Information
References
Contents
Download
[1]A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray and M. J. Thun: Cancer statistics, 2008. CA Cancer J Clin, 58(2), 71-96 (2008)
[2]G. Chornokur, K. Dalton, M. E. Borysova and N. B. Kumar: Disparities at presentation, diagnosis, treatment, and survival in African American men, affected by prostate cancer. Prostate, 71(9), 985-97 (2011)
[3]P. A. Godley, A. P. Schenck, M. A. Amamoo, V. J. Schoenbach, S. Peacock, M. Manning, M. Symons and J. A. Talcott: Racial differences in mortality among Medicare recipients after treatment for localized prostate cancer. J Natl Cancer Inst, 95(22), 1702-10 (2003)
[4]I. J. Powell, F. D. Vigneau, C. H. Bock, J. Ruterbusch and L. K. Heilbrun: Reducing prostate cancer racial disparity: evidence for aggressive early prostate cancer PSA testing of African American men. Cancer Epidemiol Biomarkers Prev, 23(8), 1505-11 (2014)
[5]C. E. DeSantis, R. L. Siegel, A. G. Sauer, K. D. Miller, S. A. Fedewa, K. I. Alcaraz and A. Jemal: Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J Clin (2016)
[6]F. Khani, J. M. Mosquera, K. Park, M. Blattner, C. O’Reilly, T. Y. MacDonald, Z. Chen, A. Srivastava, A. K. Tewari, C. E. Barbieri, M. A. Rubin and B. D. Robinson: Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin Cancer Res, 20(18), 4925-34 (2014)
[7]S. Koochekpour, T. Marlowe, K. K. Singh, K. Attwood and D. Chandra: Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men. PLoS One, 8(9), e74688 (2013)
[8]R. H. Houtkooper, L. Mouchiroud, D. Ryu, N. Moullan, E. Katsyuba, G. Knott, R. W. Williams and J. Auwerx: Mitonuclear protein imbalance as a conserved longevity mechanism. Nature, 497(7450), 451-7 (2013)
[9]M. Higuchi, T. Kudo, S. Suzuki, T. T. Evans, R. Sasaki, Y. Wada, T. Shirakawa, J. R. Sawyer and A. Gotoh: Mitochondrial DNA determines androgen dependence in prostate cancer cell lines. Oncogene, 25(10), 1437-45 (2006)
[10]A. Naito, C. C. Cook, T. Mizumachi, M. Wang, C. H. Xie, T. T. Evans, T. Kelly and M. Higuchi: Progressive tumor features accompany epithelial-mesenchymal transition induced in mitochondrial DNA-depleted cells. Cancer Sci, 99(8), 1584-8 (2008)
[11]R. S. Arnold, C. Q. Sun, J. C. Richards, G. Grigoriev, I. M. Coleman, P. S. Nelson, C. L. Hsieh, J. K. Lee, Z. Xu, A. Rogatko, A. O. Osunkoya, M. Zayzafoon, L. Chung and J. A. Petros: Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate, 69(1), 1-11 (2009)
[12]C. Jeronimo, S. Nomoto, O. L. Caballero, H. Usadel, R. Henrique, G. Varzim, J. Oliveira, C. Lopes, M. S. Fliss and D. Sidransky: Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene, 20(37), 5195-8 (2001)
[13]J. Z. Chen, N. Gokden, G. F. Greene, P. Mukunyadzi and F. F. Kadlubar: Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection. Cancer Res, 62(22), 6470-4 (2002)
[14]E. Mambo, A. Chatterjee, M. Xing, G. Tallini, B. R. Haugen, S. C. Yeung, S. Sukumar and D. Sidransky: Tumor-specific changes in mtDNA content in human cancer. Int J Cancer, 116(6), 920-4 (2005)
[15]A. Heddi, H. Faure-Vigny, D. C. Wallace and G. Stepien: Coordinate expression of nuclear and mitochondrial genes involved in energy production in carcinoma and oncocytoma. Biochim Biophys Acta, 1316(3), 203-9 (1996)
[16]K. Luciakova and S. Kuzela: Increased steady-state levels of several mitochondrial and nuclear gene transcripts in rat hepatoma with a low content of mitochondria. Eur J Biochem, 205(3), 1187-93 (1992)
[17]M. S. Fliss, H. Usadel, O. L. Caballero, L. Wu, M. R. Buta, S. M. Eleff, J. Jen and D. Sidransky: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science, 287(5460), 2017-9 (2000)
[18]J. B. Jones, J. J. Song, P. M. Hempen, G. Parmigiani, R. H. Hruban and S. E. Kern: Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass“-ive advantage over detection of nuclear DNA mutations. Cancer Res, 61(4), 1299-304 (2001)
[19]T. Mizumachi, L. Muskhelishvili, A. Naito, J. Furusawa, C. Y. Fan, E. R. Siegel, F. F. Kadlubar, U. Kumar and M. Higuchi: Increased distributional variance of mitochondrial DNA content associated with prostate cancer cells as compared with normal prostate cells. Prostate, 68(4), 408-17 (2008)
[20]H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett and P. Huang: Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol, 175(6), 913-23 (2006)
[21]J. S. Carew and P. Huang: Mitochondrial defects in cancer. Mol Cancer, 1, 9 (2002)
[22]G. Amuthan, G. Biswas, H. K. Ananadatheerthavarada, C. Vijayasarathy, H. M. Shephard and N. G. Avadhani: Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene, 21(51), 7839-49 (2002)
[23]W. Qian, M. Nishikawa, A. M. Haque, M. Hirose, M. Mashimo, E. Sato and M. Inoue: Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol, 289(6), C1466-75 (2005)
[24]D. Hanahan and R. A. Weinberg: Hallmarks of cancer: the next generation. Cell, 144(5), 646-74 (2011)
[25]D. Chandra and K. K. Singh: Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta, 1807(6), 620-5 (2011)
[26]N. Yadav and D. Chandra: Mitochondrial DNA mutations and breast tumorigenesis. Biochim Biophys Acta, 1836(2), 336-44 (2013)
[27]A. Chatterjee, E. Mambo and D. Sidransky: Mitochondrial DNA mutations in human cancer. Oncogene, 25(34), 4663-74 (2006)
[28]J. A. Petros, A. K. Baumann, E. Ruiz-Pesini, M. B. Amin, C. Q. Sun, J. Hall, S. Lim, M. M. Issa, W. D. Flanders, S. H. Hosseini, F. F. Marshall and D. C. Wallace: mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A, 102(3), 719-24 (2005)
[29]K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi, H. Imanishi, K. Nakada, Y. Honma and J. Hayashi: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 320(5876), 661-4 (2008)
[30]G. Amuthan, G. Biswas, S. Y. Zhang, A. Klein-Szanto, C. Vijayasarathy and N. G. Avadhani: Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J, 20(8), 1910-20 (2001)
[31]S. Anderson, A. T. Bankier, B. G. Barrell, M. H. de Bruijn, A. R. Coulson, J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier, A. J. Smith, R. Staden and I. G. Young: Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457-65 (1981)
[32]C. C. Cook, A. Kim, S. Terao, A. Gotoh and M. Higuchi: Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell Death Dis, 3, e258 (2012)
[33]H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Beroud, J. Demont, R. Bouvier, H. Schagger and C. Godinot: Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis, 23(5), 759-68 (2002)
[34]A. K. Chaudhary, T. A. Bhat, S. Kumar, A. Kumar, R. Kumar, W. Underwood, S. Koochekpour, M. Shourideh, N. Yadav, S. Dhar, D. Chandra. Mitochondrial dysfunction-mediated apoptosis resistance associates with defective heat shock protein response in African-American men with prostate cancer. Br J Cancer, 114(10, 1090-100 (2016)
[35]P. L. Chen, C. F. Chen, Y. Chen, X. E. Guo, C. K. Huang, J. Y. Shew, R. L. Reddick, D. C. Wallace and W. H. Lee: Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene, 32(9), 1193-201 (2013)
[36]L. S. Kaguni: DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem, 73, 293-320 (2004)
[37]S. Rajakulendran, R. D. Pitceathly, J. W. Taanman, H. Costello, M. G. Sweeney, C. E. Woodward, Z. Jaunmuktane, J. L. Holton, T. S. Jacques, B. N. Harding, C. Fratter, M. G. Hanna and S. Rahman: A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease. PLoS One, 11(1), e0145500 (2016)
[38]S. Azrak, V. Ayyasamy, G. Zirpoli, C. Ambrosone, E. V. Bandera, D. H. Bovbjerg, L. Jandorf, G. Ciupak, W. Davis, K. S. Pawlish, P. Liang and K. Singh: CAG repeat variants in the POLG1 gene encoding mtDNA polymerase-gamma and risk of breast cancer in African-American women. PLoS One, 7(1), e29548 (2012)
[39]K. K. Singh, V. Ayyasamy, K. M. Owens, M. S. Koul and M. Vujcic: Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet, 54(9), 516-24 (2009)
[40]W. T. Lee and J. St John: The control of mitochondrial DNA replication during development and tumorigenesis. Ann N Y Acad Sci, 1350, 95-106 (2015)
[41]Q. Dang, L. Li, H. Xie, D. He, J. Chen, W. Song, L. S. Chang, H. C. Chang, S. Yeh and C. Chang: Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells -->androgen receptor (AR) -->miRNA32 signals. Mol Oncol, 9(7), 1241-51 (2015)
[42]C. D. Hu, R. Choo and J. Huang: Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol, 5, 90 (2015)
[43]Z. Li, C. J. Chen, J. K. Wang, E. Hsia, W. Li, J. Squires, Y. Sun and J. Huang: Neuroendocrine differentiation of prostate cancer. Asian J Androl, 15(3), 328-32 (2013)
[44]M. Kulawiec, V. Ayyasamy and K. K. Singh: p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog, 8, 8 (2009)
[45]G. Achanta, R. Sasaki, L. Feng, J. S. Carew, W. Lu, H. Pelicano, M. J. Keating and P. Huang: Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J, 24(19), 3482-92 (2005)
[46]J. T. Dong: Prevalent mutations in prostate cancer. J Cell Biochem, 97(3), 433-47 (2006)
[47]D. J. Grignon, R. Caplan, F. H. Sarkar, C. A. Lawton, E. H. Hammond, M. V. Pilepich, J. D. Forman, J. Mesic, K. K. Fu, R. A. Abrams, T. F. Pajak, W. U. Shipley and J. D. Cox: p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG ↢. J Natl Cancer Inst, 89(2), 158-65 (1997)
[48]F. J. Meyers, P. H. Gumerlock, S. G. Chi, H. Borchers, A. D. Deitch and R. W. deVere White: Very frequent p53 mutations in metastatic prostate carcinoma and in matched primary tumors. Cancer, 83(12), 2534-9 (1998)
[49]S. Compton, C. Kim, N. B. Griner, P. Potluri, I. E. Scheffler, S. Sen, D. J. Jerry, S. Schneider and N. Yadava: Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. J Biol Chem, 286(23), 20297-312 (2011)
[50]S. Matoba, J. G. Kang, W. D. Patino, A. Wragg, M. Boehm, O. Gavrilova, P. J. Hurley, F. Bunz and P. M. Hwang: p53 regulates mitochondrial respiration. Science, 312(5780), 1650-3 (2006)
[51]R. F. Johnson and N. D. Perkins: Nuclear factor-kappaB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci, 37(8), 317-24 (2012)
[52]C. Adrain, E. M. Creagh and S. J. Martin: Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J, 20(23), 6627-36 (2001)
[53]J. Cai, J. Yang and D. P. Jones: Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta, 1366(1-2), 139-49 (1998)
[54]C. Cande, N. Vahsen, C. Garrido and G. Kroemer: Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ, 11(6), 591-5 (2004)
[55]S. Zinkel, A. Gross and E. Yang: BCL2 family in DNA damage and cell cycle control. Cell Death Differ, 13(8), 1351-9 (2006)
[56]S. B. Bratton and G. S. Salvesen: Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci, 123(Pt 19), 3209-14 (2010)
[57]N. Yadav and D. Chandra: Mitochondrial and postmitochondrial survival signaling in cancer. Mitochondrion, 16, 18-25 (2014)
[58]J. E. Chipuk and D. R. Green: How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol, 18(4), 157-64 (2008)
[59]M. D. Jacobson, J. F. Burne, M. P. King, T. Miyashita, J. C. Reed and M. C. Raff: Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature, 361(6410), 365-9 (1993)
[60]N. Yadava, S. S. Schneider, D. J. Jerry and C. Kim: Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol Neoplasia, 18(1), 75-87 (2013)
[61]N.Yadav, S. Kumar, R. Kumar, P. Srivastava, L. Sun, P. Rapali, T. Marlowe, A. Schneider, J.R. Inigo, J. O’Malley, R. Londonkar, R. Gogada, A.K. Chaudhary, N. Yadava, Chandra D. Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation. Free radical biology &medicine 2016;90:261-71.
[62]N. Yadav, S. Kumar, T. Marlowe, A. K. Chaudhary, R. Kumar, J. Wang, J. O’Malley, P. M. Boland, S. Jayanthi, T. K. Kumar, N. Yadava and D. Chandra: Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis, 6, e1969 (2015)
[63]D. Chandra, J. W. Liu and D. G. Tang: Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J Biol Chem, 277(52), 50842-54 (2002)
[64]M. Higuchi, B. B. Aggarwal and E. T. Yeh: Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function. J Clin Invest, 99(7), 1751-8 (1997)
[65]D. S. McClintock, M. T. Santore, V. Y. Lee, J. Brunelle, G. R. Budinger, W. X. Zong, C. B. Thompson, N. Hay and N. S. Chandel: Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol, 22(1), 94-104 (2002)
[66]C. Chauvin, F. De Oliveira, X. Ronot, M. Mousseau, X. Leverve and E. Fontaine: Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem, 276(44), 41394-8 (2001)
[67]T. Mizumachi, S. Suzuki, A. Naito, J. Carcel-Trullols, T. T. Evans, P. M. Spring, N. Oridate, Y. Furuta, S. Fukuda and M. Higuchi: Increased mitochondrial DNA induces acquired docetaxel resistance in head and neck cancer cells. Oncogene, 27(6), 831-8 (2008)
[68]M. L. Boland, A. H. Chourasia and K. F. Macleod: Mitochondrial dysfunction in cancer. Front Oncol, 3, 292 (2013)
[69]S. W. Tait, G. Ichim and D. R. Green: Die another way--non-apoptotic mechanisms of cell death. J Cell Sci, 127(Pt 10), 2135-44 (2014)
[70]S. Ponnala, C. Chetty, K. K. Veeravalli, D. H. Dinh, J. D. Klopfenstein and J. S. Rao: Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells. Int J Oncol, 40(2), 509-18 (2012)
[71]I. J. Powell, M. Banerjee, M. Novallo, W. Sakr, D. Grignon, D. P. Wood and J. E. Pontes: Prostate cancer biochemical recurrence stage for stage is more frequent among African-American than white men with locally advanced but not organ-confined disease. Urology, 55(2), 246-51 (2000)
[72]I. J. Powell, L. K. Heilbrun, W. Sakr, D. Grignon, J. Montie, M. Novallo, D. Smith and J. E. Pontes: The predictive value of race as a clinical prognostic factor among patients with clinically localized prostate cancer: a multivariate analysis of positive surgical margins. Urology, 49(5), 726-31 (1997)
[73]M. Yu, Y. Zhou, Y. Shi, L. Ning, Y. Yang, X. Wei, N. Zhang, X. Hao and R. Niu: Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life, 59(7), 450-7 (2007)
[74]I. R. Indran, G. Tufo, S. Pervaiz and C. Brenner: Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta, 1807(6), 735-45 (2011)
[75]N. Yadav, A. Pliss, A. Kuzmin, P. Rapali, L. Sun, P. Prasad and D. Chandra: Transformations of the macromolecular landscape at mitochondria during DNA-damage-induced apoptotic cell death. Cell Death Dis, 5, e1453 (2014)
[76]L. Moro, A. A. Arbini, E. Marra and M. Greco: Mitochondrial DNA depletion reduces PARP-1 levels and promotes progression of the neoplastic phenotype in prostate carcinoma. Cell Oncol, 30(4), 307-22 (2008)
[77]L. Moro, A. A. Arbini, J. L. Yao, P. A. di Sant’Agnese, E. Marra and M. Greco: Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2. Cell Death Differ, 16(4), 571-83 (2009)
[78]A. M. Ray, K. A. Zuhlke, A. M. Levin, J. A. Douglas, K. A. Cooney and J. A. Petros: Sequence variation in the mitochondrial gene cytochrome c oxidase subunit I and prostate cancer in African American men. Prostate, 69(9), 956-60 (2009)
[79]L. Quintana-Murci, O. Semino, H. J. Bandelt, G. Passarino, K. McElreavey and A. S. Santachiara-Benerecetti: Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nat Genet, 23(4), 437-41 (1999)
[80]R. S. Arnold, S. A. Fedewa, M. Goodman, A. O. Osunkoya, H. T. Kissick, C. Morrissey, L. D. True and J. A. Petros: Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone, 78, 81-6 (2015)
[81]A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower and N. J. Maitland: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65(23), 10946-51 (2005)
[82]Y. Liu, X. Wu, X. Li, G. Kvalheim, U. Axcrona, K. Axcrona and Z. Suo: Blocking mtDNA replication upregulates the expression of stemness-related genes in prostate cancer cell lines. Ultrastruct Pathol, 37(4), 258-66 (2013)
[83]R. Huang, J. Wang, Y. Zhong, Y. Liu, T. Stokke, C. G. Trope, J. M. Nesland and Z. Suo: Mitochondrial DNA Deficiency in Ovarian Cancer Cells and Cancer Stem Cell-like Properties. Anticancer Res, 35(7), 3743-53 (2015)
[84]R. Lamb, H. Harrison, J. Hulit, D. L. Smith, M. P. Lisanti and F. Sotgia: Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 5(22), 11029-37 (2014)
[85]R. Lamb, B. Ozsvari, C. L. Lisanti, H. B. Tanowitz, A. Howell, U. E. Martinez-Outschoorn, F. Sotgia and M. P. Lisanti: Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget, 6(7), 4569-84 (2015)
[86]M. Baumann, M. Krause and R. Hill: Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 8(7), 545-54 (2008)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Scholar (FBS) is published by IMR Press from Volume 13 Issue 1 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Mitochondrial dysfunction and prostate cancer racial disparities among American men
1 Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
*Author to whom correspondence should be addressed.
Abstract
The gap between prostate cancer disparities among American men is narrowing, which is mostly due to increased screening of African American (AA) men. However, the biological reasons for prostate cancer disparities among American men still remain undefined. Mitochondrion, an organelle within cells, regulates both cell survival and cell death mechanisms. These cellular signaling pathways require various proteins localized to mitochondria, which are encoded by both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Interestingly, prostate tissues from AA men harbor reduced mtDNA content compared to Caucasian American (CA) men. Therefore, changes in mitochondrial genes may have detrimental consequences in terms of cellular signaling regulated by mitochondria in AA men. This review describes the plausible underlying mechanism of mtDNA depletion and its impact in driving resistance to therapy leading to faster progression and poor prognosis in African American men with prostate cancer. Since defective cellular signaling is critical for prostate cancer cell survival, restoring mitochondrial function may provide strategies to alleviate prostate cancer disparities among American men.
Keywords
- Prostate Cancer Racial Disparity
- Mitochondrial Dysfunction
- Oxidative Phosphorylation
- OXPHOS
- Apoptosis
- Mitochondrial Dna
- mtDNA
- Review
References
- [1] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray and M. J. Thun: Cancer statistics, 2008. CA Cancer J Clin, 58(2), 71-96 (2008)
- [2] G. Chornokur, K. Dalton, M. E. Borysova and N. B. Kumar: Disparities at presentation, diagnosis, treatment, and survival in African American men, affected by prostate cancer. Prostate, 71(9), 985-97 (2011)
- [3] P. A. Godley, A. P. Schenck, M. A. Amamoo, V. J. Schoenbach, S. Peacock, M. Manning, M. Symons and J. A. Talcott: Racial differences in mortality among Medicare recipients after treatment for localized prostate cancer. J Natl Cancer Inst, 95(22), 1702-10 (2003)
- [4] I. J. Powell, F. D. Vigneau, C. H. Bock, J. Ruterbusch and L. K. Heilbrun: Reducing prostate cancer racial disparity: evidence for aggressive early prostate cancer PSA testing of African American men. Cancer Epidemiol Biomarkers Prev, 23(8), 1505-11 (2014)
- [5] C. E. DeSantis, R. L. Siegel, A. G. Sauer, K. D. Miller, S. A. Fedewa, K. I. Alcaraz and A. Jemal: Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J Clin (2016)
- [6] F. Khani, J. M. Mosquera, K. Park, M. Blattner, C. O’Reilly, T. Y. MacDonald, Z. Chen, A. Srivastava, A. K. Tewari, C. E. Barbieri, M. A. Rubin and B. D. Robinson: Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin Cancer Res, 20(18), 4925-34 (2014)
- [7] S. Koochekpour, T. Marlowe, K. K. Singh, K. Attwood and D. Chandra: Reduced mitochondrial DNA content associates with poor prognosis of prostate cancer in African American men. PLoS One, 8(9), e74688 (2013)
- [8] R. H. Houtkooper, L. Mouchiroud, D. Ryu, N. Moullan, E. Katsyuba, G. Knott, R. W. Williams and J. Auwerx: Mitonuclear protein imbalance as a conserved longevity mechanism. Nature, 497(7450), 451-7 (2013)
- [9] M. Higuchi, T. Kudo, S. Suzuki, T. T. Evans, R. Sasaki, Y. Wada, T. Shirakawa, J. R. Sawyer and A. Gotoh: Mitochondrial DNA determines androgen dependence in prostate cancer cell lines. Oncogene, 25(10), 1437-45 (2006)
- [10] A. Naito, C. C. Cook, T. Mizumachi, M. Wang, C. H. Xie, T. T. Evans, T. Kelly and M. Higuchi: Progressive tumor features accompany epithelial-mesenchymal transition induced in mitochondrial DNA-depleted cells. Cancer Sci, 99(8), 1584-8 (2008)
- [11] R. S. Arnold, C. Q. Sun, J. C. Richards, G. Grigoriev, I. M. Coleman, P. S. Nelson, C. L. Hsieh, J. K. Lee, Z. Xu, A. Rogatko, A. O. Osunkoya, M. Zayzafoon, L. Chung and J. A. Petros: Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Prostate, 69(1), 1-11 (2009)
- [12] C. Jeronimo, S. Nomoto, O. L. Caballero, H. Usadel, R. Henrique, G. Varzim, J. Oliveira, C. Lopes, M. S. Fliss and D. Sidransky: Mitochondrial mutations in early stage prostate cancer and bodily fluids. Oncogene, 20(37), 5195-8 (2001)
- [13] J. Z. Chen, N. Gokden, G. F. Greene, P. Mukunyadzi and F. F. Kadlubar: Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection. Cancer Res, 62(22), 6470-4 (2002)
- [14] E. Mambo, A. Chatterjee, M. Xing, G. Tallini, B. R. Haugen, S. C. Yeung, S. Sukumar and D. Sidransky: Tumor-specific changes in mtDNA content in human cancer. Int J Cancer, 116(6), 920-4 (2005)
- [15] A. Heddi, H. Faure-Vigny, D. C. Wallace and G. Stepien: Coordinate expression of nuclear and mitochondrial genes involved in energy production in carcinoma and oncocytoma. Biochim Biophys Acta, 1316(3), 203-9 (1996)
- [16] K. Luciakova and S. Kuzela: Increased steady-state levels of several mitochondrial and nuclear gene transcripts in rat hepatoma with a low content of mitochondria. Eur J Biochem, 205(3), 1187-93 (1992)
- [17] M. S. Fliss, H. Usadel, O. L. Caballero, L. Wu, M. R. Buta, S. M. Eleff, J. Jen and D. Sidransky: Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science, 287(5460), 2017-9 (2000)
- [18] J. B. Jones, J. J. Song, P. M. Hempen, G. Parmigiani, R. H. Hruban and S. E. Kern: Detection of mitochondrial DNA mutations in pancreatic cancer offers a “mass“-ive advantage over detection of nuclear DNA mutations. Cancer Res, 61(4), 1299-304 (2001)
- [19] T. Mizumachi, L. Muskhelishvili, A. Naito, J. Furusawa, C. Y. Fan, E. R. Siegel, F. F. Kadlubar, U. Kumar and M. Higuchi: Increased distributional variance of mitochondrial DNA content associated with prostate cancer cells as compared with normal prostate cells. Prostate, 68(4), 408-17 (2008)
- [20] H. Pelicano, R. H. Xu, M. Du, L. Feng, R. Sasaki, J. S. Carew, Y. Hu, L. Ramdas, L. Hu, M. J. Keating, W. Zhang, W. Plunkett and P. Huang: Mitochondrial respiration defects in cancer cells cause activation of Akt survival pathway through a redox-mediated mechanism. J Cell Biol, 175(6), 913-23 (2006)
- [21] J. S. Carew and P. Huang: Mitochondrial defects in cancer. Mol Cancer, 1, 9 (2002)
- [22] G. Amuthan, G. Biswas, H. K. Ananadatheerthavarada, C. Vijayasarathy, H. M. Shephard and N. G. Avadhani: Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells. Oncogene, 21(51), 7839-49 (2002)
- [23] W. Qian, M. Nishikawa, A. M. Haque, M. Hirose, M. Mashimo, E. Sato and M. Inoue: Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol, 289(6), C1466-75 (2005)
- [24] D. Hanahan and R. A. Weinberg: Hallmarks of cancer: the next generation. Cell, 144(5), 646-74 (2011)
- [25] D. Chandra and K. K. Singh: Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta, 1807(6), 620-5 (2011)
- [26] N. Yadav and D. Chandra: Mitochondrial DNA mutations and breast tumorigenesis. Biochim Biophys Acta, 1836(2), 336-44 (2013)
- [27] A. Chatterjee, E. Mambo and D. Sidransky: Mitochondrial DNA mutations in human cancer. Oncogene, 25(34), 4663-74 (2006)
- [28] J. A. Petros, A. K. Baumann, E. Ruiz-Pesini, M. B. Amin, C. Q. Sun, J. Hall, S. Lim, M. M. Issa, W. D. Flanders, S. H. Hosseini, F. F. Marshall and D. C. Wallace: mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci U S A, 102(3), 719-24 (2005)
- [29] K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi, H. Imanishi, K. Nakada, Y. Honma and J. Hayashi: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science, 320(5876), 661-4 (2008)
- [30] G. Amuthan, G. Biswas, S. Y. Zhang, A. Klein-Szanto, C. Vijayasarathy and N. G. Avadhani: Mitochondria-to-nucleus stress signaling induces phenotypic changes, tumor progression and cell invasion. EMBO J, 20(8), 1910-20 (2001)
- [31] S. Anderson, A. T. Bankier, B. G. Barrell, M. H. de Bruijn, A. R. Coulson, J. Drouin, I. C. Eperon, D. P. Nierlich, B. A. Roe, F. Sanger, P. H. Schreier, A. J. Smith, R. Staden and I. G. Young: Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457-65 (1981)
- [32] C. C. Cook, A. Kim, S. Terao, A. Gotoh and M. Higuchi: Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell Death Dis, 3, e258 (2012)
- [33] H. Simonnet, N. Alazard, K. Pfeiffer, C. Gallou, C. Beroud, J. Demont, R. Bouvier, H. Schagger and C. Godinot: Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis, 23(5), 759-68 (2002)
- [34] A. K. Chaudhary, T. A. Bhat, S. Kumar, A. Kumar, R. Kumar, W. Underwood, S. Koochekpour, M. Shourideh, N. Yadav, S. Dhar, D. Chandra. Mitochondrial dysfunction-mediated apoptosis resistance associates with defective heat shock protein response in African-American men with prostate cancer. Br J Cancer, 114(10, 1090-100 (2016)
- [35] P. L. Chen, C. F. Chen, Y. Chen, X. E. Guo, C. K. Huang, J. Y. Shew, R. L. Reddick, D. C. Wallace and W. H. Lee: Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene, 32(9), 1193-201 (2013)
- [36] L. S. Kaguni: DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem, 73, 293-320 (2004)
- [37] S. Rajakulendran, R. D. Pitceathly, J. W. Taanman, H. Costello, M. G. Sweeney, C. E. Woodward, Z. Jaunmuktane, J. L. Holton, T. S. Jacques, B. N. Harding, C. Fratter, M. G. Hanna and S. Rahman: A Clinical, Neuropathological and Genetic Study of Homozygous A467T POLG-Related Mitochondrial Disease. PLoS One, 11(1), e0145500 (2016)
- [38] S. Azrak, V. Ayyasamy, G. Zirpoli, C. Ambrosone, E. V. Bandera, D. H. Bovbjerg, L. Jandorf, G. Ciupak, W. Davis, K. S. Pawlish, P. Liang and K. Singh: CAG repeat variants in the POLG1 gene encoding mtDNA polymerase-gamma and risk of breast cancer in African-American women. PLoS One, 7(1), e29548 (2012)
- [39] K. K. Singh, V. Ayyasamy, K. M. Owens, M. S. Koul and M. Vujcic: Mutations in mitochondrial DNA polymerase-gamma promote breast tumorigenesis. J Hum Genet, 54(9), 516-24 (2009)
- [40] W. T. Lee and J. St John: The control of mitochondrial DNA replication during development and tumorigenesis. Ann N Y Acad Sci, 1350, 95-106 (2015)
- [41] Q. Dang, L. Li, H. Xie, D. He, J. Chen, W. Song, L. S. Chang, H. C. Chang, S. Yeh and C. Chang: Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells -->androgen receptor (AR) -->miRNA32 signals. Mol Oncol, 9(7), 1241-51 (2015)
- [42] C. D. Hu, R. Choo and J. Huang: Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol, 5, 90 (2015)
- [43] Z. Li, C. J. Chen, J. K. Wang, E. Hsia, W. Li, J. Squires, Y. Sun and J. Huang: Neuroendocrine differentiation of prostate cancer. Asian J Androl, 15(3), 328-32 (2013)
- [44] M. Kulawiec, V. Ayyasamy and K. K. Singh: p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog, 8, 8 (2009)
- [45] G. Achanta, R. Sasaki, L. Feng, J. S. Carew, W. Lu, H. Pelicano, M. J. Keating and P. Huang: Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J, 24(19), 3482-92 (2005)
- [46] J. T. Dong: Prevalent mutations in prostate cancer. J Cell Biochem, 97(3), 433-47 (2006)
- [47] D. J. Grignon, R. Caplan, F. H. Sarkar, C. A. Lawton, E. H. Hammond, M. V. Pilepich, J. D. Forman, J. Mesic, K. K. Fu, R. A. Abrams, T. F. Pajak, W. U. Shipley and J. D. Cox: p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG ↢. J Natl Cancer Inst, 89(2), 158-65 (1997)
- [48] F. J. Meyers, P. H. Gumerlock, S. G. Chi, H. Borchers, A. D. Deitch and R. W. deVere White: Very frequent p53 mutations in metastatic prostate carcinoma and in matched primary tumors. Cancer, 83(12), 2534-9 (1998)
- [49] S. Compton, C. Kim, N. B. Griner, P. Potluri, I. E. Scheffler, S. Sen, D. J. Jerry, S. Schneider and N. Yadava: Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. J Biol Chem, 286(23), 20297-312 (2011)
- [50] S. Matoba, J. G. Kang, W. D. Patino, A. Wragg, M. Boehm, O. Gavrilova, P. J. Hurley, F. Bunz and P. M. Hwang: p53 regulates mitochondrial respiration. Science, 312(5780), 1650-3 (2006)
- [51] R. F. Johnson and N. D. Perkins: Nuclear factor-kappaB, p53, and mitochondria: regulation of cellular metabolism and the Warburg effect. Trends Biochem Sci, 37(8), 317-24 (2012)
- [52] C. Adrain, E. M. Creagh and S. J. Martin: Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J, 20(23), 6627-36 (2001)
- [53] J. Cai, J. Yang and D. P. Jones: Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta, 1366(1-2), 139-49 (1998)
- [54] C. Cande, N. Vahsen, C. Garrido and G. Kroemer: Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ, 11(6), 591-5 (2004)
- [55] S. Zinkel, A. Gross and E. Yang: BCL2 family in DNA damage and cell cycle control. Cell Death Differ, 13(8), 1351-9 (2006)
- [56] S. B. Bratton and G. S. Salvesen: Regulation of the Apaf-1-caspase-9 apoptosome. J Cell Sci, 123(Pt 19), 3209-14 (2010)
- [57] N. Yadav and D. Chandra: Mitochondrial and postmitochondrial survival signaling in cancer. Mitochondrion, 16, 18-25 (2014)
- [58] J. E. Chipuk and D. R. Green: How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol, 18(4), 157-64 (2008)
- [59] M. D. Jacobson, J. F. Burne, M. P. King, T. Miyashita, J. C. Reed and M. C. Raff: Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature, 361(6410), 365-9 (1993)
- [60] N. Yadava, S. S. Schneider, D. J. Jerry and C. Kim: Impaired mitochondrial metabolism and mammary carcinogenesis. J Mammary Gland Biol Neoplasia, 18(1), 75-87 (2013)
- [61] N.Yadav, S. Kumar, R. Kumar, P. Srivastava, L. Sun, P. Rapali, T. Marlowe, A. Schneider, J.R. Inigo, J. O’Malley, R. Londonkar, R. Gogada, A.K. Chaudhary, N. Yadava, Chandra D. Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation. Free radical biology &medicine 2016;90:261-71.Cited within: 0Google Scholar
- [62] N. Yadav, S. Kumar, T. Marlowe, A. K. Chaudhary, R. Kumar, J. Wang, J. O’Malley, P. M. Boland, S. Jayanthi, T. K. Kumar, N. Yadava and D. Chandra: Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis, 6, e1969 (2015)
- [63] D. Chandra, J. W. Liu and D. G. Tang: Early mitochondrial activation and cytochrome c up-regulation during apoptosis. J Biol Chem, 277(52), 50842-54 (2002)
- [64] M. Higuchi, B. B. Aggarwal and E. T. Yeh: Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function. J Clin Invest, 99(7), 1751-8 (1997)
- [65] D. S. McClintock, M. T. Santore, V. Y. Lee, J. Brunelle, G. R. Budinger, W. X. Zong, C. B. Thompson, N. Hay and N. S. Chandel: Bcl-2 family members and functional electron transport chain regulate oxygen deprivation-induced cell death. Mol Cell Biol, 22(1), 94-104 (2002)
- [66] C. Chauvin, F. De Oliveira, X. Ronot, M. Mousseau, X. Leverve and E. Fontaine: Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem, 276(44), 41394-8 (2001)
- [67] T. Mizumachi, S. Suzuki, A. Naito, J. Carcel-Trullols, T. T. Evans, P. M. Spring, N. Oridate, Y. Furuta, S. Fukuda and M. Higuchi: Increased mitochondrial DNA induces acquired docetaxel resistance in head and neck cancer cells. Oncogene, 27(6), 831-8 (2008)
- [68] M. L. Boland, A. H. Chourasia and K. F. Macleod: Mitochondrial dysfunction in cancer. Front Oncol, 3, 292 (2013)
- [69] S. W. Tait, G. Ichim and D. R. Green: Die another way--non-apoptotic mechanisms of cell death. J Cell Sci, 127(Pt 10), 2135-44 (2014)
- [70] S. Ponnala, C. Chetty, K. K. Veeravalli, D. H. Dinh, J. D. Klopfenstein and J. S. Rao: Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells. Int J Oncol, 40(2), 509-18 (2012)
- [71] I. J. Powell, M. Banerjee, M. Novallo, W. Sakr, D. Grignon, D. P. Wood and J. E. Pontes: Prostate cancer biochemical recurrence stage for stage is more frequent among African-American than white men with locally advanced but not organ-confined disease. Urology, 55(2), 246-51 (2000)
- [72] I. J. Powell, L. K. Heilbrun, W. Sakr, D. Grignon, J. Montie, M. Novallo, D. Smith and J. E. Pontes: The predictive value of race as a clinical prognostic factor among patients with clinically localized prostate cancer: a multivariate analysis of positive surgical margins. Urology, 49(5), 726-31 (1997)
- [73] M. Yu, Y. Zhou, Y. Shi, L. Ning, Y. Yang, X. Wei, N. Zhang, X. Hao and R. Niu: Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life, 59(7), 450-7 (2007)
- [74] I. R. Indran, G. Tufo, S. Pervaiz and C. Brenner: Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta, 1807(6), 735-45 (2011)
- [75] N. Yadav, A. Pliss, A. Kuzmin, P. Rapali, L. Sun, P. Prasad and D. Chandra: Transformations of the macromolecular landscape at mitochondria during DNA-damage-induced apoptotic cell death. Cell Death Dis, 5, e1453 (2014)
- [76] L. Moro, A. A. Arbini, E. Marra and M. Greco: Mitochondrial DNA depletion reduces PARP-1 levels and promotes progression of the neoplastic phenotype in prostate carcinoma. Cell Oncol, 30(4), 307-22 (2008)
- [77] L. Moro, A. A. Arbini, J. L. Yao, P. A. di Sant’Agnese, E. Marra and M. Greco: Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2. Cell Death Differ, 16(4), 571-83 (2009)
- [78] A. M. Ray, K. A. Zuhlke, A. M. Levin, J. A. Douglas, K. A. Cooney and J. A. Petros: Sequence variation in the mitochondrial gene cytochrome c oxidase subunit I and prostate cancer in African American men. Prostate, 69(9), 956-60 (2009)
- [79] L. Quintana-Murci, O. Semino, H. J. Bandelt, G. Passarino, K. McElreavey and A. S. Santachiara-Benerecetti: Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nat Genet, 23(4), 437-41 (1999)
- [80] R. S. Arnold, S. A. Fedewa, M. Goodman, A. O. Osunkoya, H. T. Kissick, C. Morrissey, L. D. True and J. A. Petros: Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone, 78, 81-6 (2015)
- [81] A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower and N. J. Maitland: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65(23), 10946-51 (2005)
- [82] Y. Liu, X. Wu, X. Li, G. Kvalheim, U. Axcrona, K. Axcrona and Z. Suo: Blocking mtDNA replication upregulates the expression of stemness-related genes in prostate cancer cell lines. Ultrastruct Pathol, 37(4), 258-66 (2013)
- [83] R. Huang, J. Wang, Y. Zhong, Y. Liu, T. Stokke, C. G. Trope, J. M. Nesland and Z. Suo: Mitochondrial DNA Deficiency in Ovarian Cancer Cells and Cancer Stem Cell-like Properties. Anticancer Res, 35(7), 3743-53 (2015)
- [84] R. Lamb, H. Harrison, J. Hulit, D. L. Smith, M. P. Lisanti and F. Sotgia: Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget, 5(22), 11029-37 (2014)
- [85] R. Lamb, B. Ozsvari, C. L. Lisanti, H. B. Tanowitz, A. Howell, U. E. Martinez-Outschoorn, F. Sotgia and M. P. Lisanti: Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget, 6(7), 4569-84 (2015)
- [86] M. Baumann, M. Krause and R. Hill: Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 8(7), 545-54 (2008)
