IMR Press / FBL / Volume 15 / Issue 1 / DOI: 10.2741/3617

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Open Access Article
Role of myoepithelial cells in breast tumor progression
Show Less
1 Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University, School of Medicine, 751 N Rutledge St. PO Box 19626, Springfield, IL 627794-9626, USA
Academic Editor:Kounosuke Watabe
Front. Biosci. (Landmark Ed) 2010, 15(1), 226–236; https://doi.org/10.2741/3617
Published: 1 January 2010
(This article belongs to the Special Issue Pathogenesis of tumor progression in breast and prostate cancer)
Abstract

Myoepithelial cells form a semi-continuous protective sheet separating the human breast epithelium and the surrounding stroma. They suppress stromal invasion of tumor cells by the secretion of various anti-angiogenic and anti-invasive factors. The disruption of this cell layer results in the release of the growth factors, angiogenic factors, and reactive oxygen species causing an alteration in the microenvironment. This helps in the proliferation of surrounding cells and increases the invasiveness of tumor cells. Two theories are proposed for the mechanism of tumor epithelial cells progression from in situ to invasive stage. According to the first theory, tumor cell invasion is triggered by the overproduction of proteolytic enzymes by myoepithelial cells and surrounding tumor cells. The second theory states that tumor invasion is a multistep process, the interactions between damaged myoepithelial cells and the immunoreactive cells trigger the release of basement membrane degrading enzymes causing tumor progression. Further studies in understanding of molecular mechanism of myoepithelial cell functions in tumor suppression may lead to the identification of novel therapeutic targets for breast cancer.

Share
Back to top