. P. C. Cole, Targeting Multidrug Resistance Protein 1 (MRP1, ABCC1): Past, Present, and Future, Annu Rev Pharmacol Toxicol 54, 95-117 (2014)
[35]M. T. Kuo, Redox Regulation of Multidrug Resistance in Cancer Chemotherapy: Molecular Mechanisms and Therapeutic Opportunities, Antioxidants & Redox Signaling 11, 99-133 (2008)
[36]Y. Pommier, O. Sordet, S. Antony, R. L. Hayward and K. W. Kohn: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks, Oncogene 23, 2934-2949 (2004)
[37]X. L. Yang, F. J. Lin, Y. J. Guo, Z. M. Shao and Z. L. Ou: Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways, Onco Targets Ther 7, 1033-1042 (2014)
[38]R. Callaghan, F. Luk and M. Bebawy: Inhibition of the Multidrug Resistance P-Glycoprotein: Time for a Change of Strategy? Drug Metab Disposition 42, 623-631 (2014)
[39]L. Amiri-Kordestani, A. Basseville, K. Kurdziel, A. T. Fojo and S. E. Bates: Targeting MDR in breast and lung cancer: Discriminating its potential importance from the failure of drug resistance reversal studies, Drug Resistance Updates 15, 50-61 (2012)
[40]X. Dong and R. J. Mumper: Nanomedicinal strategies to treat multidrug-resistant tumors: current progress, Nanomedicine (Lond) 5, 597-615 (2010)
[41]D. Kim, H. C. Dan, S. Park, L. Yang, Q. Liu, S. Kaneko, J. Ning, L. He, H. Yang, M. Sun, S. V. Nicosia and J. Q. Cheng: AKT/PKB signaling mechanisms in cancer and chemoresistance, Front Biosci 10, 975-987 (2005)
[42]G. Romano, The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development, Scientifica (Cairo) 2013, 317186 (2013)
[43]M. R. Abedini, E. J. Muller, R. Bergeron, D. A. Gray and B. K. Tsang: Akt promotes chemoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependent ubiquitination of FLICE-like inhibitory protein, Oncogene 29, 11-25 (2009)
[44]T. M. Albury, V. Pandey, S. B. Gitto, L. Dominguez, L. P. Spinel, J. Talarchek, A. Klein-Szanto, J. R. Testa and D. A. Altomare: Constitutively Active Akt1 Cooperates with KRas(G12D) to Accelerate In vivo Pancreatic Tumor Onset and Progression, Neoplasia 17, 175-182 (2014)
[45]G. Z. Cheng, J. Chan, Q. Wang, W. Zhang, C. D. Sun and L. H. Wang: Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel, Cancer Res 67, 1979-1987 (2007)
[46]K. N. Shah, K. R. Mehta, D. Peterson, M. Evangelista, J. C. Livesey and J. S. Faridi: AKT-induced tamoxifen resistance is overturned by RRM2 inhibition, Mol Cancer Res 12, 394-407 (2014)
[47]A. Y. Ali, J. Kim, J. Pelletier, B. C. Vanderhyden, D. R. Bachvarov and B. K. Tsang: Akt confers cisplatin chemoresistance in human gynecological carcinoma cells by modulating PPM1D stability, Mol Carcinog, (2014)
[48]J. Park, Y. Ko, J. Yoon, M. Kim, J. Park, W. Kim, Y. Choi, J. Kim, Y. Cheon and B. Lee: The forkhead transcription factor FOXO1 mediates cisplatin resistance in gastric cancer cells by activating phosphoinositide 3-kinase/Akt pathway, Gastric Cancer 17, 423-430 (2014)
[49]J. Girouard, M. Lafleur, S. Parent, V. Leblanc and E. Asselin: Involvement of Akt isoforms in chemoresistance of endometrial carcinoma cells, Gynecol Oncol 128, 335-343 (2013)
[50]M. W. Lee, D. S. Kim, J. H. Lee, B. S. Lee, S. H. Lee, H. L. Jung, K. W. Sung, H. T. Kim, K. H. Yoo and H. H. Koo: Roles of AKT1 and AKT2 in non-small cell lung cancer cell survival, growth, and migration, Cancer Sci 102, 1822-1828 (2011)
[51]W. Zhou, X. Q. Fu, L. L. Zhang, J. Zhang, X. Huang, X. H. Lu, L. Shen, B. N. Liu, J. Liu, H. S. Luo, J. P. Yu and H. G. Yu: The AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells, Cell Death Dis 4, e847 (2013)
[52]Z. Ding, F. Xu, G. Li, J. Tang, Z. Tang, P. Jiang and H. Wu: Knockdown of Akt2 expression by shRNA inhibits proliferation, enhances apoptosis, and increases chemosensitivity to paclitaxel in human colorectal cancer cells, Cell Biochem Biophys 71, 383-388 (2015)
[53]D. Chen, M. Niu, X. Jiao, K. Zhang, J. Liang and D. Zhang: Inhibition of AKT2 enhances sensitivity to gemcitabine via regulating PUMA and NF-kappaB signaling pathway in human pancreatic ductal adenocarcinoma, Int J Mol Sci 13, 1186-1208 (2012)
[54]Y. Cui, Q. Wang, J. Wang, Y. Dong, C. Luo, G. Hu and Y. Lu: Knockdown of AKT2 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemosensitivity to the anticancer drug VM-26 in U87 glioma cells, Brain Res 1469, 1-9 (2012)
[55]C. K. Kim, T. L. Nguyen, S. B. Lee, S. B. Park, K. H. Lee, S. W. Cho and J. Y. Ahn: Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells, Exp Cell Res 317, 966-975 (2011)
[56]K. M. Turner, Y. Sun, P. Ji, K. J. Granberg, B. Bernard, L. Hu, D. E. Cogdell, X. Zhou, O. Yli-Harja, M. Nykter, I. Shmulevich, W. K. A. Yung, G. N. Fuller and W. Zhang: Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression, Proc Natl Acad Sci U S A 112, 3421-3426 (2015)
[57]Y. R. Chin, T. Yoshida, A. Marusyk, A. H. Beck, K. Polyak and A. Toker: Targeting Akt3 signaling in triple-negative breast cancer, Cancer Res 74, 964-973 (2014)
[58]N. Grabinski, K. Mollmann, K. Milde-Langosch, V. Muller, U. Schumacher, B. Brandt, K. Pantel and M. Jucker: AKT3 regulates ErbB2, ErbB3 and estrogen receptor alpha expression and contributes to endocrine therapy resistance of ErbB2(+) breast tumor cells from Balb-neuT mice, Cell Signal 26, 1021-1029 (2014)
[59]J. LoPiccolo, G. M. Blumenthal, W. B. Bernstein and P. A. Dennis: Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations, Drug Resist Updat 11, 32-50 (2008)
[60]S. B. Kondapaka, S. S. Singh, G. P. Dasmahapatra, E. A. Sausville and K. K. Roy: Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation, Mol Cancer Ther 2, 1093-1103 (2003)
[61]J. Fensterle, B. Aicher, I. Seipelt, M. Teifel and J. Engel: Current view on the mechanism of action of perifosine in cancer, Anticancer Agents Med Chem 14, 629-635 (2014)
[62]Andrew Lassman: Perifosine and Torisel (Temsirolimus) for Recurrent/Progressive Malignant Gliomas. Available from: https://clinicaltrials.gov/ct2/show/NCT02238496 (2015)
[63]G. Powis, P. J. Basseches, D. M. Kroschel, R. L. Richardson, M. J. O’Connell and L. K. Kvols: Disposition of tricyclic nucleoside-5’-monophosphate in blood and plasma of patients during phase I and II clinical trials, Cancer Treat Rep 70, 359-362 (1986)
[64]Albert Einstein College of Medicine of Yeshiva University: Triciribine Phosphate, Paclitaxel, Doxorubicin Hydrochloride, and Cyclophosphamide in Treating Patients With Stage IIB-IV Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01697293 (2015)
[65]B. R. Davies, H. Greenwood, P. Dudley, C. Crafter, D. H. Yu, J. Zhang, J. Li, B. Gao, Q. Ji, J. Maynard, S. A. Ricketts, D. Cross, S. Cosulich, C. C. Chresta, K. Page, J. Yates, C. Lane, R. Watson, R. Luke, D. Ogilvie and M. Pass: Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background, Mol Cancer Ther 11, 873-887 (2012)
[66]Wales Cancer Trials Unit, Fulvestrant +/- Akt Inhibition in Advanced Aromatase Inhibitor Resistant Breast Cancer (FAKTION). Available from: https://clinicaltrials.gov/ct2/show/NCT01992952 (2015)
[67]AstraZeneca, Investigating Safety, Tolerability and Efficacy of AZD5363 When Combined With Paclitaxel in Breast Cancer Patients (BEECH). Available from: https://clinicaltrials.gov/ct2/show/NCT01625286 (2015)
[68]University Hospital Southampton NHS Foundation Trust, Open Label Phase I/Randomised, Double Blind Phase II Study in mCRPC of AZD5363 In Combination With DP Chemotherapy (ProCAID). Available from: https://clinicaltrials.gov/ct2/show/NCT02121639 (2015)
[69]M.D. Anderson Cancer Center, mTORC1/2 Inhibitor AZD2014 or the Oral AKT Inhibitor AZD5363 for Recurrent Endometrial and Ovarian Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02208375 (2015)
[70]UNICANCER, Evaluation of the Efficacy of High Throughput Genome Analysis as a Therapeutic Decision Tool for Patients With Metastatic Breast Cancer (SAFIR02_Breast). Available from: https://clinicaltrials.gov/ct2/show/NCT02299999 (2015)
[71]UNICANCER, Intergroup Trial UNICANCER UC 0105-1305/IFCT 1301: Efficacy of Targeted Drugs Guided by Genomic Profils in Metastatic NSCLC Patients (SAFIR02_Lung). Available from: https://clinicaltrials.gov/ct2/show/NCT02117167 (2015)
[72]Genentech, A Study of Ipatasertib (GDC-0068) in Combination With Paclitaxel as Neoadjuvant Treatment for Patients With Early Stage Triple Negative Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02301988 (2015)
[73]I. Genentech, A Study of Ipatasertib (GDC-0068) in Combination With Paclitaxel as Front-line Treatment for Patients With Metastatic Triple-Negative Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02162719 (2015)
[74]T. University Health Network, An Open-Label Phase 2 Study of Ofatumumab (Arzerra) in Combination With Oral GSK2110183 in the Treatment of Relapsed and Refractory Chronic Lymphocytic Leukemia (CLL). Available from: https://clinicaltrials.gov/ct2/show/NCT01532700 (2015)
[75]Dana-Farber Cancer Institute, GSK1120212+GSK2141795 for Cervical Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01958112 (2015)
[76]National Cancer Institute (NCI), Trametinib and Akt Inhibitor GSK2141795 in Treating Patients With Relapsed or Refractory Multiple Myeloma. Available from: https://clinicaltrials.gov/ct2/show/NCT01989598 (2015)
[77]National Cancer Institute (NCI), Trametinib With or Without GSK2141795 in Treating Patients With Metastatic Uveal Melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01979523 (2015)
[78]National Cancer Institute (NCI), Trametinib and Akt Inhibitor GSK2141795 in Treating Patients With Acute Myeloid Leukemia. Available from: https://clinicaltrials.gov/ct2/show/NCT01907815 (2015)
[79]National Cancer Institute (NCI), Trametinib With or Without GSK2141795 in Treating Patients With Recurrent or Persistent Endometrial Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01935973 (2015)
[80]National Cancer Institute (NCI), Trametinib and Akt Inhibitor GSK2141795 in Treating Patients With Metastatic Triple-Negative Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01964924 (2015)
[81]Dana-Farber Cancer Institute, GSK1120212+GSK2141795 for Cervical Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01958112 (2015)
[82]M. Dumble, M. C. Crouthamel, S. Y. Zhang, M. Schaber, D. Levy, K. Robell, Q. Liu, D. J. Figueroa, E. A. Minthorn, M. A. Seefeld, M. B. Rouse, S. K. Rabindran, D. A. Heerding and R. Kumar: Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor, PLoS One 9, e100880 (2014)
[83]National Cancer Institute (NCI), GSK2141795, Dabrafenib, and Trametinib in Treating Patients With Stage IIIC-IV Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01902173 (2015)
[84]Institut Paoli-Calmettes, Phase Ib/II Study of LY2780301 in Combination With Weekly PACLITAXEL in HER2-metastatic Breast Cancer (TAKTIC). Available from: https://clinicaltrials.gov/ct2/show/NCT01980277 xs(2015)
[85]L. Yan, MK-2206: A potent oral allosteric AKT inhibitor, Mol Cancer Ther9.7., 1956-1967 (2009)
[86]National Cancer Institute (NCI), Akt Inhibitor MK2206 in Treating Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01481129 (2015)
[87]National Cancer Institute (NCI), Akt Inhibitor MK2206 in Treating Patients With Previously Treated Colon or Rectal Cancer That is Metastatic or Locally Advanced and Cannot Be Removed by Surgery. Available from: https://clinicaltrials.gov/ct2/show/NCT01802320 (2015)
[88]National Cancer Institute (NCI), Akt Inhibitor MK-2206 and Anastrozole With or Without Goserelin Acetate in Treating Patients With Stage II-III Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01776008 (2015)
[89]M.D. Anderson Cancer Center, BATTLE-2 Program: A Biomarker-Integrated Targeted Therapy Study. Available from: https://clinicaltrials.gov/ct2/show/NCT01248247 (2015)
[90]I-SPY 2 TRIAL: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01042379 (2015)
[91]National Cancer Institute (NCI), Molecular Profiling and Targeted Therapy for Advanced Non-Small Cell Lung Cancer, Small Cell Lung Cancer, and Thymic Malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT01306045 (2015)
[92]H. Yoon, D. J. Kim, E. H. Ahn, G. C. Gellert, J. W. Shay, C. H. Ahn and Y. B. Lee: Antitumor activity of a novel antisense oligonucleotide against Akt1, J Cell Biochem 108, 832-838 (2009)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Emerging therapeutics for targeting Akt in cancer
1 Programs in Biochemistry and Cancer Biology, and Department of Molecular and Medical Genetics, University of North Texas Health Science Center and Institute for Cancer Research, Fort Worth, Texas, 76107, USA
Abstract
The ultimate goal of cancer therapeutic research is to develop effective, targeted therapeutics that exploit the vulnerabilities of cancer cells. The three isoforms of Akt, also known as protein kinase B (PKB), are important mediators of various pathways that transmit mitogenic signals from the cell’s exterior to the effector proteins of the cell’s interior. Due to Akt’s importance in cell functions such as growth, proliferation and cell survival, many cancer cells rely on this pathway to aid in their survival. This dependence can lead to chemoresistance and selection of more adapted populations of cancer cells. Thus, it is important to understand the functional significance of isoform specificity and its relation to chemoresistance. In this review, we have summarized recent studies on Akt isoform specific regulation as well as each isoform’s role in chemoresistance, emphasizing their potential as targets for cancer therapy. We have also condensed ongoing clinical studies involving various types of Akt inhibitors while highlighting the type of study, rationale and co-therapies involved in identifying Akt isoforms as promising therapeutic targets.
Keywords
- Akt Regulation
- Akt-mediated Chemoresistance
- Akt Inhibition
- Akt Isoforms
- Clinical Trials
- Review
References
- [1] A. Toker and S. Marmiroli: Signaling specificity in the Akt pathway in biology and disease, Advances in biological regulation 55, 28-38 (2014)
- [2] A. R. Clark and A. Toker: Signalling specificity in the Akt pathway in breast cancer, Biochem Soc Trans 42, 1349-1355 (2014)
- [3] M. Hanada, J. Feng and B. A. Hemmings: Structure, regulation and function of PKB/AKT--a major therapeutic target, Biochim Biophys Acta 1697, 3-16 (2004)
- [4] D. R. Alessi, S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffney, C. B. Reese and P. Cohen: Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα, Current Biology 7, 261-269 (1997)
- [5] D. D. Sarbassov, D. A. Guertin, S. M. Ali and D. M. Sabatini: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex, Science 307, 1098-1101 (2005)
- [6] J. Feng, J. Park, P. Cron, D. Hess and B. A. Hemmings: Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase, J Biol Chem 279, 41189-41196 (2004)
- [7] B. Hassan, A. Akcakanat, A. M. Holder and F. Meric-Bernstam: Targeting the PI3-kinase/Akt/mTOR signaling pathway, Surg Oncol Clin N Am 22, 641-664 (2013)
- [8] T. Maehama and J. E. Dixon: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate, J Biol Chem 273, 13375-13378 (1998)
- [9] J. Brognard, E. Sierecki, T. Gao and A. C. Newton: PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms, Mol Cell 25, 917-931 (2007)
- [10] J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S. I. Wang, J. Puc, C. Miliaresis, L. Rodgers, R. McCombie, S. H. Bigner, B. C. Giovanella, M. Ittmann, B. Tycko, H. Hibshoosh, M. H. Wigler and R. Parsons: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer, Science 275, 1943-1947 (1997)
- [11] X. Jiang, S. Chen, J. M. Asara and S. P. Balk: Phosphoinositide 3-kinase pathway activation in phosphate and tensin homolog (PTEN)-deficient prostate cancer cells is independent of receptor tyrosine kinases and mediated by the p110beta and p110delta catalytic subunits, J Biol Chem 285, 14980-14989 (2010)
- [12] B. Kwabi-Addo, D. Giri, K. Schmidt, K. Podsypanina, R. Parsons, N. Greenberg and M. Ittmann: Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression, Proc Natl Acad Sci U S A 98, 11563-11568 (2001)
- [13] M. Keniry and R. Parsons: The role of PTEN signaling perturbations in cancer and in targeted therapy, Oncogene 27, 5477-5485 (2008)
- [14] H. J. Lim, P. Crowe and J. L. Yang: Current clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer, J Cancer Res Clin Oncol 141, 671-689 (2015)
- [15] R. Dienstmann, J. Rodon, V. Serra and J. Tabernero: Picking the point of inhibition: a comparative review of PI3K/AKT/mTOR pathway inhibitors, Mol Cancer Ther 13, 1021-1031 (2014)
- [16] B. T. Hennessy, D. L. Smith, P. T. Ram, Y. Lu and G. B. Mills: Exploiting the PI3K/AKT pathway for cancer drug discovery, Nat Rev Drug Discov 4, 988-1004 (2005)
- [17] P. Liu, M. Begley, W. Michowski, H. Inuzuka, M. Ginzberg, D. Gao, P. Tsou, W. Gan, A. Papa and B. M. Kim: Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus, Nature 508, 541-545 (2014)
- [18] G. Di Maira, M. Salvi, G. Arrigoni, O. Marin, S. Sarno, F. Brustolon, L. Pinna and M. Ruzzene: Protein kinase CK2 phosphorylates and upregulates Akt/PKB, Cell Death & Differentiation 12, 668-677 (2005)Cited within: 0Google Scholar
- [19] C. Girardi, P. James, S. Zanin, L. A. Pinna and M. Ruzzene: Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1843, 1865-1874 (2014)
- [20] Y. R. Chin and A. Toker: The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration, Mol Cell 38, 333-344 (2010)
- [21] T. Gao, F. Furnari and A. C. Newton: PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth, Mol Cell 18, 13-24 (2005)
- [22] G. Di Maira, F. Brustolon, L. A. Pinna and M. Ruzzene: Dephosphorylation and inactivation of Akt/PKB is counteracted by protein kinase CK2 in HEK 293T cells, Cellular and molecular life sciences 66, 3363-3373 (2009)
- [23] D. P. Bartel, MicroRNAs, Cell 116, 281-297 (2004)
- [24] R. Hamano, H. Miyata, M. Yamasaki, Y. Kurokawa, J. Hara, J. H. Moon, K. Nakajima, S. Takiguchi, Y. Fujiwara, M. Mori and Y. Doki: Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway, Clin Cancer Res 17, 3029-3038 (2011)
- [25] J. Li, Y. Chen, J. Zhao, F. Kong and Y. Zhang: miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression, Cancer Lett 304, 52-59 (2011)
- [26] L. Wang, J. Yao, X. Zhang, B. Guo, X. Le, M. Cubberly, Z. Li, K. Nan, T. Song and C. Huang: miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2, Mol Cancer Res 12, 190-202 (2014)
- [27] H. J. Zhao, L. L. Ren, Z. H. Wang, T. T. Sun, Y. N. Yu, Y. C. Wang, T. T. Yan, W. Zou, J. He, Y. Zhang, J. Hong and J. Y. Fang: MiR-194 deregulation contributes to colorectal carcinogenesis via targeting AKT2 pathway, Theranostics 4, 1193-1208 (2014)
- [28] W. T. Liao, T. T. Li, Z. G. Wang, S. Y. Wang, M. R. He, Y. P. Ye, L. Qi, Y. M. Cui, P. Wu, H. L. Jiao, C. Zhang, Y. J. Xie, J. X. Wang and Y. Q. Ding: microRNA-224 promotes cell proliferation and tumor growth in human colorectal cancer by repressing PHLPP1 and PHLPP2, Clin Cancer Res 19, 4662-4672 (2013)
- [29] J. Cai, L. Fang, Y. Huang, R. Li, J. Yuan, Y. Yang, X. Zhu, B. Chen, J. Wu and M. Li: miR-205 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer, Cancer Res 73, 5402-5415 (2013)
- [30] Z. Mei, Y. He, J. Feng, J. Shi, Y. Du, L. Qian, Q. Huang and Z. Jie: MicroRNA-141 promotes the proliferation of non-small cell lung cancer cells by regulating expression of PHLPP1 and PHLPP2, FEBS Lett 588, 3055-3061 (2014)
- [31] X. P. Mao, L. S. Zhang, B. Huang, S. Y. Zhou, J. Liao, L. W. Chen, S. P. Qiu and J. X. Chen: Mir-135a enhances cellular proliferation through post-transcriptionally regulating PHLPP2 and FOXO1 in human bladder cancer, J Transl Med 13, 86-015-0438-8 (2015)
- [32] C. Polytarchou, D. Iliopoulos, M. Hatziapostolou, F. Kottakis, I. Maroulakou, K. Struhl and P. N. Tsichlis: Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation, Cancer Res 71, 4720-4731 (2011)
- [33] M. M. Gottesman, T. Fojo and S. E. Bates: Multidrug resistance in cancer: role of ATP-dependent transporters, Nat Rev Cancer 2, 48-58 (2002)
- [34] S. P. C. Cole, Targeting Multidrug Resistance Protein 1 (MRP1, ABCC1): Past, Present, and Future, Annu Rev Pharmacol Toxicol 54, 95-117 (2014)
- [35] M. T. Kuo, Redox Regulation of Multidrug Resistance in Cancer Chemotherapy: Molecular Mechanisms and Therapeutic Opportunities, Antioxidants & Redox Signaling 11, 99-133 (2008)Cited within: 0Google Scholar
- [36] Y. Pommier, O. Sordet, S. Antony, R. L. Hayward and K. W. Kohn: Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks, Oncogene 23, 2934-2949 (2004)
- [37] X. L. Yang, F. J. Lin, Y. J. Guo, Z. M. Shao and Z. L. Ou: Gemcitabine resistance in breast cancer cells regulated by PI3K/AKT-mediated cellular proliferation exerts negative feedback via the MEK/MAPK and mTOR pathways, Onco Targets Ther 7, 1033-1042 (2014)
- [38] R. Callaghan, F. Luk and M. Bebawy: Inhibition of the Multidrug Resistance P-Glycoprotein: Time for a Change of Strategy? Drug Metab Disposition 42, 623-631 (2014)
- [39] L. Amiri-Kordestani, A. Basseville, K. Kurdziel, A. T. Fojo and S. E. Bates: Targeting MDR in breast and lung cancer: Discriminating its potential importance from the failure of drug resistance reversal studies, Drug Resistance Updates 15, 50-61 (2012)
- [40] X. Dong and R. J. Mumper: Nanomedicinal strategies to treat multidrug-resistant tumors: current progress, Nanomedicine (Lond) 5, 597-615 (2010)
- [41] D. Kim, H. C. Dan, S. Park, L. Yang, Q. Liu, S. Kaneko, J. Ning, L. He, H. Yang, M. Sun, S. V. Nicosia and J. Q. Cheng: AKT/PKB signaling mechanisms in cancer and chemoresistance, Front Biosci 10, 975-987 (2005)
- [42] G. Romano, The role of the dysfunctional akt-related pathway in cancer: establishment and maintenance of a malignant cell phenotype, resistance to therapy, and future strategies for drug development, Scientifica (Cairo) 2013, 317186 (2013)
- [43] M. R. Abedini, E. J. Muller, R. Bergeron, D. A. Gray and B. K. Tsang: Akt promotes chemoresistance in human ovarian cancer cells by modulating cisplatin-induced, p53-dependent ubiquitination of FLICE-like inhibitory protein, Oncogene 29, 11-25 (2009)
- [44] T. M. Albury, V. Pandey, S. B. Gitto, L. Dominguez, L. P. Spinel, J. Talarchek, A. Klein-Szanto, J. R. Testa and D. A. Altomare: Constitutively Active Akt1 Cooperates with KRas(G12D) to Accelerate In vivo Pancreatic Tumor Onset and Progression, Neoplasia 17, 175-182 (2014)
- [45] G. Z. Cheng, J. Chan, Q. Wang, W. Zhang, C. D. Sun and L. H. Wang: Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel, Cancer Res 67, 1979-1987 (2007)
- [46] K. N. Shah, K. R. Mehta, D. Peterson, M. Evangelista, J. C. Livesey and J. S. Faridi: AKT-induced tamoxifen resistance is overturned by RRM2 inhibition, Mol Cancer Res 12, 394-407 (2014)
- [47] A. Y. Ali, J. Kim, J. Pelletier, B. C. Vanderhyden, D. R. Bachvarov and B. K. Tsang: Akt confers cisplatin chemoresistance in human gynecological carcinoma cells by modulating PPM1D stability, Mol Carcinog, (2014)
- [48] J. Park, Y. Ko, J. Yoon, M. Kim, J. Park, W. Kim, Y. Choi, J. Kim, Y. Cheon and B. Lee: The forkhead transcription factor FOXO1 mediates cisplatin resistance in gastric cancer cells by activating phosphoinositide 3-kinase/Akt pathway, Gastric Cancer 17, 423-430 (2014)
- [49] J. Girouard, M. Lafleur, S. Parent, V. Leblanc and E. Asselin: Involvement of Akt isoforms in chemoresistance of endometrial carcinoma cells, Gynecol Oncol 128, 335-343 (2013)
- [50] M. W. Lee, D. S. Kim, J. H. Lee, B. S. Lee, S. H. Lee, H. L. Jung, K. W. Sung, H. T. Kim, K. H. Yoo and H. H. Koo: Roles of AKT1 and AKT2 in non-small cell lung cancer cell survival, growth, and migration, Cancer Sci 102, 1822-1828 (2011)
- [51] W. Zhou, X. Q. Fu, L. L. Zhang, J. Zhang, X. Huang, X. H. Lu, L. Shen, B. N. Liu, J. Liu, H. S. Luo, J. P. Yu and H. G. Yu: The AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells, Cell Death Dis 4, e847 (2013)
- [52] Z. Ding, F. Xu, G. Li, J. Tang, Z. Tang, P. Jiang and H. Wu: Knockdown of Akt2 expression by shRNA inhibits proliferation, enhances apoptosis, and increases chemosensitivity to paclitaxel in human colorectal cancer cells, Cell Biochem Biophys 71, 383-388 (2015)
- [53] D. Chen, M. Niu, X. Jiao, K. Zhang, J. Liang and D. Zhang: Inhibition of AKT2 enhances sensitivity to gemcitabine via regulating PUMA and NF-kappaB signaling pathway in human pancreatic ductal adenocarcinoma, Int J Mol Sci 13, 1186-1208 (2012)
- [54] Y. Cui, Q. Wang, J. Wang, Y. Dong, C. Luo, G. Hu and Y. Lu: Knockdown of AKT2 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemosensitivity to the anticancer drug VM-26 in U87 glioma cells, Brain Res 1469, 1-9 (2012)
- [55] C. K. Kim, T. L. Nguyen, S. B. Lee, S. B. Park, K. H. Lee, S. W. Cho and J. Y. Ahn: Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells, Exp Cell Res 317, 966-975 (2011)
- [56] K. M. Turner, Y. Sun, P. Ji, K. J. Granberg, B. Bernard, L. Hu, D. E. Cogdell, X. Zhou, O. Yli-Harja, M. Nykter, I. Shmulevich, W. K. A. Yung, G. N. Fuller and W. Zhang: Genomically amplified Akt3 activates DNA repair pathway and promotes glioma progression, Proc Natl Acad Sci U S A 112, 3421-3426 (2015)
- [57] Y. R. Chin, T. Yoshida, A. Marusyk, A. H. Beck, K. Polyak and A. Toker: Targeting Akt3 signaling in triple-negative breast cancer, Cancer Res 74, 964-973 (2014)
- [58] N. Grabinski, K. Mollmann, K. Milde-Langosch, V. Muller, U. Schumacher, B. Brandt, K. Pantel and M. Jucker: AKT3 regulates ErbB2, ErbB3 and estrogen receptor alpha expression and contributes to endocrine therapy resistance of ErbB2(+) breast tumor cells from Balb-neuT mice, Cell Signal 26, 1021-1029 (2014)
- [59] J. LoPiccolo, G. M. Blumenthal, W. B. Bernstein and P. A. Dennis: Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations, Drug Resist Updat 11, 32-50 (2008)
- [60] S. B. Kondapaka, S. S. Singh, G. P. Dasmahapatra, E. A. Sausville and K. K. Roy: Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation, Mol Cancer Ther 2, 1093-1103 (2003)
- [61] J. Fensterle, B. Aicher, I. Seipelt, M. Teifel and J. Engel: Current view on the mechanism of action of perifosine in cancer, Anticancer Agents Med Chem 14, 629-635 (2014)
- [62] Andrew Lassman: Perifosine and Torisel (Temsirolimus) for Recurrent/Progressive Malignant Gliomas. Available from: https://clinicaltrials.gov/ct2/show/NCT02238496 (2015)
- [63] G. Powis, P. J. Basseches, D. M. Kroschel, R. L. Richardson, M. J. O’Connell and L. K. Kvols: Disposition of tricyclic nucleoside-5’-monophosphate in blood and plasma of patients during phase I and II clinical trials, Cancer Treat Rep 70, 359-362 (1986)
- [64] Albert Einstein College of Medicine of Yeshiva University: Triciribine Phosphate, Paclitaxel, Doxorubicin Hydrochloride, and Cyclophosphamide in Treating Patients With Stage IIB-IV Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01697293 (2015)
- [65] B. R. Davies, H. Greenwood, P. Dudley, C. Crafter, D. H. Yu, J. Zhang, J. Li, B. Gao, Q. Ji, J. Maynard, S. A. Ricketts, D. Cross, S. Cosulich, C. C. Chresta, K. Page, J. Yates, C. Lane, R. Watson, R. Luke, D. Ogilvie and M. Pass: Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background, Mol Cancer Ther 11, 873-887 (2012)
- [66] Wales Cancer Trials Unit, Fulvestrant +/- Akt Inhibition in Advanced Aromatase Inhibitor Resistant Breast Cancer (FAKTION). Available from: https://clinicaltrials.gov/ct2/show/NCT01992952 (2015)
- [67] AstraZeneca, Investigating Safety, Tolerability and Efficacy of AZD5363 When Combined With Paclitaxel in Breast Cancer Patients (BEECH). Available from: https://clinicaltrials.gov/ct2/show/NCT01625286 (2015)
- [68] University Hospital Southampton NHS Foundation Trust, Open Label Phase I/Randomised, Double Blind Phase II Study in mCRPC of AZD5363 In Combination With DP Chemotherapy (ProCAID). Available from: https://clinicaltrials.gov/ct2/show/NCT02121639 (2015)
- [69] M.D. Anderson Cancer Center, mTORC1/2 Inhibitor AZD2014 or the Oral AKT Inhibitor AZD5363 for Recurrent Endometrial and Ovarian Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02208375 (2015)
- [70] UNICANCER, Evaluation of the Efficacy of High Throughput Genome Analysis as a Therapeutic Decision Tool for Patients With Metastatic Breast Cancer (SAFIR02_Breast). Available from: https://clinicaltrials.gov/ct2/show/NCT02299999 (2015)
- [71] UNICANCER, Intergroup Trial UNICANCER UC 0105-1305/IFCT 1301: Efficacy of Targeted Drugs Guided by Genomic Profils in Metastatic NSCLC Patients (SAFIR02_Lung). Available from: https://clinicaltrials.gov/ct2/show/NCT02117167 (2015)
- [72] Genentech, A Study of Ipatasertib (GDC-0068) in Combination With Paclitaxel as Neoadjuvant Treatment for Patients With Early Stage Triple Negative Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02301988 (2015)
- [73] I. Genentech, A Study of Ipatasertib (GDC-0068) in Combination With Paclitaxel as Front-line Treatment for Patients With Metastatic Triple-Negative Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT02162719 (2015)
- [74] T. University Health Network, An Open-Label Phase 2 Study of Ofatumumab (Arzerra) in Combination With Oral GSK2110183 in the Treatment of Relapsed and Refractory Chronic Lymphocytic Leukemia (CLL). Available from: https://clinicaltrials.gov/ct2/show/NCT01532700 (2015)
- [75] Dana-Farber Cancer Institute, GSK1120212+GSK2141795 for Cervical Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01958112 (2015)
- [76] National Cancer Institute (NCI), Trametinib and Akt Inhibitor GSK2141795 in Treating Patients With Relapsed or Refractory Multiple Myeloma. Available from: https://clinicaltrials.gov/ct2/show/NCT01989598 (2015)
- [77] National Cancer Institute (NCI), Trametinib With or Without GSK2141795 in Treating Patients With Metastatic Uveal Melanoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01979523 (2015)
- [78] National Cancer Institute (NCI), Trametinib and Akt Inhibitor GSK2141795 in Treating Patients With Acute Myeloid Leukemia. Available from: https://clinicaltrials.gov/ct2/show/NCT01907815 (2015)
- [79] National Cancer Institute (NCI), Trametinib With or Without GSK2141795 in Treating Patients With Recurrent or Persistent Endometrial Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01935973 (2015)
- [80] National Cancer Institute (NCI), Trametinib and Akt Inhibitor GSK2141795 in Treating Patients With Metastatic Triple-Negative Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01964924 (2015)
- [81] Dana-Farber Cancer Institute, GSK1120212+GSK2141795 for Cervical Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01958112 (2015)
- [82] M. Dumble, M. C. Crouthamel, S. Y. Zhang, M. Schaber, D. Levy, K. Robell, Q. Liu, D. J. Figueroa, E. A. Minthorn, M. A. Seefeld, M. B. Rouse, S. K. Rabindran, D. A. Heerding and R. Kumar: Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor, PLoS One 9, e100880 (2014)
- [83] National Cancer Institute (NCI), GSK2141795, Dabrafenib, and Trametinib in Treating Patients With Stage IIIC-IV Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01902173 (2015)
- [84] Institut Paoli-Calmettes, Phase Ib/II Study of LY2780301 in Combination With Weekly PACLITAXEL in HER2-metastatic Breast Cancer (TAKTIC). Available from: https://clinicaltrials.gov/ct2/show/NCT01980277 xs(2015)
- [85] L. Yan, MK-2206: A potent oral allosteric AKT inhibitor, Mol Cancer Ther9.7., 1956-1967 (2009)
- [86] National Cancer Institute (NCI), Akt Inhibitor MK2206 in Treating Patients With Relapsed or Refractory Diffuse Large B-Cell Lymphoma. Available from: https://clinicaltrials.gov/ct2/show/NCT01481129 (2015)
- [87] National Cancer Institute (NCI), Akt Inhibitor MK2206 in Treating Patients With Previously Treated Colon or Rectal Cancer That is Metastatic or Locally Advanced and Cannot Be Removed by Surgery. Available from: https://clinicaltrials.gov/ct2/show/NCT01802320 (2015)
- [88] National Cancer Institute (NCI), Akt Inhibitor MK-2206 and Anastrozole With or Without Goserelin Acetate in Treating Patients With Stage II-III Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01776008 (2015)
- [89] M.D. Anderson Cancer Center, BATTLE-2 Program: A Biomarker-Integrated Targeted Therapy Study. Available from: https://clinicaltrials.gov/ct2/show/NCT01248247 (2015)
- [90] I-SPY 2 TRIAL: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer. Available from: https://clinicaltrials.gov/ct2/show/NCT01042379 (2015)
- [91] National Cancer Institute (NCI), Molecular Profiling and Targeted Therapy for Advanced Non-Small Cell Lung Cancer, Small Cell Lung Cancer, and Thymic Malignancies. Available from: https://clinicaltrials.gov/ct2/show/NCT01306045 (2015)
- [92] H. Yoon, D. J. Kim, E. H. Ahn, G. C. Gellert, J. W. Shay, C. H. Ahn and Y. B. Lee: Antitumor activity of a novel antisense oligonucleotide against Akt1, J Cell Biochem 108, 832-838 (2009)
