Information
References
Contents
Download
[1]MR Maduro, KC Lo, WW Chuang, DJ Lamb: Genes and male infertility: what can go wrong? J Androl 24, 485-493 (2003)
[2]DT Carrell, KI Aston, R Oliva, BR Emery, CJ De Jonge: The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 363, 295-312 (2016)
[3]P Thonneau, S Marchand, A Tallec, ML Ferial, B Ducot, J Lansac, P Lopes, JM Tabaste, A Spira: Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989). Hum Reprod 6, 811-816 (1991)
[4]J Boivin, L Bunting, JA Collins, KG Nygren: International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22, 1506-1512 (2007)
[5]DM de Kretser: Male infertility. Lancet 349, 787-790 (1997)
[6]KI Aston, DF Conrad: A review of genome-wide approaches to study the genetic basis for spermatogenic defects. Methods Mol Biol 927, 397-410 (2013)
[7]JM Hotaling: Genetics of male infertility. Urol Clin North Am 41, 1-17 (2014)
[8]N Gupta, S Gupta, M Dama, A David, G Khanna, A Khanna, S Rajender: Strong association of 677 C > T substitution in the MTHFR gene with male infertility—a study on an Indian population and a meta-analysis. PLoS One 6, 22277 (2011)
[9]YN Teng, YP Chang, JT Tseng, PH Kuo, IW Lee, MS Lee, PL Kuo: A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han. Hum Reprod 27, 2857–2865 (2012)
[10]W Wu, J Lu, Q Tang, S Zhang, B Yuan, J Li, WU Di, H Sun, C Lu, Y Xia, D Chen, J Sha, X Wang: GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci Rep 3, 2258 (2013)
[11]S Gunes, M Al-Sadaan, A Agarwal: Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online 31, 309–319 (2015)
[12]L Stuppia, M Franzago, P Ballerini, V Gatta, I Antonucci: Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics 7, 120 (2015)
[13]D Kumar, G Bansal, A Narang, T Basak, T Abbas, D Dash: Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 16, 2533-2544 (2016)
[14]AR Lima, L Bastos Mde, M Carballo, P Guedes de Pinho: Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol 9, 357-370 (2016)
[15]AD Riggs, RA Martinssen, VEA Russo: Epigenetic mechanisms of gene regulation. In:. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1996
[16]GI Egger, G Liang, A Aparicio, PA Jones: Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463 (2004)
[17]CH Waddington: Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)
[18]A Santenard, ME Torres-Padilla: Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4, 80-84 (2009)
[19]W An: Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem 41, 351–369 (2007)
[20]T Kouzarides: Chromatin modifications and their function. Cell 128, 693–705 (2007)
[21]RS Illingworth, AP Bird: CpG islands—‘‘a rough guide’’. FEBS Lett 83, 1713–1720 (2009)
[22]D Takai, PA Jones: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99, 3740–3745 (2002)
[23]R Dada, M Kumar, R Jesudasan, JL Fernández, J Gosálvez, A Agarwal: Epigenetics and its role in male infertility. J Assist Reprod Genet 29, 213–223 (2012)
[24]PD Partensky, GJ Parrikar: Chromatin remodelers act globally sequence positions nucleosomes locally. J Mol Biol 391, 12–25 (2009)
[25]GJ Narlikar, HY Fan, RE Kingston: Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002)
[26]FF Costa: Non-coding RNA: new players in eukaryotic biology. Gene 357, 83–94 (2005)
[27]T Hamatani: Human spermatozoal RNAs. Fertil Steril 97, 275–281 (2012)
[28]J Ausio, JM Eirin-Lopez, LJ Frehlick: Evolution of vertebrate chromosomal sperm proteins: implications for fertility and sperm competition. Soc Re-prod Fertil Suppl 65, 63–79 (2007)
[29]R Oliva: Protamines and male infertility. Hum Reprod Update 12, 417-35 (2006)
[30]HJ van Roijen, MP Ooms, MC Spaargaren, WM Baarends, RF Weber, JA Grootegoed, JT Vreeburg: Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod 3, 1559-1566 (1998)
[31]S Rousseaux, J Gaucher, J Thevenon, C Caron, ALVitte, S Curtet, C Derobertis, AK Faure, R Levy, I Aknin-Seifer, C Ravel, JP Siffroi, K Mc Elreavey, H Lejeune, C Jimenez, S Hennebicq, S Khochbin: Spermiogenesis: histone acetylation triggers male genome reprogramming. Gynecol Obstet Fertil 37, 519–522 (2009)
[32]WS Ward, DS Coffey: DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44, 569-574 (1991)
[33]SM Wykes, SA Krawetz: The structural organization of sperm chromatin. J Biol Chem 278, 29471-29477 (2003)
[34]SS Hammoud, DA Nix, H Zhang, J Purwar, DT Carrell, BR Cairns: Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473-478 (2009)
[35]TF Wu, DS Chu: Epigenetic processes implemented during spermatogenesis distinguish the paternal pronucleus in the embryo. Reprod Biomed Online 16, 13-22 (2008)
[36]F von Meyenn, W Reik : Forget the Parents: Epigenetic Reprogramming in Human Germ Cells. Cell 161, 1248-1251 (2015)
[37]K Pfeifer: Mechanisms of Genomic Imprinting. Am J Hum Genet 672, 777–787 (2000)
[38]X Cui, X Jing, X Wu, M Yan, Q Li, Y Shen, Z Wang: DNA methylation in spermatogenesis and male infertility. Exp Ther Med 12, 1973-1979 (2016)
[39]CC Oakes, S La Salle, DJ Smiraglia, B Robaire, JM Trasler: A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci U S A 104, 228-233 (2007)
[40]U Schagdarsurengin, A Paradowska, K Steger: Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol 9, 609-619 (2012)
[41]CJ Marques, F Carvalho, M Sousa, A Barros: Genomic imprinting in disruptive spermatogenesis. Lancet 363, 1700–1702 (2004)
[42]H Kobayashi, A Sato, E Otsu, H Hiura, C Tomatsu, H Sasaki, N Yaegashi, T Arima: Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16, 2542–2551 (2007)
[43]N El Hajj, U Zechner, E Schneider, A Tresch, J Gromoll, T Hahn, M Schorsch, T Haaf: Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev 5, 60– 69 (2011)
[44]S Houshdaran, VK Cortessis, K Siegmund, A Yang, PW Laird, R Z Sokol: Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2, (2007)
[45]Y Du, M Li, J Chen, Y Duan, X Wang, Y Qiu, Z Cai, Y Gui, H Jiang: Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod 31, 24-33 (2016)
[46]RG Urdinguio, GF Bayón, M Dmitrijeva, EG Toraño, C Bravo, MF Fraga, L Bassas, S Larriba, AF Fernández: Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod 30, 1014–1028 (2015)
[47]D Montjean, A Zini, C Ravel, S Belloc, A Dalleac, H Copin, P Boyer, K Mc Elreavey, M Benkhalifa: Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 3, 235-240 (2015)
[48]RP Horgan, OH Clancy, JE Myers, PN Baker: An overview of proteomic and metabolomic technologies and their application to pregnancy research. BJOG 116, 173-181 (2009)
[49]E Com, N Melaine, F Chalmel, C Pineau: Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team. J Proteomic 31, 128-143 (2014)
[50]KI Aston, DT Carrell: Genome-Wide Study of Single-Nucleotide Polymorphisms Associated With Azoospermia and Severe Oligozoospermia. J Androl 30, 711–725 (2009)
[51]KI Aston, C Krausz, I Laface, E Ruiz-Castané, DT Carrell: Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 25, 1383-1397 (2010)
[52]H Zhao, J Xu, H Zhang, J Sun, Y Sun, Z Wang, J Liu, Q Ding, S Lu, R Shi, L You, Y Qin, X Zhao, X Lin, X Li, J Feng, L Wang, JM Trent, C Xu, Y Gao, B Zhang, X Gao, J Hu, H Chen, G Li, J Zhao, S Zou, H Jiang, C Hao, Y Zhao, J Ma, SL Zheng, ZJ Chen. A genome-wide association study reveals that variants within the HLA region are associated with risk for nonobstructive azoospermia. Am J Hum Genet 90, 900–906 (2012)
[53]Z Hu, Y Xia, X Guo, J Dai, H Li, H Hu, Y Jiang, F Lu, Y Wu, X Yang, H Li, B Yao, C Lu, C Xiong, Z Li, Y Gui, J Liu, Z Zhou, H Shen, X Wang, J Sha: A genome-wide association study in Chinese men identifies three risk loci for non-obstructive Azoospermia. Nat Genet 44, 183-186 (2011)
[54]Z Hu, Z Li, J Yu, C Tong, Y Lin, X Guo, F Lu, J Dong, Y Xia, Y Wen, H Wu, H Li, Y Zhu, P Ping, X Chen, J Dai, Y Jiang, S Pan, P Xu, K Luo, Q Du, B Yao, M Liang, Y Gui, N Weng, H Lu, Z Wang, F Zhang, X Zhu, X Yang, Z Zhang, H Zhao, C Xiong, H Ma, G Jin, F Chen, J Xu, X Wang, Z Zhou, Z Chen, J Liu, H Shen, J Sha: Association analysis identifies new risk loci for non-obstructive zoospermia in Chinese men. Nat Commun 5, 3857(2014)
[55]S Zou, Z Li, Y Wang, T Chen, P Song, J Chen, X He, P Xu, M Liang, K Luo, X Zhu, E Tian, Q Du, Z Wen, Z Li, M Wang, Y Sha, Y Cao, Y Shi, H Hu: Association study between polymorphisms of PRMT6, PEX10, SOX5, and nonobstructive azoospermia in the Han Chinese population. Biol Reprod 90, 96 (2014)
[56]G Kosova, NM Scott, C Niederberger, GS Prins, C Ober: Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet 90, 950-961 (2012)
[57]Y Sato, A Tajima, K Tsunematsu, S Nozawa, M Yoshiike, E Koh, J Kanaya, M Namiki, K Matsumiya, A Tsujimura, K Komatsu, N Itoh, J Eguchi, I Imoto, A Yamauchi, T Iwamoto: An association study of four candidate loci for human male fertility traits with male infertility. Hum Reprod 30, 1510–1514 (2015)
[58]M Chihara, K Yoshihara, T Ishiguro, Y Yokota, S Adachi, H Okada, K Kashima, T Sato, A Tanaka, K Tanaka, T Enomoto: Susceptibility to male infertility: replication study in Japanese men looking for an association with four GWAS-derived loci identified in European men. J Assist Reprod Genet 32, 903-908 (2015)
[59]Y Dong, Y Pan, R Wang, Z Zhang, Q Xi, RZ Liu: Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res 14, 16041-16049 (2015)
[60]F Tüttelmann, M Simoni, S Kliesch, S Ledig, B Dworniczak, P Wieacker, A Röpke: Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLoS One 6, (2011)
[61]S Eggers, KD De Boer, J van den Bergen, L Gordon, SJ White, D Jamsai, RI McLachlan, AH Sinclair, MK O‘Bryan: Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertil Steril 103, 214-219 (2015)
[62]C Krausz, C Giachini, D Lo Giacco, F Daguin, C Chianese, E Ars, E Ruiz- Castane, G Forti, E Rossi: High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One 7, (2012)
[63]AM Lopes, KI Aston, E Thompson, F Carvalho, J Gonçalves, N Huang, R Matthiesen, MJ Noordam, I Quintela, A Ramu, C Seabra, AB Wilfert, J Dai, JM Downie, S Fernandes, X Guo, J Sha, A Amorim, A Barros, A Carracedo, Z Hu, ME Hurles, S Moskovtsev, C Ober, DA Paduch, JD Schiffman, PN Schlegel, M Sousa, DT Carrell, DF Conrad: Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes including the gene DMRT1. PLoS Genet 9, (2013)
[64]SK Bansal, N Gupta, SN Sankhwar, S Rajender: Differential Genes Expression between Fertile and Infertile Spermatozoa Revealed by Transcriptome Analysis. PLoS One 10, (2015)
[65]D Montjean, P De La Grange, D Gentien, A Rapinat, S Belloc, P Cohen-Bacrie, Y Menezo, M Benkhalifa: Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet 29, 3-10 (2012)
[66]SE Pacheco, EA Houseman, BC Christensen, CJ Marsit, KT Kelsey, M Sigman, K Boekelheide: Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One 6, (2011)
[67]SS Hammoud, DH Low, C Yi, DT Carrell, E Guccione, BR Cairns: Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 14, 239-253 (2014)
[68]A Salas-Huetos, J Blanco, F Vidal, A Godo, M Grossmann, MC Pons, S F-Fernández, N Garrido, E Anton: Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 104, 591-601 (2015)
[69]A Abhari, N Zarghami, V Shahnazi, A Barzegar, L Farzadi, H Karami, S Zununi Vahed, M Nouri: Significance of microRNA targeted estrogen receptor in male fertility. Iran J Basic Med Sci 17, 81-86 (2014)
[70]M Abu-Halima, M Hammadeh, C Backes, U Fischer, P Leidinger, AM Lubbad, A Keller, E Meese: Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril 102, 989-997 (2014)
[71]MS Rahman, JS Lee, WS Kwon, MG Pang: Sperm proteomics: road to male fertility and contraception. Int J Endocrinol 2013 (2013)
[72]NL Anderson, NG Anderson: Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853-1861 (1998)
[73]MS Zangbar, S Keshtgar, J Zolghadri, B Gharesi-Fard: Antisperm protein targets in azoospermia men. J Hum Reprod Sci 9, 47-52 (2016)
[74]MI Hashemitabar, S Sabbagh, M Orazizadeh, A Ghadiri, MA Bahmanzadeh: A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet 32, 853-863 (2015)
[75]FJ Liu, X Liu, JL Han, YW Wang, SH Jin, XX Liu, J Liu, WT Wang, WJ Wang: Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. Hum Reprod 30, 861-869 (2015)
[76]A Agarwal, R Sharma, D Durairajanayagam, A Ayaz, Z Cui, B Willard, B Gopalan, E Sabanegh: Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 13, 8 (2015)
[77]SI Shen, J Wang, J Liang, D He: Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 31, 1395-1401 (2013)
[78]TT Liao, Z Xiang, WB Zhu, LQ Fan: Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl 11, 683-693 (2009)
[79]S Thacker, SP Yadav, RK Sharma, A Kashou, B Willard, D Zhang, A Agarwal: Evaluation of sperm proteins in infertile men: a proteomic approach. Fertil Steril 95, 2745-2748 (2011)
[80]PP Parte, P Rao, S Redij, V Lobo, SJ D‘Souza, R Gajbhiye, V Kulkarni: Sperm phosphoproteome profiling by ultra-performance liquid chromatography followed by data independent analysis (LC-MS (E)) reveals altered proteomic signatures in asthenozoospermia. J Proteomics 75, 5861-5867 (2012)
[81]AB Siva, DB Kameshwari, V Singh, K Pavani, CS Sundaram, N Rangaraj, M Deenadayal, S Shivaji. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod 16, 452-462 (2010)
[82]YI Liu, Y Guo, N Song, Y Fan, K Li, X Teng, Q Guo, Z Ding: Proteomic pattern changes with obesity-induced asthenozoospermia. Andrology 3, 247-259 (2015)
[83]R Azpiazu, A Amaral, J Castillo, JM Estanyol, M Guimerà, JL Ballescà, J Balasch, R Oliva: High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 29, 1225-1237 (2014)
[84]A Amaral, C Paiva, C Attardo Parrinello, JM Estanyol, JL Ballescà, J Ramalho-Santos, R Oliva: Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res 13, 5670-1584 (2014)
[85]M Saraswat, S Joenväärä, T Jain, AK Tomar, A Sinha, S Singh, S Yadav, R Renkonen: Human Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia. Mol Cell Proteomics 16, 57-72 (2017)
[86]Y Vandenbrouck, L Lane, C Carapito, P Duek, K Rondel, C Bruley, C Macron, A Gonzalez de Peredo, Y Couté, K Chaoui, E Com, A Gateau, AM Hesse, M Marcellin, L Méar, E Mouton-Barbosa, T Robin, O Burlet-Schiltz, S Cianferani, M Ferro, T Fréour, C Lindskog, J Garin, C Pineau: Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. J Proteome Res 15, 3998-4019 (2016)
[87]JV Silva, S Yoon, PJ De Bock, AV Goltsev, K Gevaert, JF Mendes, M Fardilha: Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome. Biochim Biophys Acta 1861, 375-385 (2017)
[88]V Kumar, MI Hassan, T Kashav, TP Singh, S Yadav: Heparin-binding proteins of human seminal plasma: purification and characterization. Mol Reprod Dev 75, 1767-1774 (2008)
[89]AK Tomar, BS Sooch, I Raj, S Singh, TP Singh, S Yadav: Isolation and identification of Concanavalin A binding glycoproteins from human seminal plasma: a step towards identification of male infertility marker proteins. Dis Markers 31, 379-386 (2011)
[90]M Saraswat, S Joenväärä, AK Tomar, S Singh, S Yadav, R Renkonen: N-Glycoproteomics of Human Seminal Plasma Glycoproteins. J Proteome Res 15, 991-1001 (2016)
[91]A Minai-Tehrani, N Jafarzadeh, K Gilany: Metabolomics: a state-of-the-art technology for better understanding of male infertility. Andrologia 48, 609-616 (2016)
[92]A Asghari, SA Marashi, N Ansari-Pour: A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Syst Biol Reprod Med, 1-13(2017)
[93]J Zhang, Z Huang, M Chen, Y Xia, FL Martin, W Hang, H Shen: Urinary metabolome identifies signatures of oligozoospermic infertile men. Fertil Steril 102, 44–53 (2014)
[94]V Jayaraman, S Ghosh, A Sengupta, S Srivastava, HM Sonawat, PK Narayan: Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet 31, 1195-1204 (2014)
[95]X Zhang, R Diao, X Zhu, Z Li, Z Cai: Metabolic characterization of asthenozoospermia using non targeted seminal plasma metabolomics. Clin Chim Acta 450, 254-261 (2015)
[96]BF da Silva, PT Del Giudice, DM Spaine, FC Gozzo, EG Lo Turco, RP Bertolla: Metabolomics of male infertility: characterization of seminal plasma lipid fingerprints in men with spinal cord injury. Fertil Steril 96, S233-S233 (2011)
[97]N Jafarzadeh, A Mani-Varnosfaderani, A Minai-Tehrani, E Savadi-Shiraz, MR Sadeghi, K Gilany: Metabolomics fingerprinting of seminal plasma from unexplained infertile men: a need for novel diagnostic biomarkers. Mol Reprod Dev 82, 150 (2015)
[98]K Gilany, RS Moazeni-Pourasil, N Jafarzadeh, E Savadi-Shiraz: Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients. Mol Reprod Dev 81, 84–86 (2014)
[99]AD Rolland, R Lavigne, C Dauly, P Calvel, C Kervarrec, T Freour, B Evrard, N Rioux-Leclercq, J Auger, C Pineau: Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod 28, 199-209 (2016)
[100]R Ramasamy, A Ridgeway, LI Lipshultz, DJ Lamb: Integrative DNA methylation and gene expression analysis identifies discoidin domain receptor 1 association with idiopathic nonobstructive azoospermia. Fertil Steril 102, 968-973 (2014)
[101]H Ge, AJ Walhout, M Vidal: Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 19, 551-560 (2003)
[102]V Singh, LC Singh, M Vasudevan, I Chattopadhyay, BB Borthakar, AK Rai, RK Phukan, J Sharma, J Mahanta, AC Kataki, S Kapur, S Saxena: Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population. OMICS 19, 688-699 (2015)
[103]S Pineda, P Gomez-Rubio, A Picornell, K Bessonov, M Márquez, M Kogevinas, FX Real, K Van Steen, N Malats: Framework for the Integration of Genomics, Epigenomics and Transcriptomics in Complex Diseases. Hum Hered 79, 124-36 (2015)
[104]A Rai, K Saito, M Yamazaki: Integrated omics analysis of specialized metabolism in medicinal plants. Plant J (2017)
[105]A Wippermann, O. Rupp, K. Brinkrolf, R. Hoffrogge, T. Noll: Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. J Biotechnol (2016)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Scholar (FBS) is published by IMR Press from Volume 13 Issue 1 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Multi-omics and male infertility: status, integration and future prospects
1 All India Institute of Medical Sciences (AIIMS), Department of Biophysics, New Delhi, India
2 Jawaharlal Nehru University (JNU), School of Life Sciences, New Delhi, India
*Author to whom correspondence should be addressed.
Abstract
Within the cell, gene expression analysis is the key to gain information about different cellular and physiological events. The multifaceted route of fertilization is a combination of different processes, which include production, maturation and ejaculation of the sperm, its travel through the female genital tract, followed by the ultimate fusion of the fertile sperm with the egg. Early embryogenesis and gametogenesis as well as gene expression at tissue level and global gene silencing are under different levels of stringent epigenetic checks. Moreover, transcriptome (expressed segment of the genome in form of RNA) and the proteome (expressed set of genomic proteins) contribute uniformly to the overall cellular gene expression. In both normal and pathophysiological environments, this gene expression is altered across various levels viz., genome variations, post-transcriptional modifications, protein expression and post translational modifications. Consequently, more informative conclusions can be drawn through a new ‘omics’ approach of system biology, which takes into account all the genomics, epigenomics, proteomics, and metabolomics findings under one roof, thus computing the alterations in all the entities (genes, proteins, metabolites) concurrently.
Keywords
- Male Infertility
- Integrome analysis
- Multi-omics
- Proteomics
- Genomics
- Metabolomics
- Review
References
- [1] MR Maduro, KC Lo, WW Chuang, DJ Lamb: Genes and male infertility: what can go wrong? J Androl 24, 485-493 (2003)
- [2] DT Carrell, KI Aston, R Oliva, BR Emery, CJ De Jonge: The "omics" of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 363, 295-312 (2016)
- [3] P Thonneau, S Marchand, A Tallec, ML Ferial, B Ducot, J Lansac, P Lopes, JM Tabaste, A Spira: Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988-1989). Hum Reprod 6, 811-816 (1991)
- [4] J Boivin, L Bunting, JA Collins, KG Nygren: International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22, 1506-1512 (2007)
- [5] DM de Kretser: Male infertility. Lancet 349, 787-790 (1997)
- [6] KI Aston, DF Conrad: A review of genome-wide approaches to study the genetic basis for spermatogenic defects. Methods Mol Biol 927, 397-410 (2013)
- [7] JM Hotaling: Genetics of male infertility. Urol Clin North Am 41, 1-17 (2014)
- [8] N Gupta, S Gupta, M Dama, A David, G Khanna, A Khanna, S Rajender: Strong association of 677 C > T substitution in the MTHFR gene with male infertility—a study on an Indian population and a meta-analysis. PLoS One 6, 22277 (2011)
- [9] YN Teng, YP Chang, JT Tseng, PH Kuo, IW Lee, MS Lee, PL Kuo: A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han. Hum Reprod 27, 2857–2865 (2012)
- [10] W Wu, J Lu, Q Tang, S Zhang, B Yuan, J Li, WU Di, H Sun, C Lu, Y Xia, D Chen, J Sha, X Wang: GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci Rep 3, 2258 (2013)
- [11] S Gunes, M Al-Sadaan, A Agarwal: Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online 31, 309–319 (2015)
- [12] L Stuppia, M Franzago, P Ballerini, V Gatta, I Antonucci: Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics 7, 120 (2015)
- [13] D Kumar, G Bansal, A Narang, T Basak, T Abbas, D Dash: Integrating transcriptome and proteome profiling: Strategies and applications. Proteomics 16, 2533-2544 (2016)
- [14] AR Lima, L Bastos Mde, M Carballo, P Guedes de Pinho: Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol 9, 357-370 (2016)
- [15] AD Riggs, RA Martinssen, VEA Russo: Epigenetic mechanisms of gene regulation. In:. Cold Spring Harbor, NY: Cold Spring Harbor Press; 1996
- [16] GI Egger, G Liang, A Aparicio, PA Jones: Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-463 (2004)
- [17] CH Waddington: Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)
- [18] A Santenard, ME Torres-Padilla: Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4, 80-84 (2009)
- [19] W An: Histone acetylation and methylation: combinatorial players for transcriptional regulation. Subcell Biochem 41, 351–369 (2007)
- [20] T Kouzarides: Chromatin modifications and their function. Cell 128, 693–705 (2007)
- [21] RS Illingworth, AP Bird: CpG islands—‘‘a rough guide’’. FEBS Lett 83, 1713–1720 (2009)
- [22] D Takai, PA Jones: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99, 3740–3745 (2002)
- [23] R Dada, M Kumar, R Jesudasan, JL Fernández, J Gosálvez, A Agarwal: Epigenetics and its role in male infertility. J Assist Reprod Genet 29, 213–223 (2012)
- [24] PD Partensky, GJ Parrikar: Chromatin remodelers act globally sequence positions nucleosomes locally. J Mol Biol 391, 12–25 (2009)
- [25] GJ Narlikar, HY Fan, RE Kingston: Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002)
- [26] FF Costa: Non-coding RNA: new players in eukaryotic biology. Gene 357, 83–94 (2005)
- [27] T Hamatani: Human spermatozoal RNAs. Fertil Steril 97, 275–281 (2012)
- [28] J Ausio, JM Eirin-Lopez, LJ Frehlick: Evolution of vertebrate chromosomal sperm proteins: implications for fertility and sperm competition. Soc Re-prod Fertil Suppl 65, 63–79 (2007)
- [29] R Oliva: Protamines and male infertility. Hum Reprod Update 12, 417-35 (2006)
- [30] HJ van Roijen, MP Ooms, MC Spaargaren, WM Baarends, RF Weber, JA Grootegoed, JT Vreeburg: Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod 3, 1559-1566 (1998)
- [31] S Rousseaux, J Gaucher, J Thevenon, C Caron, ALVitte, S Curtet, C Derobertis, AK Faure, R Levy, I Aknin-Seifer, C Ravel, JP Siffroi, K Mc Elreavey, H Lejeune, C Jimenez, S Hennebicq, S Khochbin: Spermiogenesis: histone acetylation triggers male genome reprogramming. Gynecol Obstet Fertil 37, 519–522 (2009)
- [32] WS Ward, DS Coffey: DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44, 569-574 (1991)
- [33] SM Wykes, SA Krawetz: The structural organization of sperm chromatin. J Biol Chem 278, 29471-29477 (2003)
- [34] SS Hammoud, DA Nix, H Zhang, J Purwar, DT Carrell, BR Cairns: Distinctive chromatin in human sperm packages genes for embryo development. Nature 460, 473-478 (2009)
- [35] TF Wu, DS Chu: Epigenetic processes implemented during spermatogenesis distinguish the paternal pronucleus in the embryo. Reprod Biomed Online 16, 13-22 (2008)
- [36] F von Meyenn, W Reik : Forget the Parents: Epigenetic Reprogramming in Human Germ Cells. Cell 161, 1248-1251 (2015)
- [37] K Pfeifer: Mechanisms of Genomic Imprinting. Am J Hum Genet 672, 777–787 (2000)
- [38] X Cui, X Jing, X Wu, M Yan, Q Li, Y Shen, Z Wang: DNA methylation in spermatogenesis and male infertility. Exp Ther Med 12, 1973-1979 (2016)
- [39] CC Oakes, S La Salle, DJ Smiraglia, B Robaire, JM Trasler: A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci U S A 104, 228-233 (2007)
- [40] U Schagdarsurengin, A Paradowska, K Steger: Analysing the sperm epigenome: roles in early embryogenesis and assisted reproduction. Nat Rev Urol 9, 609-619 (2012)
- [41] CJ Marques, F Carvalho, M Sousa, A Barros: Genomic imprinting in disruptive spermatogenesis. Lancet 363, 1700–1702 (2004)
- [42] H Kobayashi, A Sato, E Otsu, H Hiura, C Tomatsu, H Sasaki, N Yaegashi, T Arima: Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 16, 2542–2551 (2007)
- [43] N El Hajj, U Zechner, E Schneider, A Tresch, J Gromoll, T Hahn, M Schorsch, T Haaf: Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev 5, 60– 69 (2011)
- [44] S Houshdaran, VK Cortessis, K Siegmund, A Yang, PW Laird, R Z Sokol: Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One 2, (2007)
- [45] Y Du, M Li, J Chen, Y Duan, X Wang, Y Qiu, Z Cai, Y Gui, H Jiang: Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod 31, 24-33 (2016)
- [46] RG Urdinguio, GF Bayón, M Dmitrijeva, EG Toraño, C Bravo, MF Fraga, L Bassas, S Larriba, AF Fernández: Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod 30, 1014–1028 (2015)
- [47] D Montjean, A Zini, C Ravel, S Belloc, A Dalleac, H Copin, P Boyer, K Mc Elreavey, M Benkhalifa: Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 3, 235-240 (2015)
- [48] RP Horgan, OH Clancy, JE Myers, PN Baker: An overview of proteomic and metabolomic technologies and their application to pregnancy research. BJOG 116, 173-181 (2009)
- [49] E Com, N Melaine, F Chalmel, C Pineau: Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team. J Proteomic 31, 128-143 (2014)
- [50] KI Aston, DT Carrell: Genome-Wide Study of Single-Nucleotide Polymorphisms Associated With Azoospermia and Severe Oligozoospermia. J Androl 30, 711–725 (2009)
- [51] KI Aston, C Krausz, I Laface, E Ruiz-Castané, DT Carrell: Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 25, 1383-1397 (2010)
- [52] H Zhao, J Xu, H Zhang, J Sun, Y Sun, Z Wang, J Liu, Q Ding, S Lu, R Shi, L You, Y Qin, X Zhao, X Lin, X Li, J Feng, L Wang, JM Trent, C Xu, Y Gao, B Zhang, X Gao, J Hu, H Chen, G Li, J Zhao, S Zou, H Jiang, C Hao, Y Zhao, J Ma, SL Zheng, ZJ Chen. A genome-wide association study reveals that variants within the HLA region are associated with risk for nonobstructive azoospermia. Am J Hum Genet 90, 900–906 (2012)
- [53] Z Hu, Y Xia, X Guo, J Dai, H Li, H Hu, Y Jiang, F Lu, Y Wu, X Yang, H Li, B Yao, C Lu, C Xiong, Z Li, Y Gui, J Liu, Z Zhou, H Shen, X Wang, J Sha: A genome-wide association study in Chinese men identifies three risk loci for non-obstructive Azoospermia. Nat Genet 44, 183-186 (2011)
- [54] Z Hu, Z Li, J Yu, C Tong, Y Lin, X Guo, F Lu, J Dong, Y Xia, Y Wen, H Wu, H Li, Y Zhu, P Ping, X Chen, J Dai, Y Jiang, S Pan, P Xu, K Luo, Q Du, B Yao, M Liang, Y Gui, N Weng, H Lu, Z Wang, F Zhang, X Zhu, X Yang, Z Zhang, H Zhao, C Xiong, H Ma, G Jin, F Chen, J Xu, X Wang, Z Zhou, Z Chen, J Liu, H Shen, J Sha: Association analysis identifies new risk loci for non-obstructive zoospermia in Chinese men. Nat Commun 5, 3857(2014)
- [55] S Zou, Z Li, Y Wang, T Chen, P Song, J Chen, X He, P Xu, M Liang, K Luo, X Zhu, E Tian, Q Du, Z Wen, Z Li, M Wang, Y Sha, Y Cao, Y Shi, H Hu: Association study between polymorphisms of PRMT6, PEX10, SOX5, and nonobstructive azoospermia in the Han Chinese population. Biol Reprod 90, 96 (2014)
- [56] G Kosova, NM Scott, C Niederberger, GS Prins, C Ober: Genome-wide association study identifies candidate genes for male fertility traits in humans. Am J Hum Genet 90, 950-961 (2012)
- [57] Y Sato, A Tajima, K Tsunematsu, S Nozawa, M Yoshiike, E Koh, J Kanaya, M Namiki, K Matsumiya, A Tsujimura, K Komatsu, N Itoh, J Eguchi, I Imoto, A Yamauchi, T Iwamoto: An association study of four candidate loci for human male fertility traits with male infertility. Hum Reprod 30, 1510–1514 (2015)
- [58] M Chihara, K Yoshihara, T Ishiguro, Y Yokota, S Adachi, H Okada, K Kashima, T Sato, A Tanaka, K Tanaka, T Enomoto: Susceptibility to male infertility: replication study in Japanese men looking for an association with four GWAS-derived loci identified in European men. J Assist Reprod Genet 32, 903-908 (2015)
- [59] Y Dong, Y Pan, R Wang, Z Zhang, Q Xi, RZ Liu: Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res 14, 16041-16049 (2015)
- [60] F Tüttelmann, M Simoni, S Kliesch, S Ledig, B Dworniczak, P Wieacker, A Röpke: Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLoS One 6, (2011)
- [61] S Eggers, KD De Boer, J van den Bergen, L Gordon, SJ White, D Jamsai, RI McLachlan, AH Sinclair, MK O‘Bryan: Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertil Steril 103, 214-219 (2015)
- [62] C Krausz, C Giachini, D Lo Giacco, F Daguin, C Chianese, E Ars, E Ruiz- Castane, G Forti, E Rossi: High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One 7, (2012)
- [63] AM Lopes, KI Aston, E Thompson, F Carvalho, J Gonçalves, N Huang, R Matthiesen, MJ Noordam, I Quintela, A Ramu, C Seabra, AB Wilfert, J Dai, JM Downie, S Fernandes, X Guo, J Sha, A Amorim, A Barros, A Carracedo, Z Hu, ME Hurles, S Moskovtsev, C Ober, DA Paduch, JD Schiffman, PN Schlegel, M Sousa, DT Carrell, DF Conrad: Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes including the gene DMRT1. PLoS Genet 9, (2013)
- [64] SK Bansal, N Gupta, SN Sankhwar, S Rajender: Differential Genes Expression between Fertile and Infertile Spermatozoa Revealed by Transcriptome Analysis. PLoS One 10, (2015)
- [65] D Montjean, P De La Grange, D Gentien, A Rapinat, S Belloc, P Cohen-Bacrie, Y Menezo, M Benkhalifa: Sperm transcriptome profiling in oligozoospermia. J Assist Reprod Genet 29, 3-10 (2012)
- [66] SE Pacheco, EA Houseman, BC Christensen, CJ Marsit, KT Kelsey, M Sigman, K Boekelheide: Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm. PLoS One 6, (2011)
- [67] SS Hammoud, DH Low, C Yi, DT Carrell, E Guccione, BR Cairns: Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 14, 239-253 (2014)
- [68] A Salas-Huetos, J Blanco, F Vidal, A Godo, M Grossmann, MC Pons, S F-Fernández, N Garrido, E Anton: Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 104, 591-601 (2015)
- [69] A Abhari, N Zarghami, V Shahnazi, A Barzegar, L Farzadi, H Karami, S Zununi Vahed, M Nouri: Significance of microRNA targeted estrogen receptor in male fertility. Iran J Basic Med Sci 17, 81-86 (2014)
- [70] M Abu-Halima, M Hammadeh, C Backes, U Fischer, P Leidinger, AM Lubbad, A Keller, E Meese: Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril 102, 989-997 (2014)
- [71] MS Rahman, JS Lee, WS Kwon, MG Pang: Sperm proteomics: road to male fertility and contraception. Int J Endocrinol 2013 (2013)
- [72] NL Anderson, NG Anderson: Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19, 1853-1861 (1998)
- [73] MS Zangbar, S Keshtgar, J Zolghadri, B Gharesi-Fard: Antisperm protein targets in azoospermia men. J Hum Reprod Sci 9, 47-52 (2016)
- [74] MI Hashemitabar, S Sabbagh, M Orazizadeh, A Ghadiri, MA Bahmanzadeh: A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet 32, 853-863 (2015)
- [75] FJ Liu, X Liu, JL Han, YW Wang, SH Jin, XX Liu, J Liu, WT Wang, WJ Wang: Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. Hum Reprod 30, 861-869 (2015)
- [76] A Agarwal, R Sharma, D Durairajanayagam, A Ayaz, Z Cui, B Willard, B Gopalan, E Sabanegh: Major protein alterations in spermatozoa from infertile men with unilateral varicocele. Reprod Biol Endocrinol 13, 8 (2015)
- [77] SI Shen, J Wang, J Liang, D He: Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 31, 1395-1401 (2013)
- [78] TT Liao, Z Xiang, WB Zhu, LQ Fan: Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J Androl 11, 683-693 (2009)
- [79] S Thacker, SP Yadav, RK Sharma, A Kashou, B Willard, D Zhang, A Agarwal: Evaluation of sperm proteins in infertile men: a proteomic approach. Fertil Steril 95, 2745-2748 (2011)
- [80] PP Parte, P Rao, S Redij, V Lobo, SJ D‘Souza, R Gajbhiye, V Kulkarni: Sperm phosphoproteome profiling by ultra-performance liquid chromatography followed by data independent analysis (LC-MS (E)) reveals altered proteomic signatures in asthenozoospermia. J Proteomics 75, 5861-5867 (2012)
- [81] AB Siva, DB Kameshwari, V Singh, K Pavani, CS Sundaram, N Rangaraj, M Deenadayal, S Shivaji. Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol Hum Reprod 16, 452-462 (2010)
- [82] YI Liu, Y Guo, N Song, Y Fan, K Li, X Teng, Q Guo, Z Ding: Proteomic pattern changes with obesity-induced asthenozoospermia. Andrology 3, 247-259 (2015)
- [83] R Azpiazu, A Amaral, J Castillo, JM Estanyol, M Guimerà, JL Ballescà, J Balasch, R Oliva: High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 29, 1225-1237 (2014)
- [84] A Amaral, C Paiva, C Attardo Parrinello, JM Estanyol, JL Ballescà, J Ramalho-Santos, R Oliva: Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res 13, 5670-1584 (2014)
- [85] M Saraswat, S Joenväärä, T Jain, AK Tomar, A Sinha, S Singh, S Yadav, R Renkonen: Human Spermatozoa Quantitative Proteomic Signature Classifies Normo- and Asthenozoospermia. Mol Cell Proteomics 16, 57-72 (2017)
- [86] Y Vandenbrouck, L Lane, C Carapito, P Duek, K Rondel, C Bruley, C Macron, A Gonzalez de Peredo, Y Couté, K Chaoui, E Com, A Gateau, AM Hesse, M Marcellin, L Méar, E Mouton-Barbosa, T Robin, O Burlet-Schiltz, S Cianferani, M Ferro, T Fréour, C Lindskog, J Garin, C Pineau: Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. J Proteome Res 15, 3998-4019 (2016)
- [87] JV Silva, S Yoon, PJ De Bock, AV Goltsev, K Gevaert, JF Mendes, M Fardilha: Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome. Biochim Biophys Acta 1861, 375-385 (2017)
- [88] V Kumar, MI Hassan, T Kashav, TP Singh, S Yadav: Heparin-binding proteins of human seminal plasma: purification and characterization. Mol Reprod Dev 75, 1767-1774 (2008)
- [89] AK Tomar, BS Sooch, I Raj, S Singh, TP Singh, S Yadav: Isolation and identification of Concanavalin A binding glycoproteins from human seminal plasma: a step towards identification of male infertility marker proteins. Dis Markers 31, 379-386 (2011)
- [90] M Saraswat, S Joenväärä, AK Tomar, S Singh, S Yadav, R Renkonen: N-Glycoproteomics of Human Seminal Plasma Glycoproteins. J Proteome Res 15, 991-1001 (2016)
- [91] A Minai-Tehrani, N Jafarzadeh, K Gilany: Metabolomics: a state-of-the-art technology for better understanding of male infertility. Andrologia 48, 609-616 (2016)
- [92] A Asghari, SA Marashi, N Ansari-Pour: A sperm-specific proteome-scale metabolic network model identifies non-glycolytic genes for energy deficiency in asthenozoospermia. Syst Biol Reprod Med, 1-13(2017)
- [93] J Zhang, Z Huang, M Chen, Y Xia, FL Martin, W Hang, H Shen: Urinary metabolome identifies signatures of oligozoospermic infertile men. Fertil Steril 102, 44–53 (2014)
- [94] V Jayaraman, S Ghosh, A Sengupta, S Srivastava, HM Sonawat, PK Narayan: Identification of biochemical differences between different forms of male infertility by nuclear magnetic resonance (NMR) spectroscopy. J Assist Reprod Genet 31, 1195-1204 (2014)
- [95] X Zhang, R Diao, X Zhu, Z Li, Z Cai: Metabolic characterization of asthenozoospermia using non targeted seminal plasma metabolomics. Clin Chim Acta 450, 254-261 (2015)
- [96] BF da Silva, PT Del Giudice, DM Spaine, FC Gozzo, EG Lo Turco, RP Bertolla: Metabolomics of male infertility: characterization of seminal plasma lipid fingerprints in men with spinal cord injury. Fertil Steril 96, S233-S233 (2011)
- [97] N Jafarzadeh, A Mani-Varnosfaderani, A Minai-Tehrani, E Savadi-Shiraz, MR Sadeghi, K Gilany: Metabolomics fingerprinting of seminal plasma from unexplained infertile men: a need for novel diagnostic biomarkers. Mol Reprod Dev 82, 150 (2015)
- [98] K Gilany, RS Moazeni-Pourasil, N Jafarzadeh, E Savadi-Shiraz: Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients. Mol Reprod Dev 81, 84–86 (2014)
- [99] AD Rolland, R Lavigne, C Dauly, P Calvel, C Kervarrec, T Freour, B Evrard, N Rioux-Leclercq, J Auger, C Pineau: Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum Reprod 28, 199-209 (2016)
- [100] R Ramasamy, A Ridgeway, LI Lipshultz, DJ Lamb: Integrative DNA methylation and gene expression analysis identifies discoidin domain receptor 1 association with idiopathic nonobstructive azoospermia. Fertil Steril 102, 968-973 (2014)
- [101] H Ge, AJ Walhout, M Vidal: Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends Genet 19, 551-560 (2003)
- [102] V Singh, LC Singh, M Vasudevan, I Chattopadhyay, BB Borthakar, AK Rai, RK Phukan, J Sharma, J Mahanta, AC Kataki, S Kapur, S Saxena: Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population. OMICS 19, 688-699 (2015)
- [103] S Pineda, P Gomez-Rubio, A Picornell, K Bessonov, M Márquez, M Kogevinas, FX Real, K Van Steen, N Malats: Framework for the Integration of Genomics, Epigenomics and Transcriptomics in Complex Diseases. Hum Hered 79, 124-36 (2015)
- [104] A Rai, K Saito, M Yamazaki: Integrated omics analysis of specialized metabolism in medicinal plants. Plant J (2017)
- [105] A Wippermann, O. Rupp, K. Brinkrolf, R. Hoffrogge, T. Noll: Integrative analysis of DNA methylation and gene expression in butyrate-treated CHO cells. J Biotechnol (2016)
