Information
References
Contents
Download
[1]
[2]NRC: Nutrient Requirements of Fish and Shrimp. The National academies Press, Washington DC (2011)
[3]M. Espe, A. Lemme, A. Petri and A. El-Mowafi: Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture, 255(1-4), 255-262 (2006)
[4]S. J. Kaushik, J. P. Cravedi, J. P. Lalles, J. Sumpter, B. Fauconneau and M. Laroche: Partial or Total Replacement of Fish-Meal by Soybean Protein on Growth, Protein-Utilization, Potential Estrogenic or Antigenic Effects, Cholesterolemia and Flesh Quality in Rainbow-Trout, Oncorhynchus-Mykiss. Aquaculture, 133(3-4), 257-274 (1995)
[5]V. Fournier, M. F. Gouillou-Coustans, R. Metailler, C. Vachot, J. Moriceau, H. Le Delliou, C. Huelvan, E. Desbruyeres and S. J. Kaushik: Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima. Aquaculture, 217(1-4), 559-576 (2003)
[6]M. Espe, A. Lemme, A. Petri and A. El-Mowafi: Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture, 263(1-4), 168-178 (2007)
[7]C. Aragao, J. Corte-Real, B. Costas, M. T. Dinis and L. E. C. Conceicao: Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids, 34(1), 143-148 (2008)
[8]S. C. Remo, E. M. Hevroy, P. A. Olsvik, R. Fontanillas, O. Breck and R. Waagbo: Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source. British Journal of Nutrition, 111(10), 1759-1772 (2014)
[9]P. Li, K. Mai, J. Trushenski and G. Wu: New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids, 37(1), 43-53 (2009)
[10]G. Wu: Functional amino acids in growth, reproduction, and health. Adv Nutr, 1(1), 31-7 (2010)
[11]G. Y. Wu, F. W. Bazer, T. A. Davis, S. W. Kim, P. Li, J. M. Rhoads, M. C. Satterfield, S. B. Smith, T. E. Spencer and Y. L. Yin: Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153-168 (2009)
[12]J. A. Buentello and D. M. Gatlin: Plasma citrulline and arginine kinetics in juvenile channel catfish, Ictalurus punctatus, given oral gabaculine. Fish Physiology and Biochemistry, 24(2), 105-112 (2001)
[13]J. A. Buentello and D. M. Gatlin: The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture, 188(3-4), 311-321 (2000)
[14]C. Pohlenz, A. Buentello, S. J. Helland and D. M. Gatlin: Effects of dietary arginine supplementation on growth, protein optimization and innate immune response of channel catfish Ictalurus punctatus (Rafinesque 1818). Aquaculture Research, 45(3), 491-500 (2014)
[15]S. M. Andersen, E. Holen, A. Aksnes, I. Ronnestad, J. E. Zerrahn and M. Espe: Adult Atlantic salmon (Salmo salar L.) adapts to long-term surplus dietary arginine supplementation. Aquaculture Nutrition (2014)
[16]P. M. Anderson: Purification and Properties of the Glutamine-Dependent and N-Acetyl-L-Glutamate-Dependent Carbamoyl Phosphate Synthetase from Liver of Squalus-Acanthias. Journal of Biological Chemistry, 256(23), 2228-2238 (1981)
[17]J. J. Korte, W. L. Salo, V. M. Cabrera, P. A. Wright, A. K. Felskie and P. M. Anderson: Expression of carbamoyl-phosphate synthetase III mRNA during the early stages of development and in muscle of adult rainbow trout (Oncorhynchus mykiss). J Biol Chem, 272(10), 6270-7 (1997)
[18]L. Caldovic, N. Haskins, A. Mumo, H. Majumdar, M. Pinter, M. Tuchman and A. Krufka: Expression Pattern and Biochemical Properties of Zebrafish N-Acetylglutamate Synthase. PLoS One, 9(1) (2014)
[19]E. Tibaldi, F. Tulli and D. Lanari: A note on the use of plasma urea level to validate the arginine requirement assessed by growth data in seabass (Dicentrarchus labrax). Journal of Applied Ichthyology-Zeitschrift Fur Angewandte Ichthyologie, 11(3-4), 297-301 (1995)
[20]M. Mori: Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr, 137(6 Suppl2), 1616S-1620S (2007)
[21]T. R. Portugal and A. Aksnes: Arginase Activity in Different Fish Species and Tissues. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 76(1), 15-16 (1983)
[22]F. B. Eddy: Role of nitric oxide in larval and juvenile fish. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 142(2), 221-230 (2005)
[23]J. Pernow and C. Jung: Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovascular Research, 98(3), 334-343 (2013)
[24]F. B. Eddy: Cardiac function in juvenile salmon (Salmo salar L) in response to lipopolysaccharide (LPS) and inhibitors of inducible nitric oxide synthase (iNOS). Fish Physiology and Biochemistry, 31(4), 339-346 (2005)
[25]E. V. Puschina: Neurochemical Organization and Connections of the Cerebral Preglomerular Complex of the Masu Salmon. Neurophysiology, 43(6), 437-451 (2012)
[26]L. E. Ebbesson, C. K. Tipsmark, B. Holmqvist, T. O. Nilsen, E. Andersson, S. O. Stefansson and S. S. Madsen: Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+, K+-ATPase. Journal of Experimental Biology, 208(6), 1011-1017 (2005)
[27]J. R. McKnight, M. C. Satterfield, W. S. Jobgen, S. B. Smith, T. E. Spencer, C. J. Meininger, C. J. McNeal and G. Wu: Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids, 39(2), 349-57 (2010)
[28]J. A. Buentello and D. M. Gatlin: Effects of elevated dietary arginine on resistance of channel catfish to exposure to Edwardsiella ictaluri. Journal of Aquatic Animal Health, 13(3), 194-201 (2001)
[29]C. Pohlenz, A. Buentello, W. Mwangi and D. M. Gatlin, 3rd: Arginine and glutamine supplementation to culture media improves the performance of various channel catfish immune cells. Fish Shellfish Immunol, 32(5), 762-8 (2012)
[30]J. A. Buentello, M. Reyes-Becerril, J. Romero-Geraldo Mde and J. Ascencio-Valle Fde: Effects of dietary arginine on hematological parameters and innate immune function of channel catfish. Journal of Aquatic Animal Health, 19(3), 195-203 (2007)
[31]B. Costas, L. E. Conceicao, J. Dias, B. Novoa, A. Figueras and A. Afonso: Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol, 31(6), 838-47 (2011)
[32]B. Costas, P. C. N. P. Rego, L. E. C. Conceicao, J. Dias and A. Afonso: Dietary arginine supplementation decreases plasma cortisol levels and modulates immune mechanisms in chronically stressed turbot (Scophthalmus maximus). Aquaculture Nutrition, 19, 25-38 (2013)
[33]C. Tafalla and B. Novoa: Requirements for nitric oxide production by turbot (Scophthalmus maximus) head kidney macrophages. Developmental and Comparative Immunology, 24(6-7), 623-631 (2000)
[34]J. A. Buentello and D. M. Gatlin: Nitric oxide production in activated macrophages from channel catfish (Ictalurus punctatus): influence of dietary arginine and culture media. Aquaculture, 179(1-4), 513-521 (1999)
[35]E. Holen, M. Espe, S. M. Andersen, R. Taylor, A. Aksnes, Z. Mengesha and P. Araujo: A co culture approach show that polyamine turnover is affected during inflammation in Atlantic salmon immune and liver cells and that arginine and LPS exerts opposite effects on p38MAPK signaling. Fish Shellfish Immunol (2014)
[36]G. E. Berge, H. Sveier and E. Lied: Effects of feeding Atlantic salmon (Salmo salar L.) imbalanced levels of lysine and arginine. Aquaculture Nutrition, 8(4), 239-248 (2002)
[37]A. Pledgie, Y. Huang, A. Hacker, Z. Zhang, P. M. Woster, N. E. Davidson and R. A. Casero: Spermine oxidase SMO(PAOh1), not N-1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. Journal of Biological Chemistry, 280(48), 39843-39851 (2005)
[38]P. Zheng, B. Yu, J. He, G. Tian, Y. Luo, X. Mao, K. Zhang, L. Che and D. Chen: Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets. Br J Nutr, 109(12), 2253-60 (2013)
[39]Y. Han, S. Koshio, M. Ishikawa and S. Yokoyama: Interactive effects of dietary arginine and histidine on the performances of Japanese flounder Paralichthys olivaceus juveniles. Aquaculture, 414, 173-182 (2013)
[40]M. Reyes-Becerril, F. Ascencio-Valle, D. Tovar-Ramirez, J. Meseguer and M. A. Esteban: Effects of polyamines on cellular innate immune response and the expression of immune-relevant genes in gilthead seabream leucocytes. Fish & Shellfish Immunology, 30(1), 248-254 (2011)
[41]J. Jell, S. Merali, M. L. Hensen, R. Mazurchuk, J. A. Spernyak, P. Diegelman, N. D. Kisiel, C. Barrero, K. K. Deeb, L. Alhonen, M. S. Patel and C. W. Porter: Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem, 282(11), 8404-13 (2007)
[42]S. M. Andersen, E. Holen, A. Aksnes, I. Ronnestad, J. E. Zerrahn and M. Espe: Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar). Br J Nutr, 110(11), 1968-77 (2013)
[43]S. P. Lall, S. J. Kaushik, P. Y. Lebail, R. Keith, J. S. Anderson and E. Plisetskaya: Quantitative Arginine Requirement of Atlantic Salmon (Salmo-Salar) Reared in Sea-Water. Aquaculture, 124(1-4), 13-25 (1994)
[44]G. E. Berge, E. Lied and H. Sveier: Nutrition of Atlantic salmon (Salmo salar): The requirement and metabolism of arginine. Comparative Biochemistry and Physiology a-Physiology, 117(4), 501-509 (1997)
[45]G. Chen, L. Feng, S. Kuang, Y. Liu, J. Jiang, K. Hu, W. Jiang, S. Li, L. Tang and X. Zhou: Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Br J Nutr, 108(2), 195-207 (2012)
[46]Z. Y. Cheng, A. Buentello and D. M. Gatlin: Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus. Aquaculture, 319(1-2), 247-252 (2011)
[47]Z. Y. Cheng, D. M. Gatlin and A. Buentello: Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops x Morone saxatilis). Aquaculture, 362, 39-43 (2012)
[48]A. Peres, C. L. Cahu and J. L. Z. Infante: Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry, 16(6), 479-485 (1997)
[49]T. P. Mommsen, T. W. Moon and E. M. Plisetskaya: Effects of arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiol Biochem Zool, 74(5), 668-78 (2001)
[50]E. M. Plisetskaya, L. I. Buchellinarvaez, R. W. Hardy and W. W. Dickhoff: Effects of injected and dietary arginine on plasma-insulin levels and growth of pacific salmon and rainbow-trout. Comparative Biochemistry and Physiology a-Physiology, 98(1), 165-170 (1991)
[51]S. M. Andersen, R. Taylor, E. Holen, A. Aksnes and M. Espe: Arginine supplementation and exposure time affects polyamine and glucose metabolism in primary liver cells isolated from Atlantic salmon. Amino Acids, 46(5), 1225-33 (2014)
[52]W. S. Jobgen, S. K. Fried, W. J. Fu, C. J. Meininger and G. Wu: Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem, 17(9), 571-88 (2006)
[53]W. J. Fu, T. E. Haynes, R. Kohli, J. Hu, W. Shi, T. E. Spencer, R. J. Carroll, C. J. Meininger and G. Wu: Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr, 135(4), 714-21 (2005)
[54]T. Tanaka, K. Nakatani, K. Morioka, H. Urakawa, N. Maruyama, N. Kitagawa, A. Katsuki, R. Araki-Sasaki, Y. Hori, E. C. Gabazza, Y. Yano, H. Wada, T. Nobori, Y. Sumida and Y. Adachi: Nitric oxide stimulates glucose transport through insulin-independent GLUT4 translocation in 3T3-L1 adipocytes. Eur J Endocrinol, 149(1), 61-7 (2003)
[55]G. Y. Wu: Intestinal mucosal amino acid catabolism. Journal of Nutrition, 128(8), 1249-1252 (1998)
[56]V. L. Trudeau, B. D. Sloley, O. Kah, N. Mons, J. G. Dulka and R. E. Peter: Regulation of growth hormone secretion by amino acid neurotransmitters in the goldfish.1. Inhibition by N-methyl-D, L-aspartic acid. General and Comparative Endocrinology, 103(2), 129-137 (1996)
[57]V. L. Trudeau, D. Spanswick, E. J. Fraser, K. Lariviere, D. Crump, S. Chiu, M. MacMillan and R. W. Schulz: The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 78(3), 241-259 (2000)
[58]I. A. Khan and P. Thomas: GABA exerts stimulatory and inhibitory influences on gonadotropin II secretion in the Atlantic croaker (Micropogonias undulatus). Neuroendocrinology, 69(4), 261-268 (1999)
[59]E. L. Mananos, I. Anglade, J. Chyb, C. Saligaut, B. Breton and O. Kah: Involvement of gamma-aminobutyric acid in the control of GTH-1 and GTH-2 secretion in male and female rainbow trout. Neuroendocrinology, 69(4), 269-280 (1999)
[60]S. Clements and C. B. Schreck: Evidence that GABA mediates dopaminergic and Serotonergic pathways associated with locomotor activity in juvenile chinook salmon (Oncorhynchus tshawytscha). Behavioral Neuroscience, 118(1), 191-198 (2004)
[61]Y. Lin and Q. Z. Xiao: Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 256(1-4), 389-394 (2006)
[62]J. Jiang, T. Zheng, X. Q. Zhou, Y. Liu and L. Feng: Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquaculture Nutrition, 15(4), 409-414 (2009)
[63]K. Hu, L. Feng, W. D. Jiang, Y. Liu, J. Jiang, S. H. Li and X. Q. Zhou: Oxidative damage repair by glutamine in fish enterocytes. Fish Physiology and Biochemistry, 40(5), 1437-1445 (2014)
[64]S. P. Walker, D. Keast and S. McBride: Distribution of glutamine synthetase in the snapper (Pagrus auratus) and implications for the immune system. Fish Physiology and Biochemistry, 15(3), 187-194 (1996)
[65]C. Pohlenz, A. Buentello, M. F. Criscitiello, W. Mwangi, R. Smith and D. M. Gatlin, 3rd: Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri. Fish Shellfish Immunol, 33(3), 543-51 (2012)
[66]C. Burrells, P. D. Williams and P. F. Forno: Dietary nucleotides: a novel supplement in fish feeds 1. Effects on resistance to disease in salmonids. Aquaculture, 199(1-2), 159-169 (2001)
[67]A. E. Todgham, P. M. Anderson and P. A. Wright: Effects of exercise on nitrogen excretion, carbamoyl phosphate synthetase III activity and related urea cycle enzymes in muscle and liver tissues of juvenile rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology, 129(2-3), 527-539 (2001)
[68]P. A. Wright, S. L. Steele, A. Huitema and N. J. Bernier: Induction of four glutamine synthetase genes in brain of rainbow trout in response to elevated environmental ammonia. Journal of Experimental Biology, 210(16), 2905-2911 (2007)
[69]T. Larsson, E. O. Koppang, M. Espe, B. F. Terjesen, A. Krasnov, H. M. Moreno, K. A. Rorvik, M. Thomassen and T. Morkore: Fillet quality and health of Atlantic salmon (Salmo salar L.) fed a diet supplemented with glutamate. Aquaculture, 426, 288-295 (2014)
[70]L. E. Conceicao, C. Aragao, J. Dias, B. Costas, G. Terova, C. Martins and L. Tort: Dietary nitrogen and fish welfare. Fish Physiology and Biochemistry, 38(1), 119-41 (2012)
[71]E. Hoglund, M. J. Bakke, O. Overli, S. Winberg and G. E. Nilsson: Suppression of aggressive behaviour in juvenile Atlantic cod (Gadus morhua) by L-tryptophan supplementation. Aquaculture, 249(1-4), 525-531 (2005)
[72]S. Winberg, O. Overli and O. Lepage: Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary L-tryptophan. Journal of Experimental Biology, 204(22), 3867-3876 (2001)
[73]E. D. Clotfelter, E. P. O’Hare, M. M. McNitt, R. E. Carpenter and C. H. Summers: Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacology Biochemistry and Behavior, 87(2), 222-231 (2007)
[74]J. Falcon, H. Migaud, J. A. Munoz-Cueto and M. Carrillo: Current knowledge on the melatonin system in teleost fish. General and Comparative Endocrinology, 165(3), 469-482 (2010)
[75]C. F. Randall, N. R. Bromage, J. E. Thorpe, M. S. Miles and J. S. Muir: Melatonin Rhythms in Atlantic Salmon (Salmo-Salar) Maintained under Natural and out-of-Phase Photoperiods. General and Comparative Endocrinology, 98(1), 73-86 (1995)
[76]B. T. Bjornsson, O. Halldorsson, C. Haux, B. Norberg and C. L. Brown: Photoperiod control of sexual maturation of the Atlantic halibut (Hippoglossus hippoglossus): plasma thyroid hormone and calcium levels. Aquaculture, 166(1-2), 117-140 (1998)
[77]S. K. Maitra, A. Chattoraj, S. Mukherjee and M. Moniruzzaman: Melatonin: A potent candidate in the regulation of fish oocyte growth and maturation. General and Comparative Endocrinology, 181, 215-222 (2013)
[78]J. Falcon, L. Besseau, D. Fazzari, J. Attia, P. Gaildrat, M. Beauchaud and G. Boeuf: Melatonin modulates secretion of growth hormone and prolactin by trout pituitary glands and cells in culture. Endocrinology, 144(10), 4648-4658 (2003)
[79]M. A. Esteban, A. Cuesta, E. Chaves-Pozo and J. Meseguer: Influence of Melatonin on the Immune System of Fish: A Review. International Journal of Molecular Sciences, 14(4), 7979-7999 (2013)
[80]A. Cuesta, R. Cerezuela, M. A. Esteban and J. Meseguer: In vivo actions of melatonin on the innate immune parameters in the teleost fish gilthead seabream. Journal of Pineal Research, 45(1), 70-78 (2008)
[81]T. S. Huang, P. Ruoff and P. G. Fjelldal: Effect of Continuous Light on Daily Levels of Plasma Melatonin and Cortisol and Expression of Clock Genes in Pineal Gland, Brain, and Liver in Atlantic Salmon Postsmolts. Chronobiology International, 27(9-10), 1715-1734 (2010)
[82]C. F. Randall, N. R. Bromage, J. Duston and J. Symes: Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: a circannual phase-response curve. Journal of Reproduction and Fertility, 112(2), 399-405 (1998)
[83]E. Hoglund, C. Sorensen, M. J. Bakke, G. E. Nilsson and O. Overli: Attenuation of stress-induced anorexia in brown trout (Salmo trutta) by pre-treatment with dietary L-tryptophan. British Journal of Nutrition, 97(4), 786-789 (2007)
[84]O. Lepage, O. Tottmar and S. Winberg: Elevated dietary intake of L-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 205(23), 3679-3687 (2002)
[85]D. Basic, A. Krogdahl, J. Schjolden, S. Winberg, M. A. Vindas, M. Hillestad, I. Mayer, E. Skjerve and E. Hoglund: Short-and long-term effects of dietary L-tryptophan supplementation on the neuroendocrine stress response in seawater-reared Atlantic salmon (Salmo salar). Aquaculture, 388, 8-13 (2013)
[86]Y. T. Wang, H. Z. Liu, G. McKenzie, P. K. Witting, J. P. Stasch, M. Hahn, D. Changsirivathanathamrong, B. J. Wu, H. J. Ball, S. R. Thomas, V. Kapoor, D. S. Celermajer, A. L. Mellor, J. F. Keaney, N. H. Hunt and R. Stocker: Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Medicine, 16(3), 279-U72 (2010)
[87]W. K. Ng, G. Serrini, Z. Zhang and R. P. Wilson: Niacin requirement and inability of tryptophan to act as a precursor of NAD(+) in channel catfish, Ictalurus punctatus. Aquaculture, 152(1-4), 273-285 (1997)
[88]T. Akiyama, M. Shiraishi, T. Yamamoto and T. Unuma: Effect of dietary tryptophan on maturation of ayu Plecoglossus altivelis. Fisheries Science, 62(5), 776-782 (1996)
[89]H. Yambe, S. Kitamura, M. Kamio, M. Yamada, S. Matsunaga, N. Fusetani and F. Yamazaki: L-kynurenine, an amino acid identified as a sex pheromone in the urine of ovulated female masu salmon. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15370-15374 (2006)
[90]M. J. Walton, R. M. Coloso, C. B. Cowey, J. W. Adron and D. Knox: The Effects of Dietary Tryptophan Levels on Growth and Metabolism of Rainbow-Trout (Salmo-Gairdneri). British Journal of Nutrition, 51(2), 279-287 (1984)
[91]T. Akiyama, T. Murai and K. Mori: Role of Tryptophan-Metabolites in Inhibition of Spinal Deformity of Chum Salmon Fry Caused by Tryptophan Deficiency. Bulletin of the Japanese Society of Scientific Fisheries, 52(7), 1255-1259 (1986)
[92]O. Breck, E. Bjerkas, P. Campbell, P. Arnesen, P. Haldorsen and R. Waagbo: Cataract preventative role of mammalian blood meal, histidine, iron and zinc in diets for Atlantic salmon (Salmo salar L.) of different strains. Aquaculture Nutrition, 9(5), 341-350 (2003)
[93]A. E. Wall: Cataracts in farmed Atlantic salmon (Salmo salar) in Ireland, Norway and Scotland from 1995 to 1997. Veterinary Record, 142(23), 626-631 (1998)
[94]J. D. Rhodes, O. Breck, R. Waagbo, E. Bjerkas and J. Sanderson: N-acetylhistidine, a novel osmolyte in the lens of Atlantic salmon (Salmo salar L.). American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 299(4), R1075-R1081 (2010)
[95]H. Abe: Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry-Moscow, 65(7), 757-765 (2000)
[96]H. Abe and E. Okuma: Effect of Temperature on the Buffering Capacities of Histidine-Related Compounds and Fish Skeletal-Muscle. Nippon Suisan Gakkaishi, 57(11), 2101-2107 (1991)
[97]T. Nagasawa, T. Yonekura, N. Nishizawa and D. D. Kitts: In vitro and in vivo inhibition of muscle lipid and protein oxidation by carnosine. Molecular and Cellular Biochemistry, 225(1-2), 29-34 (2001)
[98]S. C. Remo, P. A. Olsvik, B. E. Torstensen, H. Amlund, O. Breck and R. Waagbo: Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury. Experimental Eye Research, 92(5), 414-424 (2011)
[99]A. M. Wade and H. N. Tucker: Antioxidant characteristics of L-histidine. Journal of Nutritional Biochemistry, 9(6), 308-315 (1998)
[100]NRC: Nutrient Requirement of Fish. National Academy Press, Washington, DC, USA (1993)
[101]O. Breck, E. Bjerkas, P. Campbell, J. D. Rhodes, J. Sanderson and R. Waagbo: Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 28(6), 357-371 (2005)
[102]O. Breck, E. Bjerkas, J. Sanderson, R. Waagbo and P. Campbell: Dietary histidine affects lens protein turnover and synthesis of N-acetylhistidine in Atlantic salmon (Salmo salar L.) undergoing parr-smolt transformation. Aquaculture Nutrition, 11(5), 321-332 (2005)
[103]R. Waagbo, C. Trosse, W. Koppe, R. Fontanillas and O. Breck: Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, Salmo salar L., in seawater. British Journal of Nutrition, 104(10), 1460-1470 (2010)
[104]R. Waagbo, C. D. Hosfeld, S. Fivelstad, P. A. Olsvik and O. Breck: The impact of different water gas levels on cataract formation, muscle and lens free amino acids, and lens antioxidant enzymes and heat shock protein mRNA abundance in smolting Atlantic salmon, Salmo salar L. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 149(4), 396-404 (2008)
[105]J. F. Taylor, R. Waagbo, M. Diez-Padrisa, P. Campbell, M. J. Walton, D. Hunter, C. Matthew and H. Migaud: Adult triploid Atlantic salmon (Salmo salar) have higher dietary histidine requirements to prevent cataract development in seawater. Aquaculture Nutrition, 21, 18-32 (2015)
[106]K. M. Liakonis, R. Waagbo, A. Foss, O. Breck and A. K. Imsland: Effects of chronic and periodic exposures to ammonia on the eye health in juvenile Atlantic halibut (Hippoglossus hippoglossus). Fish Physiology and Biochemistry, 38(2), 421-430 (2012)
[107]M. Togashi, E. Okuma and H. Abe: HPLC determination of N-Acetyl-L-Histidine and its related compounds in fish tissues. Fisheries Sci, 64(1), 174-175 (1998)
[108]S. Yamada, Y. Tanaka and S. Ando: Purification and sequence identification of anserinase. FEBS Journal, 272(23), 6001-6013 (2005)
[109]M. H. Baslow: Function of the N-acetyl-L-histidine system in the vertebrate eye. Journal of Molecular Neuroscience, 10, 193-208 (1998)
[110]A. Aksnes: Feed ingredients. The impact of nitrogen extractives in a aqua feed ingredients. International Aquatic Feed, 8, 28-30 (2005)
[111]N. Torres, L. Beristain, H. Bourges and A. R. Tovar: Histidine-imbalanced diets stimulate hepatic histidase gene expression in rats. J Nutr, 129(11), 1979-83 (1999)
[112]J. D. Rhodes, O. Breck, R. Waagbo, E. Bjerkas and J. Sanderson: N-Acetylhistidine, a Novel Osmolyte in the Lens of Atlantic Salmon (Salmo salar L.). Am J Physiol Regul Integr Comp Physiol, ajpregu.00214.2.010 (2010)
[113]C. Tröβe, J. D. Rhodes, J. Sanderson, O. Breck and R. Waagbø: Effect of plant-based feed ingredients on osmoregulation in the Atlantic salmon lens. Comparative Biochemistry and Physiology, Part B, 155, 354–362 (2010)
[114]M. H. Baslow and S. Nathan: Function of the N-acetylhistidine system in the vertebrate lens: Is it a molecular water pump? Journal of Neurochemistry, 71, S48-S48 (1998)
[115]O. Breck and H. Sveier: Growth and cataract development in two groups of Atlantic salmon (Salmo salar L) post smolts transferred to sea with a four week interval. Bulletin-European Association of Fish Pathologists, 21(3), 91-103 (2001)
[116]O. Breck, E. Bjerkås, P. Campbell, J. D. Rhodes, J. Sanderson and R. Waagbø: Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L Journal of Fish Diseases, 28(6), 357-371 (2005)
[117]E. Bjerkås, R. Waagbø, H. Sveier, I. Bjerkås, E. Bjørnestad and A. Maage: Cataract development in Atlantic Salmon (Salmo salar L) in fresh water. Acta Veterinaria Scandinavica, 37, 351-360 (1996)
[118]R. Waagbø, E. Bjerkås, H. Sveier, O. Breck, E. Bjørnestad and A. Maage: Nutritional status assessed in groups of smolting Atlantic salmon, Salmo salar L., developing cataracts. Journal of Fish Diseases, 19, 365-373 (1996)
[119]L. J. Hobart, I. Seibel, G. S. Yeargans and N. W. Seidler: Anti-crosslinking properties of carnosine: Significance of histidine. Life Sciences, 75(11), 1379-1389 (2004)
[120]A. M. Wade and H. N. Tucker: Antioxidant characteristics of L-histidine. The Journal of Nutritional Biochemistry, 9(6), 308-315 (1998)
[121]D. L. Williams: Oxidation, antioxidants and cataract formation: a literature review. Veterinary Ophtamology, 9(5), 292-298 (2006)
[122]F. Bellia, A. M. Amorini, D. La Mendola, G. Vecchio, B. Tavazzi, B. Giardina, V. Di Pietro, G. Lazzarino and E. Rizzarelli: New glycosidic derivatives of histidine-containing dipeptides with antioxidant properties and resistant to carnosinase activity. European Journal of Medicinal Chemistry, 43(2), 373-380 (2008)
[123]Y.-t. Lee, C.-c. Hsu, M.-h. Lin, K.-s. Liu and M.-c. Yin: Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. European Journal of Pharmacology, 513(1-2), 145-150 (2005)
[124]J. W. Lee, H. Miyawaki, E. V. Bobst, J. D. Hester, M. Ashraf and A. M. Bobst: Improved functional recovery of ischemic rat hearts due to singlet oxygen scavengers histidine and carnosine. Journal of Molecular and Cellular Cardiology, 31(1), 113-121 (1999)
[125]M. A. Babizhayev, A. I. Deyev, V. N. Yermakova, Y. A. Semiletov, N. G. Davydova, N. I. Kurysheva, A. V. Zhukotskii and I. M. Goldman: N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Peptides, 22(6), 979-994 (2001)
[126]H. Ogata and T. Murai: White muscle of masu salmon, Oncorhynchus masou masou, smolts possesses a strong buffering capacity due to a high level of anserine. Fish Physiology and Biochemistry, 13(4), 285-293 (1994)
[127]H. Y. Ogata, S. Konno and J. T. Silverstein: Muscular buffering capacity of the parr and smolts in Oncorhynchus masou. Aquaculture, 168(1-4), 303-310 (1998)
[128]H. Abe: Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Moscow). Translated from Biokhimiya, Vol.65, No.7, 2000, pp.891-900. (2000)
[129]H. Y. Ogata, S. Konno and J. T. Silverstein: Muscular buffering capacity of the parr and smolts in Oncorhynchus masou. Aquaculture, 168, 303-310 (1998)
[130]H. Y. Ogata: Muscle buffering capacity of yellowtail fed diets supplemented with crystalline histidine. Journal of Fish Biology, 61(6), 1504-1512 (2002)
[131]R. D. Vaughan-Jones, K. W. Spitzer and P. Swietach: Intracellular pH regulation in heart. Journal of Molecular and Cellular Cardiology, 46(3), 318-331 (2009)
[132]J. D. Finkelstein: Methionine Metabolism in Mammals. Journal of Nutritional Biochemistry, 1(5), 228-237 (1990)
[133]J. M. Mato, F. J. Corrales, S. C. Lu and M. A. Avila: S-Adenosylmethionine: a control switch that regulates liver function. FASEB J, 16(1), 15-26 (2002)
[134]R. Obeid and W. Herrmann: Homocysteine and lipids: S-adenosyl methionine as a key intermediate. FEBS Lett, 583(8), 1215-25 (2009)
[135]J. T. Brosnan, R. L. Jacobs, L. M. Stead and M. E. Brosnan: Methylation demand: a key determinant of homocysteine metabolism. Acta Biochim Pol, 51(2), 405-13 (2004)
[136]J. J. Wang, Z. L. Wu, D. F. Li, N. Li, S. V. Dindot, M. C. Satterfield, F. W. Bazer and G. Y. Wu: Nutrition, Epigenetics, and Metabolic Syndrome. Antioxidants & Redox Signaling, 17(2), 282-301 (2012)
[137]S. Tesseraud, S. Metayer-Coustard, A. Collin and I. Seiliez: Role of sulfur amino acids in controlling nutrient metabolism and cell functions: implications for nutrition. British Journal of Nutrition, 101(8), 1132-1139 (2009)
[138]J. Marcinkiewicz and E. Kontny: Taurine and inflammatory diseases. Amino Acids, 46(1), 7-20 (2014)
[139]L. J. C. van Loon: Leucine as a pharmaconutrient in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 15(1), 71-77 (2012)
[140]M. Espe, S. M. Andersen, E. Holen, I. Ronnestad, E. Veiseth-Kent, J. E. Zerrahn and A. Aksnes: Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon. British Journal of Nutrition, 112(8), 1274-1285 (2014)
[141]M. Espe, E. Veiseth-Kent, J. E. Zerrahn, I. Ronnestad and A. Aksnes: Juvenile Atlantic salmon decrease white trunk muscle IGF-1 expression and reduce msucle and plasma free sulfur amino acids when methionine avilability is low while liver sulfur metabolites mostly is unaffected by treatment. Aquaculture Nutrition (2015)
[142]M. Espe, E. M. Hevroy, B. Liaset, A. Lemme and A. El-Mowafi: Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar. Aquaculture, 274(1), 132-141 (2008)
[143]I. Belghit, S. Skiba-Cassy, I. Geurden, K. Dias, A. Surget, S. Kaushik, S. Panserat and I. Seiliez: Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 112(4), 493-503 (2014)
[144]I. Seiliez, J. C. Gabillard, M. Riflade, B. Sadoul, K. Dias, J. Averous, S. Tesseraud, S. Skiba and S. Panserat: Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy, 8(3), 364-375 (2012)
[145]I. Seiliez, S. Panserat, S. Skiba-Cassy and S. Polakof: Effect of acute and chronic insulin administrations on major factors involved in the control of muscle protein turnover in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 172(3), 363-370 (2011)
[146]T. G. Gaylord, F. T. Barrows, A. M. Teague, K. A. Johansen, K. E. Overturf and B. Shepherd: Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture, 269(1-4), 514-524 (2007)
[147]M. Espe, K. Ruohonen and A. El-Mowafi: Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar). Aquaculture Research, 43(3), 349-360 (2012)
[148]M. Espe, J. E. Zerrahn, E. Holen, I. Ronnestad, E. Veiseth-Kent and A. Aksnes: Choline supplementation to low methionine diets increase phospholipids in Atlantic salmon, while taurine supplementation had no effect on phohoplipid status, but improved taurine status. Aquaculture Nutrition (2015)
[149]M. Espe, R. M. Rathore, Z. Y. Du, B. Liaset and A. El-Mowafi: Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar. Amino Acids, 39(2), 449-60 (2010)
[150]A. P. Rolo, J. S. Teodoro and C. M. Palmeira: Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology and Medicine, 52(1), 59-69 (2012)
[151]E. Vanni, E. Bugianesi, A. Kotronen, S. De Minicis, H. Yki-Jarvinen and G. Svegliati-Baroni: From the metabolic syndrome to NAFLD or vice versa? Digestive and Liver Disease, 42(5), 320-330 (2010)
[152]S. M. Watkins, X. N. Zhu and S. H. Zeisel: Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. Journal of Nutrition, 133(11), 3386-3391 (2003)
[153]B. E. Torstensen, M. Espe, I. Stubhaug and O. Lie: Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 106(5), 633-647 (2011)
[154]C. H. Lang, R. A. Frost and T. C. Vary: Regulation of muscle protein synthesis during sepsis and inflammation. American Journal of Physiology-Endocrinology and Metabolism, 293(2), E453-E459 (2007)
[155]Y. Terashima, S. Nishiumi, A. Minami, Y. Kawano, N. Hoshi, T. Azuma and M. Yoshida: Metabolomics-based search for therapeutic agents for non-alcoholic steatohepatitis. Archives of Biochemistry and Biophysics, 555, 55-65 (2014)
[156]C. L. Gentile, A. M. Nivala, J. C. Gonzales, K. T. Pfaffenbach, D. Wang, Y. R. Wei, H. Jiang, D. J. Orlicky, D. R. Petersen, M. J. Pagliassotti and K. N. Maclean: Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 301(6), R1710-R1722 (2011)
[157]P. M. Craig and T. W. Moon: Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets. British Journal of Nutrition, 109(3), 402-412 (2013)
[158]M. Espe and E. Holen: Taurine attenuates apoptosis in primary liver cells isolated from Atlantic salmon (Salmo salar). British Journal of Nutrition, 110(1), 20-28 (2013)
[159]G. Atmaca: Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal, 45(5), 776-788 (2004)
[160]M. Espe, J. He, L. Chen, S. M. Andersen and E. Holen: Betaine supplementation to low methionine media does not increase viability of primary liver cells isolated from Atlantic salmon. Comp Biochem Physiol B (2015)
[161]S. Lin, S. Hirai, Y. Yamaguchi, T. Goto, N. Takahashi, F. Tani, C. Mutoh, T. Sakurai, S. Murakami, R. Yu and T. Kawada: Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages. Molecular Nutrition & Food Research, 57(12), 2155-2165 (2013)
[162]F. T. Rosa, E. C. Freitas, R. Deminice, A. A. Jordao and J. S. Marchini: Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. European Journal of Nutrition, 53(3), 823-830 (2014)
[163]N. S. Liland, M. Espe, G. Rosenlund, R. Waagbo, J. I. Hjelle, O. Lie, R. Fontanillas and B. E. Torstensen: High levels of dietary phytosterols affect lipid metabolism and increase liver and plasma TAG in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 110(11), 1958-1967 (2013)
[164]R. J. Manders, J. P. Little, S. C. Forbes and D. G. Candow: Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia. Nutrients, 4(11), 1664-1678 (2012)
[165]A. Molfino, G. Gioia, F. Rossi Fanelli and M. Muscaritoli: Beta-hydroxy-beta-methylbutyrate supplementation in health and disease: a systematic review of randomized trials. Amino Acids, 45(6), 1273-1292 (2013)
[166]B. Grisdale-Helland, H. Takle and S. J. Helland: Aerobic exercise increases the utilization efficiency of energy and protein for growth in Atlantic salmon post-smolts. Aquaculture, 406, 43-51 (2013)
[167]K. Tajiri and Y. Shimizu: Branched-chain amino acids in liver diseases. World Journal of Gastroenterology, 19(43), 7620-7629 (2013)
[168]C. V. Pereira, M. Lebiedzinska, M. R. Wieckowski and P. J. Oliveira: Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion, 12(1), 66-76 (2012)
[169]H. Schirmer, T. C. B. Pereira, E. P. Rico, D. B. Rosemberg, C. D. Bonan, M. R. Bogo and A. A. Souto: Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4, PGC1 alpha and NAMPT gene expression profiles in wild-type adult zebrafish liver. Molecular Biology Reports, 39(3), 3281-3289 (2012)
[170]M. Holecek: Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition, 26(5), 482-490 (2010)
[171]I. Ahmed and M. A. Khan: Dietary branched-chain amino acid valine, isoleucine and leucine requirements of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). British Journal of Nutrition, 96(3), 450-460 (2006)
[172]X. Rollin, M. Mambrini, T. Abboudi, Y. Larondelle and S. J. Kaushik: The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. British Journal of Nutrition, 90(5), 865-876 (2003)
[173]S. R. Kimball and L. S. Jefferson: Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. Journal of Nutrition, 136(1), 227s-231s (2006)
[174]M. Lansard, S. Panserat, E. Plagnes-Juan, K. Dias, I. Seiliez and S. Skiba-Cassy: L-Leucine, L-Methionine, and L-Lysine Are Involved in the Regulation of Intermediary Metabolism-Related Gene Expression in Rainbow Trout Hepatocytes. Journal of Nutrition, 141(1), 75-80 (2011)
[175]C. B. Newgard: Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance. Cell Metabolism, 15(5), 606-614 (2012)
[176]A. Valerio, G. D’Antona and E. Nisoli: Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging-Us, 3(5), 464-478 (2011)
[177]J. Lu, G. Xie and W. Jia: Insulin resistance and the metabolism of branched-chain amino acids. Front Med, 7(1), 53-9 (2013)
[178]T. R. Li, L. L. Geng, X. Chen, M. Miskowiec, X. Li and B. Dong: Branched-chain amino acids alleviate nonalcoholic steatohepatitis in rats. Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 38(8), 836-843 (2013)
[179]Y. Du, Q. S. Meng, Q. Zhang and F. F. Guo: Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids, 43(2), 725-734 (2012)
[180]A. K. Siwicki, E. Glabski, K. Kazun, B. Kazun, A. Lepa and M. Majewicz-Zbikowska: Effect of dietary administration of the beta-hydroxy-beta-methylbutyrate on the innate immunity and protection against motile Aeromonas septicaemia in fish. Central European Journal of Immunology, 36(3), 135-138 (2011)
[181]A. K. Siwicki, Z. Zakes, J. C. Fuller, S. Nissen, S. Trapkowska, E. Glabski, A. Kowalska, K. Kazun and E. Terech-Majewska: Influence of beta-hydroxy-beta-methylbutyrate on nonspecific humoral defense mechanisms and protection against furunculosis in pikeperch (Sander lucioperca). Aquaculture Research, 37(2), 127-131 (2006)
[182]R. M. Rathore, B. Liaset, E. M. Hevroy, A. El-Mowafi and M. Espe: Lysine limitation alters the storage pattern of protein, lipid and glycogen in on-growing Atlantic salmon. Aquaculture Research, 41(11), e751-e759 (2010)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Elite (FBE) is published by IMR Press from Volume 13 Issue 2 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Functional amino acids in fish health and welfare
1 National Institute of Nutrition and Seafood Research (NIFES), PO BOX 2029 Nordnes, 5817 Bergen, Norway
2 Current address: EWOS AS, Tollbodalmenningen 1B, 5803 Bergen, Norway
*Author to whom correspondence should be addressed.
Abstract
Protein is the most expensive part of fish diets and supplies amino acids (AA) for energy, growth, protein synthesis and as substrates for key metabolic pathways. Functional AA is a term used to describe AA that are involved in cellular processes apart from protein synthesis. A deficiency, or imbalance, in functional AA may impair body metabolism and homeostasis. Recent years have seen an increased interest in AA to increase disease resistance, immune response, reproduction, behavior and more. This has led to a boost of commercially available functional fish feeds that aim to optimize fish performance and quality of the product. This review aim to collect recent findings of functional AA and of how they may improve fish health and welfare. It will focus on functional properties of some of the most studied AA, namely arginine, glutamine, glutamate, tryptophan, sulfur amino acids (methionine, cysteine and taurine), histidine and branched chain amino acids. Where information is not available in fish, we will point towards functions known in animals and humans, with possible translational functions to fish.
Keywords
- Amino acids
- Nutrition
- Functional amino acids
- Fish
- Atlantic salmon
- Protein
- Review
References
- [1] Cited within: 0Google Scholar
- [2] NRC: Nutrient Requirements of Fish and Shrimp. The National academies Press, Washington DC (2011)
- [3] M. Espe, A. Lemme, A. Petri and A. El-Mowafi: Can Atlantic salmon (Salmo salar) grow on diets devoid of fish meal? Aquaculture, 255(1-4), 255-262 (2006)
- [4] S. J. Kaushik, J. P. Cravedi, J. P. Lalles, J. Sumpter, B. Fauconneau and M. Laroche: Partial or Total Replacement of Fish-Meal by Soybean Protein on Growth, Protein-Utilization, Potential Estrogenic or Antigenic Effects, Cholesterolemia and Flesh Quality in Rainbow-Trout, Oncorhynchus-Mykiss. Aquaculture, 133(3-4), 257-274 (1995)
- [5] V. Fournier, M. F. Gouillou-Coustans, R. Metailler, C. Vachot, J. Moriceau, H. Le Delliou, C. Huelvan, E. Desbruyeres and S. J. Kaushik: Excess dietary arginine affects urea excretion but does not improve N utilisation in rainbow trout Oncorhynchus mykiss and turbot Psetta maxima. Aquaculture, 217(1-4), 559-576 (2003)
- [6] M. Espe, A. Lemme, A. Petri and A. El-Mowafi: Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture, 263(1-4), 168-178 (2007)
- [7] C. Aragao, J. Corte-Real, B. Costas, M. T. Dinis and L. E. C. Conceicao: Stress response and changes in amino acid requirements in Senegalese sole (Solea senegalensis Kaup 1858). Amino Acids, 34(1), 143-148 (2008)
- [8] S. C. Remo, E. M. Hevroy, P. A. Olsvik, R. Fontanillas, O. Breck and R. Waagbo: Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source. British Journal of Nutrition, 111(10), 1759-1772 (2014)
- [9] P. Li, K. Mai, J. Trushenski and G. Wu: New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids, 37(1), 43-53 (2009)
- [10] G. Wu: Functional amino acids in growth, reproduction, and health. Adv Nutr, 1(1), 31-7 (2010)
- [11] G. Y. Wu, F. W. Bazer, T. A. Davis, S. W. Kim, P. Li, J. M. Rhoads, M. C. Satterfield, S. B. Smith, T. E. Spencer and Y. L. Yin: Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37(1), 153-168 (2009)
- [12] J. A. Buentello and D. M. Gatlin: Plasma citrulline and arginine kinetics in juvenile channel catfish, Ictalurus punctatus, given oral gabaculine. Fish Physiology and Biochemistry, 24(2), 105-112 (2001)
- [13] J. A. Buentello and D. M. Gatlin: The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture, 188(3-4), 311-321 (2000)
- [14] C. Pohlenz, A. Buentello, S. J. Helland and D. M. Gatlin: Effects of dietary arginine supplementation on growth, protein optimization and innate immune response of channel catfish Ictalurus punctatus (Rafinesque 1818). Aquaculture Research, 45(3), 491-500 (2014)
- [15] S. M. Andersen, E. Holen, A. Aksnes, I. Ronnestad, J. E. Zerrahn and M. Espe: Adult Atlantic salmon (Salmo salar L.) adapts to long-term surplus dietary arginine supplementation. Aquaculture Nutrition (2014)
- [16] P. M. Anderson: Purification and Properties of the Glutamine-Dependent and N-Acetyl-L-Glutamate-Dependent Carbamoyl Phosphate Synthetase from Liver of Squalus-Acanthias. Journal of Biological Chemistry, 256(23), 2228-2238 (1981)
- [17] J. J. Korte, W. L. Salo, V. M. Cabrera, P. A. Wright, A. K. Felskie and P. M. Anderson: Expression of carbamoyl-phosphate synthetase III mRNA during the early stages of development and in muscle of adult rainbow trout (Oncorhynchus mykiss). J Biol Chem, 272(10), 6270-7 (1997)
- [18] L. Caldovic, N. Haskins, A. Mumo, H. Majumdar, M. Pinter, M. Tuchman and A. Krufka: Expression Pattern and Biochemical Properties of Zebrafish N-Acetylglutamate Synthase. PLoS One, 9(1) (2014)
- [19] E. Tibaldi, F. Tulli and D. Lanari: A note on the use of plasma urea level to validate the arginine requirement assessed by growth data in seabass (Dicentrarchus labrax). Journal of Applied Ichthyology-Zeitschrift Fur Angewandte Ichthyologie, 11(3-4), 297-301 (1995)
- [20] M. Mori: Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr, 137(6 Suppl2), 1616S-1620S (2007)
- [21] T. R. Portugal and A. Aksnes: Arginase Activity in Different Fish Species and Tissues. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 76(1), 15-16 (1983)Cited within: 0Google Scholar
- [22] F. B. Eddy: Role of nitric oxide in larval and juvenile fish. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 142(2), 221-230 (2005)Cited within: 0Google Scholar
- [23] J. Pernow and C. Jung: Arginase as a potential target in the treatment of cardiovascular disease: reversal of arginine steal? Cardiovascular Research, 98(3), 334-343 (2013)
- [24] F. B. Eddy: Cardiac function in juvenile salmon (Salmo salar L) in response to lipopolysaccharide (LPS) and inhibitors of inducible nitric oxide synthase (iNOS). Fish Physiology and Biochemistry, 31(4), 339-346 (2005)
- [25] E. V. Puschina: Neurochemical Organization and Connections of the Cerebral Preglomerular Complex of the Masu Salmon. Neurophysiology, 43(6), 437-451 (2012)
- [26] L. E. Ebbesson, C. K. Tipsmark, B. Holmqvist, T. O. Nilsen, E. Andersson, S. O. Stefansson and S. S. Madsen: Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+, K+-ATPase. Journal of Experimental Biology, 208(6), 1011-1017 (2005)
- [27] J. R. McKnight, M. C. Satterfield, W. S. Jobgen, S. B. Smith, T. E. Spencer, C. J. Meininger, C. J. McNeal and G. Wu: Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids, 39(2), 349-57 (2010)
- [28] J. A. Buentello and D. M. Gatlin: Effects of elevated dietary arginine on resistance of channel catfish to exposure to Edwardsiella ictaluri. Journal of Aquatic Animal Health, 13(3), 194-201 (2001)
- [29] C. Pohlenz, A. Buentello, W. Mwangi and D. M. Gatlin, 3rd: Arginine and glutamine supplementation to culture media improves the performance of various channel catfish immune cells. Fish Shellfish Immunol, 32(5), 762-8 (2012)
- [30] J. A. Buentello, M. Reyes-Becerril, J. Romero-Geraldo Mde and J. Ascencio-Valle Fde: Effects of dietary arginine on hematological parameters and innate immune function of channel catfish. Journal of Aquatic Animal Health, 19(3), 195-203 (2007)
- [31] B. Costas, L. E. Conceicao, J. Dias, B. Novoa, A. Figueras and A. Afonso: Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). Fish Shellfish Immunol, 31(6), 838-47 (2011)
- [32] B. Costas, P. C. N. P. Rego, L. E. C. Conceicao, J. Dias and A. Afonso: Dietary arginine supplementation decreases plasma cortisol levels and modulates immune mechanisms in chronically stressed turbot (Scophthalmus maximus). Aquaculture Nutrition, 19, 25-38 (2013)
- [33] C. Tafalla and B. Novoa: Requirements for nitric oxide production by turbot (Scophthalmus maximus) head kidney macrophages. Developmental and Comparative Immunology, 24(6-7), 623-631 (2000)
- [34] J. A. Buentello and D. M. Gatlin: Nitric oxide production in activated macrophages from channel catfish (Ictalurus punctatus): influence of dietary arginine and culture media. Aquaculture, 179(1-4), 513-521 (1999)
- [35] E. Holen, M. Espe, S. M. Andersen, R. Taylor, A. Aksnes, Z. Mengesha and P. Araujo: A co culture approach show that polyamine turnover is affected during inflammation in Atlantic salmon immune and liver cells and that arginine and LPS exerts opposite effects on p38MAPK signaling. Fish Shellfish Immunol (2014)
- [36] G. E. Berge, H. Sveier and E. Lied: Effects of feeding Atlantic salmon (Salmo salar L.) imbalanced levels of lysine and arginine. Aquaculture Nutrition, 8(4), 239-248 (2002)
- [37] A. Pledgie, Y. Huang, A. Hacker, Z. Zhang, P. M. Woster, N. E. Davidson and R. A. Casero: Spermine oxidase SMO(PAOh1), not N-1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines. Journal of Biological Chemistry, 280(48), 39843-39851 (2005)
- [38] P. Zheng, B. Yu, J. He, G. Tian, Y. Luo, X. Mao, K. Zhang, L. Che and D. Chen: Protective effects of dietary arginine supplementation against oxidative stress in weaned piglets. Br J Nutr, 109(12), 2253-60 (2013)
- [39] Y. Han, S. Koshio, M. Ishikawa and S. Yokoyama: Interactive effects of dietary arginine and histidine on the performances of Japanese flounder Paralichthys olivaceus juveniles. Aquaculture, 414, 173-182 (2013)
- [40] M. Reyes-Becerril, F. Ascencio-Valle, D. Tovar-Ramirez, J. Meseguer and M. A. Esteban: Effects of polyamines on cellular innate immune response and the expression of immune-relevant genes in gilthead seabream leucocytes. Fish & Shellfish Immunology, 30(1), 248-254 (2011)Cited within: 0Google Scholar
- [41] J. Jell, S. Merali, M. L. Hensen, R. Mazurchuk, J. A. Spernyak, P. Diegelman, N. D. Kisiel, C. Barrero, K. K. Deeb, L. Alhonen, M. S. Patel and C. W. Porter: Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J Biol Chem, 282(11), 8404-13 (2007)
- [42] S. M. Andersen, E. Holen, A. Aksnes, I. Ronnestad, J. E. Zerrahn and M. Espe: Dietary arginine affects energy metabolism through polyamine turnover in juvenile Atlantic salmon (Salmo salar). Br J Nutr, 110(11), 1968-77 (2013)
- [43] S. P. Lall, S. J. Kaushik, P. Y. Lebail, R. Keith, J. S. Anderson and E. Plisetskaya: Quantitative Arginine Requirement of Atlantic Salmon (Salmo-Salar) Reared in Sea-Water. Aquaculture, 124(1-4), 13-25 (1994)
- [44] G. E. Berge, E. Lied and H. Sveier: Nutrition of Atlantic salmon (Salmo salar): The requirement and metabolism of arginine. Comparative Biochemistry and Physiology a-Physiology, 117(4), 501-509 (1997)
- [45] G. Chen, L. Feng, S. Kuang, Y. Liu, J. Jiang, K. Hu, W. Jiang, S. Li, L. Tang and X. Zhou: Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Br J Nutr, 108(2), 195-207 (2012)
- [46] Z. Y. Cheng, A. Buentello and D. M. Gatlin: Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus. Aquaculture, 319(1-2), 247-252 (2011)
- [47] Z. Y. Cheng, D. M. Gatlin and A. Buentello: Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops x Morone saxatilis). Aquaculture, 362, 39-43 (2012)
- [48] A. Peres, C. L. Cahu and J. L. Z. Infante: Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry, 16(6), 479-485 (1997)
- [49] T. P. Mommsen, T. W. Moon and E. M. Plisetskaya: Effects of arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiol Biochem Zool, 74(5), 668-78 (2001)
- [50] E. M. Plisetskaya, L. I. Buchellinarvaez, R. W. Hardy and W. W. Dickhoff: Effects of injected and dietary arginine on plasma-insulin levels and growth of pacific salmon and rainbow-trout. Comparative Biochemistry and Physiology a-Physiology, 98(1), 165-170 (1991)
- [51] S. M. Andersen, R. Taylor, E. Holen, A. Aksnes and M. Espe: Arginine supplementation and exposure time affects polyamine and glucose metabolism in primary liver cells isolated from Atlantic salmon. Amino Acids, 46(5), 1225-33 (2014)
- [52] W. S. Jobgen, S. K. Fried, W. J. Fu, C. J. Meininger and G. Wu: Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem, 17(9), 571-88 (2006)
- [53] W. J. Fu, T. E. Haynes, R. Kohli, J. Hu, W. Shi, T. E. Spencer, R. J. Carroll, C. J. Meininger and G. Wu: Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr, 135(4), 714-21 (2005)
- [54] T. Tanaka, K. Nakatani, K. Morioka, H. Urakawa, N. Maruyama, N. Kitagawa, A. Katsuki, R. Araki-Sasaki, Y. Hori, E. C. Gabazza, Y. Yano, H. Wada, T. Nobori, Y. Sumida and Y. Adachi: Nitric oxide stimulates glucose transport through insulin-independent GLUT4 translocation in 3T3-L1 adipocytes. Eur J Endocrinol, 149(1), 61-7 (2003)
- [55] G. Y. Wu: Intestinal mucosal amino acid catabolism. Journal of Nutrition, 128(8), 1249-1252 (1998)
- [56] V. L. Trudeau, B. D. Sloley, O. Kah, N. Mons, J. G. Dulka and R. E. Peter: Regulation of growth hormone secretion by amino acid neurotransmitters in the goldfish.1. Inhibition by N-methyl-D, L-aspartic acid. General and Comparative Endocrinology, 103(2), 129-137 (1996)
- [57] V. L. Trudeau, D. Spanswick, E. J. Fraser, K. Lariviere, D. Crump, S. Chiu, M. MacMillan and R. W. Schulz: The role of amino acid neurotransmitters in the regulation of pituitary gonadotropin release in fish. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire, 78(3), 241-259 (2000)
- [58] I. A. Khan and P. Thomas: GABA exerts stimulatory and inhibitory influences on gonadotropin II secretion in the Atlantic croaker (Micropogonias undulatus). Neuroendocrinology, 69(4), 261-268 (1999)
- [59] E. L. Mananos, I. Anglade, J. Chyb, C. Saligaut, B. Breton and O. Kah: Involvement of gamma-aminobutyric acid in the control of GTH-1 and GTH-2 secretion in male and female rainbow trout. Neuroendocrinology, 69(4), 269-280 (1999)
- [60] S. Clements and C. B. Schreck: Evidence that GABA mediates dopaminergic and Serotonergic pathways associated with locomotor activity in juvenile chinook salmon (Oncorhynchus tshawytscha). Behavioral Neuroscience, 118(1), 191-198 (2004)
- [61] Y. Lin and Q. Z. Xiao: Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture, 256(1-4), 389-394 (2006)
- [62] J. Jiang, T. Zheng, X. Q. Zhou, Y. Liu and L. Feng: Influence of glutamine and vitamin E on growth and antioxidant capacity of fish enterocytes. Aquaculture Nutrition, 15(4), 409-414 (2009)
- [63] K. Hu, L. Feng, W. D. Jiang, Y. Liu, J. Jiang, S. H. Li and X. Q. Zhou: Oxidative damage repair by glutamine in fish enterocytes. Fish Physiology and Biochemistry, 40(5), 1437-1445 (2014)
- [64] S. P. Walker, D. Keast and S. McBride: Distribution of glutamine synthetase in the snapper (Pagrus auratus) and implications for the immune system. Fish Physiology and Biochemistry, 15(3), 187-194 (1996)
- [65] C. Pohlenz, A. Buentello, M. F. Criscitiello, W. Mwangi, R. Smith and D. M. Gatlin, 3rd: Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri. Fish Shellfish Immunol, 33(3), 543-51 (2012)
- [66] C. Burrells, P. D. Williams and P. F. Forno: Dietary nucleotides: a novel supplement in fish feeds 1. Effects on resistance to disease in salmonids. Aquaculture, 199(1-2), 159-169 (2001)
- [67] A. E. Todgham, P. M. Anderson and P. A. Wright: Effects of exercise on nitrogen excretion, carbamoyl phosphate synthetase III activity and related urea cycle enzymes in muscle and liver tissues of juvenile rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology, 129(2-3), 527-539 (2001)
- [68] P. A. Wright, S. L. Steele, A. Huitema and N. J. Bernier: Induction of four glutamine synthetase genes in brain of rainbow trout in response to elevated environmental ammonia. Journal of Experimental Biology, 210(16), 2905-2911 (2007)
- [69] T. Larsson, E. O. Koppang, M. Espe, B. F. Terjesen, A. Krasnov, H. M. Moreno, K. A. Rorvik, M. Thomassen and T. Morkore: Fillet quality and health of Atlantic salmon (Salmo salar L.) fed a diet supplemented with glutamate. Aquaculture, 426, 288-295 (2014)
- [70] L. E. Conceicao, C. Aragao, J. Dias, B. Costas, G. Terova, C. Martins and L. Tort: Dietary nitrogen and fish welfare. Fish Physiology and Biochemistry, 38(1), 119-41 (2012)
- [71] E. Hoglund, M. J. Bakke, O. Overli, S. Winberg and G. E. Nilsson: Suppression of aggressive behaviour in juvenile Atlantic cod (Gadus morhua) by L-tryptophan supplementation. Aquaculture, 249(1-4), 525-531 (2005)
- [72] S. Winberg, O. Overli and O. Lepage: Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary L-tryptophan. Journal of Experimental Biology, 204(22), 3867-3876 (2001)
- [73] E. D. Clotfelter, E. P. O’Hare, M. M. McNitt, R. E. Carpenter and C. H. Summers: Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacology Biochemistry and Behavior, 87(2), 222-231 (2007)
- [74] J. Falcon, H. Migaud, J. A. Munoz-Cueto and M. Carrillo: Current knowledge on the melatonin system in teleost fish. General and Comparative Endocrinology, 165(3), 469-482 (2010)
- [75] C. F. Randall, N. R. Bromage, J. E. Thorpe, M. S. Miles and J. S. Muir: Melatonin Rhythms in Atlantic Salmon (Salmo-Salar) Maintained under Natural and out-of-Phase Photoperiods. General and Comparative Endocrinology, 98(1), 73-86 (1995)
- [76] B. T. Bjornsson, O. Halldorsson, C. Haux, B. Norberg and C. L. Brown: Photoperiod control of sexual maturation of the Atlantic halibut (Hippoglossus hippoglossus): plasma thyroid hormone and calcium levels. Aquaculture, 166(1-2), 117-140 (1998)
- [77] S. K. Maitra, A. Chattoraj, S. Mukherjee and M. Moniruzzaman: Melatonin: A potent candidate in the regulation of fish oocyte growth and maturation. General and Comparative Endocrinology, 181, 215-222 (2013)
- [78] J. Falcon, L. Besseau, D. Fazzari, J. Attia, P. Gaildrat, M. Beauchaud and G. Boeuf: Melatonin modulates secretion of growth hormone and prolactin by trout pituitary glands and cells in culture. Endocrinology, 144(10), 4648-4658 (2003)
- [79] M. A. Esteban, A. Cuesta, E. Chaves-Pozo and J. Meseguer: Influence of Melatonin on the Immune System of Fish: A Review. International Journal of Molecular Sciences, 14(4), 7979-7999 (2013)
- [80] A. Cuesta, R. Cerezuela, M. A. Esteban and J. Meseguer: In vivo actions of melatonin on the innate immune parameters in the teleost fish gilthead seabream. Journal of Pineal Research, 45(1), 70-78 (2008)
- [81] T. S. Huang, P. Ruoff and P. G. Fjelldal: Effect of Continuous Light on Daily Levels of Plasma Melatonin and Cortisol and Expression of Clock Genes in Pineal Gland, Brain, and Liver in Atlantic Salmon Postsmolts. Chronobiology International, 27(9-10), 1715-1734 (2010)
- [82] C. F. Randall, N. R. Bromage, J. Duston and J. Symes: Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: a circannual phase-response curve. Journal of Reproduction and Fertility, 112(2), 399-405 (1998)
- [83] E. Hoglund, C. Sorensen, M. J. Bakke, G. E. Nilsson and O. Overli: Attenuation of stress-induced anorexia in brown trout (Salmo trutta) by pre-treatment with dietary L-tryptophan. British Journal of Nutrition, 97(4), 786-789 (2007)
- [84] O. Lepage, O. Tottmar and S. Winberg: Elevated dietary intake of L-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 205(23), 3679-3687 (2002)
- [85] D. Basic, A. Krogdahl, J. Schjolden, S. Winberg, M. A. Vindas, M. Hillestad, I. Mayer, E. Skjerve and E. Hoglund: Short-and long-term effects of dietary L-tryptophan supplementation on the neuroendocrine stress response in seawater-reared Atlantic salmon (Salmo salar). Aquaculture, 388, 8-13 (2013)
- [86] Y. T. Wang, H. Z. Liu, G. McKenzie, P. K. Witting, J. P. Stasch, M. Hahn, D. Changsirivathanathamrong, B. J. Wu, H. J. Ball, S. R. Thomas, V. Kapoor, D. S. Celermajer, A. L. Mellor, J. F. Keaney, N. H. Hunt and R. Stocker: Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nature Medicine, 16(3), 279-U72 (2010)
- [87] W. K. Ng, G. Serrini, Z. Zhang and R. P. Wilson: Niacin requirement and inability of tryptophan to act as a precursor of NAD(+) in channel catfish, Ictalurus punctatus. Aquaculture, 152(1-4), 273-285 (1997)
- [88] T. Akiyama, M. Shiraishi, T. Yamamoto and T. Unuma: Effect of dietary tryptophan on maturation of ayu Plecoglossus altivelis. Fisheries Science, 62(5), 776-782 (1996)
- [89] H. Yambe, S. Kitamura, M. Kamio, M. Yamada, S. Matsunaga, N. Fusetani and F. Yamazaki: L-kynurenine, an amino acid identified as a sex pheromone in the urine of ovulated female masu salmon. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15370-15374 (2006)
- [90] M. J. Walton, R. M. Coloso, C. B. Cowey, J. W. Adron and D. Knox: The Effects of Dietary Tryptophan Levels on Growth and Metabolism of Rainbow-Trout (Salmo-Gairdneri). British Journal of Nutrition, 51(2), 279-287 (1984)
- [91] T. Akiyama, T. Murai and K. Mori: Role of Tryptophan-Metabolites in Inhibition of Spinal Deformity of Chum Salmon Fry Caused by Tryptophan Deficiency. Bulletin of the Japanese Society of Scientific Fisheries, 52(7), 1255-1259 (1986)
- [92] O. Breck, E. Bjerkas, P. Campbell, P. Arnesen, P. Haldorsen and R. Waagbo: Cataract preventative role of mammalian blood meal, histidine, iron and zinc in diets for Atlantic salmon (Salmo salar L.) of different strains. Aquaculture Nutrition, 9(5), 341-350 (2003)
- [93] A. E. Wall: Cataracts in farmed Atlantic salmon (Salmo salar) in Ireland, Norway and Scotland from 1995 to 1997. Veterinary Record, 142(23), 626-631 (1998)
- [94] J. D. Rhodes, O. Breck, R. Waagbo, E. Bjerkas and J. Sanderson: N-acetylhistidine, a novel osmolyte in the lens of Atlantic salmon (Salmo salar L.). American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 299(4), R1075-R1081 (2010)
- [95] H. Abe: Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry-Moscow, 65(7), 757-765 (2000)
- [96] H. Abe and E. Okuma: Effect of Temperature on the Buffering Capacities of Histidine-Related Compounds and Fish Skeletal-Muscle. Nippon Suisan Gakkaishi, 57(11), 2101-2107 (1991)
- [97] T. Nagasawa, T. Yonekura, N. Nishizawa and D. D. Kitts: In vitro and in vivo inhibition of muscle lipid and protein oxidation by carnosine. Molecular and Cellular Biochemistry, 225(1-2), 29-34 (2001)
- [98] S. C. Remo, P. A. Olsvik, B. E. Torstensen, H. Amlund, O. Breck and R. Waagbo: Susceptibility of Atlantic salmon lenses to hydrogen peroxide oxidation ex vivo after being fed diets with vegetable oil and methylmercury. Experimental Eye Research, 92(5), 414-424 (2011)
- [99] A. M. Wade and H. N. Tucker: Antioxidant characteristics of L-histidine. Journal of Nutritional Biochemistry, 9(6), 308-315 (1998)
- [100] NRC: Nutrient Requirement of Fish. National Academy Press, Washington, DC, USA (1993)
- [101] O. Breck, E. Bjerkas, P. Campbell, J. D. Rhodes, J. Sanderson and R. Waagbo: Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 28(6), 357-371 (2005)
- [102] O. Breck, E. Bjerkas, J. Sanderson, R. Waagbo and P. Campbell: Dietary histidine affects lens protein turnover and synthesis of N-acetylhistidine in Atlantic salmon (Salmo salar L.) undergoing parr-smolt transformation. Aquaculture Nutrition, 11(5), 321-332 (2005)
- [103] R. Waagbo, C. Trosse, W. Koppe, R. Fontanillas and O. Breck: Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, Salmo salar L., in seawater. British Journal of Nutrition, 104(10), 1460-1470 (2010)
- [104] R. Waagbo, C. D. Hosfeld, S. Fivelstad, P. A. Olsvik and O. Breck: The impact of different water gas levels on cataract formation, muscle and lens free amino acids, and lens antioxidant enzymes and heat shock protein mRNA abundance in smolting Atlantic salmon, Salmo salar L. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology, 149(4), 396-404 (2008)Cited within: 0Google Scholar
- [105] J. F. Taylor, R. Waagbo, M. Diez-Padrisa, P. Campbell, M. J. Walton, D. Hunter, C. Matthew and H. Migaud: Adult triploid Atlantic salmon (Salmo salar) have higher dietary histidine requirements to prevent cataract development in seawater. Aquaculture Nutrition, 21, 18-32 (2015)
- [106] K. M. Liakonis, R. Waagbo, A. Foss, O. Breck and A. K. Imsland: Effects of chronic and periodic exposures to ammonia on the eye health in juvenile Atlantic halibut (Hippoglossus hippoglossus). Fish Physiology and Biochemistry, 38(2), 421-430 (2012)
- [107] M. Togashi, E. Okuma and H. Abe: HPLC determination of N-Acetyl-L-Histidine and its related compounds in fish tissues. Fisheries Sci, 64(1), 174-175 (1998)
- [108] S. Yamada, Y. Tanaka and S. Ando: Purification and sequence identification of anserinase. FEBS Journal, 272(23), 6001-6013 (2005)
- [109] M. H. Baslow: Function of the N-acetyl-L-histidine system in the vertebrate eye. Journal of Molecular Neuroscience, 10, 193-208 (1998)
- [110] A. Aksnes: Feed ingredients. The impact of nitrogen extractives in a aqua feed ingredients. International Aquatic Feed, 8, 28-30 (2005)
- [111] N. Torres, L. Beristain, H. Bourges and A. R. Tovar: Histidine-imbalanced diets stimulate hepatic histidase gene expression in rats. J Nutr, 129(11), 1979-83 (1999)
- [112] J. D. Rhodes, O. Breck, R. Waagbo, E. Bjerkas and J. Sanderson: N-Acetylhistidine, a Novel Osmolyte in the Lens of Atlantic Salmon (Salmo salar L.). Am J Physiol Regul Integr Comp Physiol, ajpregu.00214.2.010 (2010)
- [113] C. Tröβe, J. D. Rhodes, J. Sanderson, O. Breck and R. Waagbø: Effect of plant-based feed ingredients on osmoregulation in the Atlantic salmon lens. Comparative Biochemistry and Physiology, Part B, 155, 354–362 (2010)
- [114] M. H. Baslow and S. Nathan: Function of the N-acetylhistidine system in the vertebrate lens: Is it a molecular water pump? Journal of Neurochemistry, 71, S48-S48 (1998)
- [115] O. Breck and H. Sveier: Growth and cataract development in two groups of Atlantic salmon (Salmo salar L) post smolts transferred to sea with a four week interval. Bulletin-European Association of Fish Pathologists, 21(3), 91-103 (2001)
- [116] O. Breck, E. Bjerkås, P. Campbell, J. D. Rhodes, J. Sanderson and R. Waagbø: Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L Journal of Fish Diseases, 28(6), 357-371 (2005)
- [117] E. Bjerkås, R. Waagbø, H. Sveier, I. Bjerkås, E. Bjørnestad and A. Maage: Cataract development in Atlantic Salmon (Salmo salar L) in fresh water. Acta Veterinaria Scandinavica, 37, 351-360 (1996)
- [118] R. Waagbø, E. Bjerkås, H. Sveier, O. Breck, E. Bjørnestad and A. Maage: Nutritional status assessed in groups of smolting Atlantic salmon, Salmo salar L., developing cataracts. Journal of Fish Diseases, 19, 365-373 (1996)
- [119] L. J. Hobart, I. Seibel, G. S. Yeargans and N. W. Seidler: Anti-crosslinking properties of carnosine: Significance of histidine. Life Sciences, 75(11), 1379-1389 (2004)
- [120] A. M. Wade and H. N. Tucker: Antioxidant characteristics of L-histidine. The Journal of Nutritional Biochemistry, 9(6), 308-315 (1998)
- [121] D. L. Williams: Oxidation, antioxidants and cataract formation: a literature review. Veterinary Ophtamology, 9(5), 292-298 (2006)
- [122] F. Bellia, A. M. Amorini, D. La Mendola, G. Vecchio, B. Tavazzi, B. Giardina, V. Di Pietro, G. Lazzarino and E. Rizzarelli: New glycosidic derivatives of histidine-containing dipeptides with antioxidant properties and resistant to carnosinase activity. European Journal of Medicinal Chemistry, 43(2), 373-380 (2008)
- [123] Y.-t. Lee, C.-c. Hsu, M.-h. Lin, K.-s. Liu and M.-c. Yin: Histidine and carnosine delay diabetic deterioration in mice and protect human low density lipoprotein against oxidation and glycation. European Journal of Pharmacology, 513(1-2), 145-150 (2005)
- [124] J. W. Lee, H. Miyawaki, E. V. Bobst, J. D. Hester, M. Ashraf and A. M. Bobst: Improved functional recovery of ischemic rat hearts due to singlet oxygen scavengers histidine and carnosine. Journal of Molecular and Cellular Cardiology, 31(1), 113-121 (1999)
- [125] M. A. Babizhayev, A. I. Deyev, V. N. Yermakova, Y. A. Semiletov, N. G. Davydova, N. I. Kurysheva, A. V. Zhukotskii and I. M. Goldman: N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent ophthalmic drug in treatment of human cataracts. Peptides, 22(6), 979-994 (2001)
- [126] H. Ogata and T. Murai: White muscle of masu salmon, Oncorhynchus masou masou, smolts possesses a strong buffering capacity due to a high level of anserine. Fish Physiology and Biochemistry, 13(4), 285-293 (1994)
- [127] H. Y. Ogata, S. Konno and J. T. Silverstein: Muscular buffering capacity of the parr and smolts in Oncorhynchus masou. Aquaculture, 168(1-4), 303-310 (1998)
- [128] H. Abe: Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Moscow). Translated from Biokhimiya, Vol.65, No.7, 2000, pp.891-900. (2000)
- [129] H. Y. Ogata, S. Konno and J. T. Silverstein: Muscular buffering capacity of the parr and smolts in Oncorhynchus masou. Aquaculture, 168, 303-310 (1998)
- [130] H. Y. Ogata: Muscle buffering capacity of yellowtail fed diets supplemented with crystalline histidine. Journal of Fish Biology, 61(6), 1504-1512 (2002)
- [131] R. D. Vaughan-Jones, K. W. Spitzer and P. Swietach: Intracellular pH regulation in heart. Journal of Molecular and Cellular Cardiology, 46(3), 318-331 (2009)
- [132] J. D. Finkelstein: Methionine Metabolism in Mammals. Journal of Nutritional Biochemistry, 1(5), 228-237 (1990)
- [133] J. M. Mato, F. J. Corrales, S. C. Lu and M. A. Avila: S-Adenosylmethionine: a control switch that regulates liver function. FASEB J, 16(1), 15-26 (2002)
- [134] R. Obeid and W. Herrmann: Homocysteine and lipids: S-adenosyl methionine as a key intermediate. FEBS Lett, 583(8), 1215-25 (2009)
- [135] J. T. Brosnan, R. L. Jacobs, L. M. Stead and M. E. Brosnan: Methylation demand: a key determinant of homocysteine metabolism. Acta Biochim Pol, 51(2), 405-13 (2004)
- [136] J. J. Wang, Z. L. Wu, D. F. Li, N. Li, S. V. Dindot, M. C. Satterfield, F. W. Bazer and G. Y. Wu: Nutrition, Epigenetics, and Metabolic Syndrome. Antioxidants & Redox Signaling, 17(2), 282-301 (2012)Cited within: 0Google Scholar
- [137] S. Tesseraud, S. Metayer-Coustard, A. Collin and I. Seiliez: Role of sulfur amino acids in controlling nutrient metabolism and cell functions: implications for nutrition. British Journal of Nutrition, 101(8), 1132-1139 (2009)
- [138] J. Marcinkiewicz and E. Kontny: Taurine and inflammatory diseases. Amino Acids, 46(1), 7-20 (2014)
- [139] L. J. C. van Loon: Leucine as a pharmaconutrient in health and disease. Current Opinion in Clinical Nutrition and Metabolic Care, 15(1), 71-77 (2012)
- [140] M. Espe, S. M. Andersen, E. Holen, I. Ronnestad, E. Veiseth-Kent, J. E. Zerrahn and A. Aksnes: Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon. British Journal of Nutrition, 112(8), 1274-1285 (2014)
- [141] M. Espe, E. Veiseth-Kent, J. E. Zerrahn, I. Ronnestad and A. Aksnes: Juvenile Atlantic salmon decrease white trunk muscle IGF-1 expression and reduce msucle and plasma free sulfur amino acids when methionine avilability is low while liver sulfur metabolites mostly is unaffected by treatment. Aquaculture Nutrition (2015)
- [142] M. Espe, E. M. Hevroy, B. Liaset, A. Lemme and A. El-Mowafi: Methionine intake affect hepatic sulphur metabolism in Atlantic salmon, Salmo salar. Aquaculture, 274(1), 132-141 (2008)
- [143] I. Belghit, S. Skiba-Cassy, I. Geurden, K. Dias, A. Surget, S. Kaushik, S. Panserat and I. Seiliez: Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 112(4), 493-503 (2014)
- [144] I. Seiliez, J. C. Gabillard, M. Riflade, B. Sadoul, K. Dias, J. Averous, S. Tesseraud, S. Skiba and S. Panserat: Amino acids downregulate the expression of several autophagy-related genes in rainbow trout myoblasts. Autophagy, 8(3), 364-375 (2012)
- [145] I. Seiliez, S. Panserat, S. Skiba-Cassy and S. Polakof: Effect of acute and chronic insulin administrations on major factors involved in the control of muscle protein turnover in rainbow trout (Oncorhynchus mykiss). General and Comparative Endocrinology, 172(3), 363-370 (2011)
- [146] T. G. Gaylord, F. T. Barrows, A. M. Teague, K. A. Johansen, K. E. Overturf and B. Shepherd: Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture, 269(1-4), 514-524 (2007)
- [147] M. Espe, K. Ruohonen and A. El-Mowafi: Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar). Aquaculture Research, 43(3), 349-360 (2012)
- [148] M. Espe, J. E. Zerrahn, E. Holen, I. Ronnestad, E. Veiseth-Kent and A. Aksnes: Choline supplementation to low methionine diets increase phospholipids in Atlantic salmon, while taurine supplementation had no effect on phohoplipid status, but improved taurine status. Aquaculture Nutrition (2015)
- [149] M. Espe, R. M. Rathore, Z. Y. Du, B. Liaset and A. El-Mowafi: Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar. Amino Acids, 39(2), 449-60 (2010)
- [150] A. P. Rolo, J. S. Teodoro and C. M. Palmeira: Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radical Biology and Medicine, 52(1), 59-69 (2012)
- [151] E. Vanni, E. Bugianesi, A. Kotronen, S. De Minicis, H. Yki-Jarvinen and G. Svegliati-Baroni: From the metabolic syndrome to NAFLD or vice versa? Digestive and Liver Disease, 42(5), 320-330 (2010)
- [152] S. M. Watkins, X. N. Zhu and S. H. Zeisel: Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. Journal of Nutrition, 133(11), 3386-3391 (2003)
- [153] B. E. Torstensen, M. Espe, I. Stubhaug and O. Lie: Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 106(5), 633-647 (2011)
- [154] C. H. Lang, R. A. Frost and T. C. Vary: Regulation of muscle protein synthesis during sepsis and inflammation. American Journal of Physiology-Endocrinology and Metabolism, 293(2), E453-E459 (2007)
- [155] Y. Terashima, S. Nishiumi, A. Minami, Y. Kawano, N. Hoshi, T. Azuma and M. Yoshida: Metabolomics-based search for therapeutic agents for non-alcoholic steatohepatitis. Archives of Biochemistry and Biophysics, 555, 55-65 (2014)
- [156] C. L. Gentile, A. M. Nivala, J. C. Gonzales, K. T. Pfaffenbach, D. Wang, Y. R. Wei, H. Jiang, D. J. Orlicky, D. R. Petersen, M. J. Pagliassotti and K. N. Maclean: Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 301(6), R1710-R1722 (2011)
- [157] P. M. Craig and T. W. Moon: Methionine restriction affects the phenotypic and transcriptional response of rainbow trout (Oncorhynchus mykiss) to carbohydrate-enriched diets. British Journal of Nutrition, 109(3), 402-412 (2013)
- [158] M. Espe and E. Holen: Taurine attenuates apoptosis in primary liver cells isolated from Atlantic salmon (Salmo salar). British Journal of Nutrition, 110(1), 20-28 (2013)
- [159] G. Atmaca: Antioxidant effects of sulfur-containing amino acids. Yonsei Medical Journal, 45(5), 776-788 (2004)
- [160] M. Espe, J. He, L. Chen, S. M. Andersen and E. Holen: Betaine supplementation to low methionine media does not increase viability of primary liver cells isolated from Atlantic salmon. Comp Biochem Physiol B (2015)
- [161] S. Lin, S. Hirai, Y. Yamaguchi, T. Goto, N. Takahashi, F. Tani, C. Mutoh, T. Sakurai, S. Murakami, R. Yu and T. Kawada: Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages. Molecular Nutrition & Food Research, 57(12), 2155-2165 (2013)Cited within: 0Google Scholar
- [162] F. T. Rosa, E. C. Freitas, R. Deminice, A. A. Jordao and J. S. Marchini: Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. European Journal of Nutrition, 53(3), 823-830 (2014)
- [163] N. S. Liland, M. Espe, G. Rosenlund, R. Waagbo, J. I. Hjelle, O. Lie, R. Fontanillas and B. E. Torstensen: High levels of dietary phytosterols affect lipid metabolism and increase liver and plasma TAG in Atlantic salmon (Salmo salar L.). British Journal of Nutrition, 110(11), 1958-1967 (2013)
- [164] R. J. Manders, J. P. Little, S. C. Forbes and D. G. Candow: Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia. Nutrients, 4(11), 1664-1678 (2012)
- [165] A. Molfino, G. Gioia, F. Rossi Fanelli and M. Muscaritoli: Beta-hydroxy-beta-methylbutyrate supplementation in health and disease: a systematic review of randomized trials. Amino Acids, 45(6), 1273-1292 (2013)
- [166] B. Grisdale-Helland, H. Takle and S. J. Helland: Aerobic exercise increases the utilization efficiency of energy and protein for growth in Atlantic salmon post-smolts. Aquaculture, 406, 43-51 (2013)
- [167] K. Tajiri and Y. Shimizu: Branched-chain amino acids in liver diseases. World Journal of Gastroenterology, 19(43), 7620-7629 (2013)
- [168] C. V. Pereira, M. Lebiedzinska, M. R. Wieckowski and P. J. Oliveira: Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion, 12(1), 66-76 (2012)
- [169] H. Schirmer, T. C. B. Pereira, E. P. Rico, D. B. Rosemberg, C. D. Bonan, M. R. Bogo and A. A. Souto: Modulatory effect of resveratrol on SIRT1, SIRT3, SIRT4, PGC1 alpha and NAMPT gene expression profiles in wild-type adult zebrafish liver. Molecular Biology Reports, 39(3), 3281-3289 (2012)
- [170] M. Holecek: Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition, 26(5), 482-490 (2010)
- [171] I. Ahmed and M. A. Khan: Dietary branched-chain amino acid valine, isoleucine and leucine requirements of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). British Journal of Nutrition, 96(3), 450-460 (2006)
- [172] X. Rollin, M. Mambrini, T. Abboudi, Y. Larondelle and S. J. Kaushik: The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. British Journal of Nutrition, 90(5), 865-876 (2003)
- [173] S. R. Kimball and L. S. Jefferson: Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. Journal of Nutrition, 136(1), 227s-231s (2006)
- [174] M. Lansard, S. Panserat, E. Plagnes-Juan, K. Dias, I. Seiliez and S. Skiba-Cassy: L-Leucine, L-Methionine, and L-Lysine Are Involved in the Regulation of Intermediary Metabolism-Related Gene Expression in Rainbow Trout Hepatocytes. Journal of Nutrition, 141(1), 75-80 (2011)
- [175] C. B. Newgard: Interplay between Lipids and Branched-Chain Amino Acids in Development of Insulin Resistance. Cell Metabolism, 15(5), 606-614 (2012)
- [176] A. Valerio, G. D’Antona and E. Nisoli: Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging-Us, 3(5), 464-478 (2011)
- [177] J. Lu, G. Xie and W. Jia: Insulin resistance and the metabolism of branched-chain amino acids. Front Med, 7(1), 53-9 (2013)
- [178] T. R. Li, L. L. Geng, X. Chen, M. Miskowiec, X. Li and B. Dong: Branched-chain amino acids alleviate nonalcoholic steatohepatitis in rats. Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 38(8), 836-843 (2013)
- [179] Y. Du, Q. S. Meng, Q. Zhang and F. F. Guo: Isoleucine or valine deprivation stimulates fat loss via increasing energy expenditure and regulating lipid metabolism in WAT. Amino Acids, 43(2), 725-734 (2012)
- [180] A. K. Siwicki, E. Glabski, K. Kazun, B. Kazun, A. Lepa and M. Majewicz-Zbikowska: Effect of dietary administration of the beta-hydroxy-beta-methylbutyrate on the innate immunity and protection against motile Aeromonas septicaemia in fish. Central European Journal of Immunology, 36(3), 135-138 (2011)
- [181] A. K. Siwicki, Z. Zakes, J. C. Fuller, S. Nissen, S. Trapkowska, E. Glabski, A. Kowalska, K. Kazun and E. Terech-Majewska: Influence of beta-hydroxy-beta-methylbutyrate on nonspecific humoral defense mechanisms and protection against furunculosis in pikeperch (Sander lucioperca). Aquaculture Research, 37(2), 127-131 (2006)
- [182] R. M. Rathore, B. Liaset, E. M. Hevroy, A. El-Mowafi and M. Espe: Lysine limitation alters the storage pattern of protein, lipid and glycogen in on-growing Atlantic salmon. Aquaculture Research, 41(11), e751-e759 (2010)
