Information
References
Contents
Download
[1]Public Health Agency of Canada: The chief public health officer’s report on the state of public health in Canada, 2014: Public health in the future. Public Health Agency of Canada, Ottawa (Canada) (2014)
[2]Statistics Canada: Population projections for Canada, provinces and territories 2009 to 2036. Statistics Canada, Ottawa (Canada) (2010)
[3]Statistics Canada: The Canadian population in 2011: age and sex. Statistics Canada, Ottawa (Canada) (2012)
[4]World Health Organization: Facts about ageing. World Health Organization (2014) (cited 2015 Aug 19) Available from:
[5]World Health Organization: The burden of musculoskeletal conditions at the start of the new millennium. World Health Organization Technical Report Series 919, World Health Organization, Geneva (Switzerland) (2003)
[6]Osteoporosis Canada: Facts & Statistics.Osteoporosis Canada (cited 2015 Aug 19) Available from: http://www.osteoporosis.ca/osteoporosis-and-you/osteoporosis-facts-and-statistics
[7]Ostéoporose Canada: Qu’est-ce que l’ostéoporose? Ostéoporose Canada (cited 2015 Aug 20) Available from: http://www.osteoporosecanada.ca/losteoporose-et-vous/quest-ce-que-losteoporose
[8]M.E. Marquis, E. Lord, E. Bergeron, O. Drevelle, H. Park, F. Cabana, H. Senta, N. Faucheux: Bone cells-biomaterials interactions. Front Biosci 14, 1023–67 (2009)
[9]S.K. Nilsson, H.M. Johnston, J.A. Coverdale: Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97, 2293–9 (2001)
[10]P. V Giannoudis, H. Dinopoulos, E. Tsiridis: Bone substitutes: An update. Injury 36, S20–7 (2005)
[11]R. Dimitriou, G.I. Mataliotakis, A.G. Angoules, N.K. Kanakaris, P. V Giannoudis: Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42 Supp l2, S3–15 (2011)
[12]R.J. Bruno, M.S. Cohen, A. Berzins, D.R. Sumner: Bone graft harvesting from the distal radius, olecranon, and iliac crest: a quantitative analysis. J Hand Surg Am 26, 135–41 (2001)
[13]J.D. Conway: Autograft and nonunions: morbidity with intramedullary bone graft versus iliac crest bone graft. Orthop Clin North Am 41, 75–84 (2010)
[14]A. Dumas, C. Gaudin-Audrain, G. Mabilleau, P. Massin, L. Hubert, M.F. Basle, D. Chappard: The influence of processes for the purification of human bone allografts on the matrix surface and cytocompatibility. Biomaterials 27, 4204–11 (2006)
[15]G.E. Friedlaender, D.M. Strong, W.W. Tomford, H.J. Mankin: Long-term follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am 30, 583–8 (1999)
[16]G.E. Friedlaender: Bone allografts: the biological consequences of immunological events. J Bone Joint Surg Am 73, 1119–22 (1991)
[17]S.M. Graham, A. Leonidou, N. Aslam-Pervez, A. Hamza, P. Panteliadis, M. Heliotis, A. Mantalaris, E. Tsiridis: Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther 10, 885–901 (2010)
[18]R. Russo, N. Scarborough: Inactivation of viruses in demineralized bone matrix. FDA Work tissue Transplant Reprod tissue, p.20–1 (1995)
[19]L.L. Hench, J.M. Polak: Third-generation biomedical materials. Science 295, 1014–7 (2002)
[20]F. Monchau, A. Lefevre, M. Descamps, A. Belquin-myrdycz, P. Laffargue, H.F. Hildebrand: In vitro studies of human and rat osteoclast activity on hydroxyapatite, beta-tricalcium phosphate, calcium carbonate. Biomol Eng 19, 143–52 (2002)
[21]O. Drevelle, A. Daviau, M.A. Lauzon, N. Faucheux: Effect of BMP-2 and/or BMP-9 on preosteoblasts attached to polycaprolactone functionalized by adhesive peptides derived from bone sialoprotein. Biomaterials 34, 1051–62 (2013)
[22]Y.J. Lee, J.-H. Lee, H.-J. Cho, H.K. Kim, T.R. Yoon, H. Shin: Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials 34, 5059–69 (2013)
[23]P.C. Bessa, M. Casal, R.L. Reis: Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2, 1–13 (2008)
[24]X. He, X. Yang, E. Jabbari: Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. Langmuir 28, 5387–97 (2012)
[25]R.M. Ajiboye, J.T. Hamamoto, M.A. Eckardt, J.C. Wang: Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients. Eur Spine J 24, 2567–72 (2015)
[26]L.S. Pryor, E. Gage, C.-J. Langevin, F. Herrera, A.D. Breithaupt, C.R. Gordon, A.M. Afifi, J.E. Zins, H. Meltzer, A. Gosman, S.R. Cohen, R. Holmes: Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2, 151–60 (2009)
[27]X. He, J. Ma, E. Jabbari: Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 24, 12508–16 (2008)
[28]K. Lavery, P. Swain, D. Falb, M.H. Alaoui-Ismaili: BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283, 20948–58 (2008)
[29]T. Nakase, H. Yoshikawa: Potential roles of bone morphogenetic proteins (BMPs) in skeletal repair and regeneration. J Bone Miner Metab 24, 425–33 (2006)
[30]C.D. Reyes, A.J. Garcia: Alpha2beta1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. J Biomed Mater Res A 69, 591–600 (2004)
[31]R.S. Carvalho, P.J. Kostenuik, E. Salih, A. Bumann, L.C. Gerstenfeld: Selective adhesion of osteoblastic cells to different integrin ligands induces osteopontin gene expression. Matrix Biol 22, 241–9 (2003)
[32]W.J. Boyle, W.S. Simonet, D.L. Lacey: Osteoclast differentiation and activation. Nature 423, 337–42 (2003)
[33]S.C. Manolagas: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21, 115–37 (2000)
[34]M. Capulli, R. Paone, N. Rucci: Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561, 3–12 (2014)
[35]M.L. Knothe Tate, J.R. Adamson, A.E. Tami, T.W. Bauer: The osteocyte. Int J Biochem Cell Biol 36, 1–8 (2004)
[36]S. Weinbaum, S.C. Cowin, Y. Zeng: Amodel for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27, 339–60 (1994)
[37]L.E. Mulcahy, D. Taylor, T.C. Lee, G.P. Duffy: RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells. Bone 48, 182–8 (2011)
[38]O. Verborgt, G.J. Gibson, M.B. Schaffler: Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15, 60–7 (2000)
[39]Z.F. Jaworski, B. Duck, G. Sekaly: Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat 133, 397–405 (1981)
[40]K. Vaananen: Mechanism of osteoclast mediated bone resorption-rationale for the design of new therapeutics. Adv Drug Deliv Rev 57, 959–71 (2005)
[41]S.A. Nesbitt, M.A. Horton: Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276, 266–9 (1997)
[42]S. Ory, H. Brazier, G. Pawlak, A. Blangy: Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 87, 469–77 (2008)
[43]K. Gelse, E. Poschl, T. Aigner: Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 55, 1531–46 (2003)
[44]J.P.R.O. Orgel, J.D. San Antonio, O. Antipova: Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res 52, 2–17 (2011)
[45]T. Gurry, P.S. Nerenberg, C.M. Stultz: The contribution of interchain salt bridges to triple-helical stability in collagen. Biophys J 98, 2634–43 (2010)
[46]A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler: Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11, 757–66 (2011)
[47]L.W. Fisher, N.S. Fedarko: Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 Suppl 1, 33–40 (2003)
[48]K.A. Staines, V.E. MacRae, C. Farquharson: The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol 214, 241–55 (2012)
[49]G.K. Hunter, H.A. Goldberg: Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 90, 8562–5 (1993)
[50]W.N. Addison, D.L. Masica, J.J. Gray, M.D. McKee: Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25, 695–705 (2010)
[51]W.J. Landis, R. Jacquet: Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int 93, 329–37 (2013)
[52]E. Holm, J.E. Aubin, G.K. Hunter, F. Beier, H.A. Goldberg: Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization. Bone 71, 145–54 (2015)
[53]E.H. Schwab, M. Halbig, K. Glenske, A.-S. Wagner, S. Wenisch, E.A. Cavalcanti-Adam: Distinct effects of RGD-glycoproteins on integrin-mediated adhesion and osteogenic differentiation of human mesenchymal stem cells. Int J Med Sci 10, 1846–59 (2013)
[54]A. Ode, G.N. Duda, J.D. Glaeser, G. Matziolis, S. Frauenschuh, C. Perka, C.J. Wilson, G. Kasper: Toward biomimetic materials in bone regeneration: functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components. J Biomed Mater Res A 95, 1114–24 (2010)
[55]R.T. Ingram, B.L. Clarke, L.W. Fisher, L.A. Fitzpatrick: Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8, 1019–29 (1993)
[56]A. Corsi, T. Xu, X.D. Chen, A. Boyde, J. Liang, M. Mankani, B. Sommer, R. VIozzo, I. Eichstetter, P.G. Robey, P. Bianco, M.F. Young: Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17, 1180–9 (2002)
[57]L.E. Bertassoni, M. V Swain: The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater 38, 91–104 (2014)
[58]X.-D. Chen, L.W. Fisher, P.G. Robey, M.F. Young: The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J 18, 948–58 (2004)
[59]I. Fernández-Tresguerres-Hernández-Gil, M.A. Alobera Gracia, M. del Canto Pingarrn, L. Blanco Jerez: Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral 11, E47–51 (2006)
[60]A. Veis, J.R. Dorvee: Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices. Calcif Tissue Int 93, 307–15 (2013)
[61]F. Nudelman, K. Pieterse, A. George, P.H.H. Bomans, H. Friedrich, L.J. Brylka, P.A.J. Hilbers, G. de With, N.A.J.M. Sommerdijk: The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9, 1004–9 (2010)
[62]W.-J. Chung, K.-Y. Kwon, J. Song, S.-W. Lee: Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27, 7620–8 (2011)
[63]Z. Xu, Y. Yang, W. Zhao, Z. Wang, W.J. Landis, Q. Cui, N. Sahai: Molecular mechanisms for intrafibrillar collagen mineralization in skeletal tissues. Biomaterials 39, 59–66 (2015)
[64]Y. Wang, T. Azais, M. Robin, A. Vallee, C. Catania, P. Legriel, G. Pehau-Arnaudet, F. Babonneau, M.-M. Giraud-Guille, N. Nassif: The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11, 724–33 (2012)
[65]W.L. Grayson, B.A. Bunnell, E. Martin, T. Frazier, B.P. Hung, J.M. Gimble: Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 11, 140–50 (2015)
[66]J. Kobolak, A. Dinnyes, A. Memic, A. Khademhosseini, A. Mobasheri: Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro engineering of their niche. Methods (in press) (2015)
[67]B.P. Hung, D.L. Hutton, K.L. Kozielski, C.J. Bishop, B. Naved, J.J. Green, A.I. Caplan, J.M. Gimble, A.H. Dorafshar, W.L. Grayson: Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells 33, 2773–84 (2015)
[68]J. Baker, J.P. Liu, E.J. Robertson, A. Efstratiadis: Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993)
[69]N. Maegawa, K. Kawamura, M. Hirose, H. Yajima, Y. Takakura, H. Ohgushi: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 1, 306–13 (2007)
[70]H. Cheng, W. Jiang, F.M. Phillips, R.C. Haydon, Y. Peng, L. Zhou, H.H. Luu, N. An, B. Breyer, P. Vanichakarn, J.P. Szatkowski, J.Y. Park, T.C. He: Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-A, 1544–52 (2003)
[71]C. Zhao, N. Irie, Y. Takada, K. Shimoda, T. Miyamoto, T. Nishiwaki, T. Suda, K. Matsuo: Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4, 111–21 (2006)
[72]T. Negishi-Koga, M. Shinohara, N. Komatsu, H. Bito, T. Kodama, R.H. Friedel, H. Takayanagi: Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17, 1473–80 (2011)
[73]Y.-M. Lee, N. Fujikado, H. Manaka, H. Yasuda, Y. Iwakura: IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol 22, 805–16 (2010)
[74]T. Cohen, D. Nahari, L.W. Cerem, G. Neufeld, B.Z. Levi: Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271, 736–41 (1996)
[75]S. Akeel, A. El-Awady, K. Hussein, M. El-Refaey, M. Elsalanty, M. Sharawy, M. Al-Shabrawey: Recombinant bone morphogenetic protein-2 induces up-regulation of vascular endothelial growth factor and interleukin 6 in human pre-osteoblasts: role of reactive oxygen species. Arch Oral Biol 57, 445–52 (2012)
[76]E. Hay, A. Nouraud, P.J. Marie: N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling. PLoS One 4, e8284 (2009)
[77]C.E. Clarkin, L.C. Gerstenfeld: VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 31, 1–11 (2013)
[78]J. Street, B. Lenehan: Vascular endothelial growth factor regulates osteoblast survival - evidence for an autocrine feedback mechanism. J Orthop Surg Res 4, 19 (2009)
[79]H. Tokuda, S. Adachi, R. Matsushima-Nishiwaki, K. Kato, H. Natsume, T. Otsuka, O. Kozawa: Enhancement of basic fibroblast growth factor-stimulated VEGF synthesis by Wnt3a in osteoblasts. Int J Mol Med 27, 859–64 (2011)
[80]H. Natsume, H. Tokuda, R. Matsushima-Nishiwaki, K. Kato, K. Yamakawa, T. Otsuka, O. Kozawa: Wnt3a upregulates transforming growth factor-beta-stimulated VEGF synthesis in osteoblasts. Cell Biochem Funct 29, 371–7 (2011)
[81]D. Agas, M.G. Sabbieti, L. Marchetti, L. Xiao, M.M. Hurley: FGF-2 enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in osteoblasts. J Cell Physiol 228, 2149–58 (2013)
[82]L.F. Charles, J.L. Woodman, D. Ueno, G. Gronowicz, M.M. Hurley, L.T. Kuhn: Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice. Exp Gerontol 64, 62–9 (2015)
[83]B.-Z. Shilo: The regulation and functions of MAPK pathways in Drosophila. Methods 68, 151–9 (2014)
[84]H. Miraoui, K. Oudina, H. Petite, Y. Tanimoto, K. Moriyama, P.J. Marie: Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem 284, 4897–904 (2009)
[85]P. Marie: Differenciation, function and regulation of osteoblast. Medecine/Sciences 17, 1252–9 (2001)
[86]S. Suttapreyasri, S. Koontongkaew, A. Phongdara, U. Leggat: Expression of bone morphogenetic proteins in normal human intramembranous and endochondral bones. Int J Oral Maxillofac Surg 35, 444–52 (2006)
[87]M.R. Urist: Bone: formation by autoinduction. Science 150, 893–9 (1965)
[88]E. Lou: Bone morphogenetic proteins: an overview of therapeutic applications. Orthopedics 24, 501–4 (2001)
[89]A.H. Reddi: BMPs: from bone morphogenetic proteins to body morphogenetic proteins. Cytokine Growth Factor Rev 16, 249–50 (2005)
[90]J.M. Wozney, V. Rosen, A.J. Celeste, L.M. Mitsock, M.J. Whitters, R.W. Kriz, R.M. Hewick, E.A. Wang: Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–34 (1988)
[91]Q. Kang, M.H. Sun, H. Cheng, Y. Peng, A.G. Montag, A.T. Deyrup, W. Jiang, H.H. Luu, J. Luo, J.P. Szatkowski, P. Vanichakarn, J.Y. Park, Y. Li, R.C. Haydon, T.C. He: Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11, 1312–20 (2004)
[92]M. Kawabata, T. Imamura, K. Miyazono: Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9, 49–61 (1998)
[93]J.-H. Shim, M.B. Greenblatt, M. Xie, M.D. Schneider, W. Zou, B. Zhai, S. Gygi, L.H. Glimcher: TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J 28, 2028–41 (2009)
[94]K. Miyazono: Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Bone 25, 91–3 (1999)
[95]T. Matsubara, K. Kida, A. Yamaguchi, K. Hata, F. Ichida, H. Meguro, H. Aburatani, R. Nishimura, T. Yoneda: BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283, 29119–25 (2008)
[96]D.H. Walker, N.M. Wright: Bone morphogenetic proteins and spinal fusion. Neurosurg Focus 13, 1–13 (2002)
[97]H. Liu, Y. Liu, M. Viggeswarapu, Z. Zheng, L. Titus, S.D. Boden: Activation of c-Jun NH(2)-terminal kinase 1 increases cellular responsiveness to BMP-2 and decreases binding of inhibitory Smad6 to the type1 BMP receptor. J Bone Miner Res 26, 1122–32 (2011)
[98]L.B. Zimmerman, J.M. De Jesús-Escobar, R.M. Harland: The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996)
[99]S. Piccolo, Y. Sasai, B. Lu, E.M. De Robertis: Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–98 (1996)
[100]D.P. Brazil, R.H. Church, S. Surae, C. Godson, F. Martin: BMP signalling: agony and antagony in the family. Trends Cell Biol 25, 249–64 (2015)
[101]D. Onichtchouk, Y.G. Chen, R. Dosch, V. Gawantka, H. Delius, J. Massague, C. Niehrs: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401, 480–5 (1999)
[102]S. Souchelnytskyi, T. Nakayama, A. Nakao, A. Moren, C.H. Heldin, J.L. Christian, P. ten Dijke: Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors. J Biol Chem 273, 25364–70 (1998)
[103]T. Imamura, M. Takase, A. Nishihara, E. Oeda, J. Hanai, M. Kawabata, K. Miyazono: Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622–6 (1997)
[104]X. Duan, Y.-Y. Liang, X.-H. Feng, X. Lin: Protein serine/threonine phosphatase PPM1A dephosphorylates Smad1 in the bone morphogenetic protein signaling pathway. J Biol Chem 281, 36526–32 (2006)
[105]K. Yamaguchi, S. Nagai, J. Ninomiya-Tsuji, M. Nishita, K. Tamai, K. Irie, N. Ueno, E. Nishida, H. Shibuya, K. Matsumoto: XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1–TAK1 in the BMP signaling pathway. EMBO J 18, 179–87 (1999)
[106]Y. Liu, E.G. Shepherd, L.D. Nelin: MAPK phosphatases—regulating the immune response. Nat Rev Immunol 7, 202–12 (2007)
[107]D.J. Xu, Y.Z. Zhao, J. Wang, J.W. He, Y.G. Weng, J.Y. Luo: Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep 45, 247–52 (2012)
[108]M.-A. Lauzon, A. Daviau, O. Drevelle, B. Marcos, N. Faucheux: Identification of a growth factor mimicking the synergistic effect of fetal bovine serum on BMP-9 cell response. Tissue Eng Part A 20, 2524–35 (2014)
[109]M. Kretzschmar, J. Doody, J. Massague: Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389, 618–22 (1997)
[110]H. Mitchell, A. Choudhury, R.E. Pagano, E.B. Leof: Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 15, 4166–78 (2004)
[111]Y.-G. Chen: Endocytic regulation of TGF-beta signaling. Cell Res 19, 58–70 (2009)
[112]T. Shen, C. Sun, Z. Zhang, N. Xu, X. Duan, X.-H. Feng, X. Lin: Specific control of BMP signaling and mesenchymal differentiation by cytoplasmic phosphatase PPM1H. Cell Res 24, 727–41 (2014)
[113]T. Naganawa, L. Xiao, J.D. Coffin, T. Doetschman, M.G. Sabbieti, D. Agas, M.M. Hurley: Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem 103, 1975–88 (2008)
[114]X. Liu, J. Qin, Q. Luo, Y. Bi, G. Zhu, W. Jiang, S.H. Kim, M. Li, Y. Su, G. Nan, J. Cui, W. Zhang, R. Li, X. Chen, Y. Kong, J. Zhang, J. Wang, M.R. Rogers, H. Zhang, W. Shui, C. Zhao, N. Wang, X. Liang, N. Wu, Y. He, H.H. Luu, R.C. Haydon, L.L. Shi, T. Li, T.-C. He, M. Li: Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med 17, 1160–72 (2013)
[115]G. Luther, E. R Wagner, G. Zhu, Q. Kang, Q. Luo, J. Lamplot, Y. Bi, X. Luo, J. Luo, C. Teven: BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther 11, 229–40 (2011)
[116]J.F. Chau, W.F. Leong, B. Li: Signaling pathways governing osteoblast proliferation, differentiation and function. Histol Histopathol 24, 1593–606 (2009)
[117]W.P. Cawthorn, A.J. Bree, Y. Yao, B. Du, N. Hemati, G. Martinez-Santibanez, O.A. MacDougald: Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50, 477–89 (2012)
[118]Y.-D. Cho, W.-J. Kim, W.-J. Yoon, K.-M. Woo, J.-H. Baek, G. Lee, G.-S. Kim, H.-M. Ryoo: Wnt3a stimulates Mepe, matrix extracellular phosphoglycoprotein, expression directly by the activation of the canonical Wnt signaling pathway and indirectly through the stimulation of autocrine Bmp-2 expression. J Cell Physiol 227, 2287–96 (2012)
[119]R. Baron, M. Kneissel: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19, 179–92 (2013)
[120]T. Gaur, C.J. Lengner, H. Hovhannisyan, R.A. Bhat, P.V.N. Bodine, B.S. Komm, A. Javed, A.J. van Wijnen, J.L. Stein, G.S. Stein, J.B. Lian: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280, 33132–40 (2005)
[121]N. Tang, W.-X. Song, J. Luo, X. Luo, J. Chen, K.A. Sharff, Y. Bi, B.-C. He, J.-Y. Huang, G.-H. Zhu, Y.-X. Su, W. Jiang, M. Tang, Y. He, Y. Wang, L. Chen, G.-W. Zuo, J. Shen, X. Pan, R.R. Reid, H.H. Luu, R.C. Haydon, T.-C. He: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 13, 2448–64 (2009)
[122]M. Plaisant, C. Fontaine, W. Cousin, N. Rochet, C. Dani, P. Peraldi: Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells 27, 703–13 (2009)
[123]S. Spinella-Jaegle, G. Rawadi, S. Kawai, S. Gallea, C. Faucheu, P. Mollat, B. Courtois, B. Bergaud, V. Ramez, A.M. Blanchet, G. Adelmant, R. Baron, S. Roman-Roman: Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 114, 2085–94 (2001)
[124]G.L. Lin, K.D. Hankenson: Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 112, 3491–501 (2011)
[125]H. Hu, M.J. Hilton, X. Tu, K. Yu, D.M. Ornitz, F. Long: Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49–60 (2005)
[126]G. Sapkota, C. Alarcon, F.M. Spagnoli, A.H. Brivanlou, J. Massague: Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 25, 441–54 (2007)
[127]J.-H. Lee, B.-G. Kim, J.-M. Ahn, H.-J. Park, S.-K. Park, J.-S. Yoo, J.R. 3rd Yates, J.-Y. Cho: Role of PI3K on the regulation of BMP2-induced beta-Catenin activation in human bone marrow stem cells. Bone 46, 1522–32 (2010)
[128]F. Ugarte, M. Ryser, S. Thieme, F.A. Fierro, K. Navratiel, M. Bornhäuser, S. Brenner: Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp Hematol 37, 867–75. e1 (2009)
[129]K.A. Sharff, W.-X. Song, X. Luo, N. Tang, J. Luo, J. Chen, Y. Bi, B.-C. He, J. Huang, X. Li, W. Jiang, G.-H. Zhu, Y. Su, Y. He, J. Shen, Y. Wang, L. Chen, G.-W. Zuo, B. Liu, X. Pan, R.R. Reid, H.H. Luu, R.C. Haydon, T.-C. He: Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. J Biol Chem 284, 649–59 (2009)
[130]D.S. de Jong, W.T. Steegenga, J.M.A. Hendriks, E.J.J. van Zoelen, W. Olijve, K.J. Dechering: Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. Biochem Biophys Res Commun 320, 100–7 (2004)
[131]N. Zamurovic, D. Cappellen, D. Rohner, M. Susa: Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279, 37704–15 (2004)
[132]H. Hojo, S. Ohba, F. Yano, T. Saito, T. Ikeda, K. Nakajima, Y. Komiyama, N. Nakagata, K. Suzuki, T. Takato, H. Kawaguchi, U. Chung: Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J Biol Chem 287, 17860–9 (2012)
[133]J.M. Hodge, M.A. Kirkland, G.C. Nicholson: Multiple roles of M-CSF in human osteoclastogenesis. J Cell Biochem 102, 759–68 (2007)
[134]T. Tsurukai, N. Udagawa, K. Matsuzaki, N. Takahashi, T. Suda: Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab 18, 177–84 (2000)
[135]T. Wada, T. Nakashima, N. Hiroshi, J.M. Penninger: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12, 17–25 (2006)
[136]M. Ishii, J.G. Egen, F. Klauschen, M. Meier-Schellersheim, Y. Saeki, J. Vacher, R.L. Proia, R.N. Germain: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–8 (2009)
[137]T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-Hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, J.M. Penninger, H. Takayanagi: Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17, 1231–4 (2011)
[138]E.C. Weir, C.W. Lowik, I. Paliwal, K.L. Insogna: Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. J Bone Miner Res 11, 1474–81 (1996)
[139]J.W. Pike, S.M. Lee, M.B. Meyer: Regulation of gene expression by 1,25-dihydroxyvitamin D3 in bone cells: exploiting new approaches and defining new mechanisms. Bonekey Rep 3, 482 (2014)
[140]H. Takayanagi, K. Ogasawara, S. Hida, T. Chiba, S. Murata, K. Sato, A. Takaoka, T. Yokochi, H. Oda, K. Tanaka, K. Nakamura, T. Taniguchi: T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600–5 (2000)
[141]F.P. Ross: M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann N Y Acad Sci 1068, 110–6 (2006)
[142]F. Xu, S.L. Teitelbaum: Osteoclasts: New Insights. Bone Res 1, 11–26 (2013)
[143]S. Amano, Y.-T. Chang, Y. Fukui: ERK5 activation is essential for osteoclast differentiation. PLoS One 10, e0125054 (2015)
[144]H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95, 3597–602 (1998)
[145]M. Shinohara, H. Takayanagi: Novel osteoclast signaling mechanisms. Curr Osteoporos Rep 5, 67–72 (2007)
[146]T. Oikawa, Y. Kuroda, K. Matsuo: Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol Life Sci 70, 3341–53 (2013)
[147]H. Takayanagi, S. Kim, T. Koga, H. Nishina, M. Isshiki, H. Yoshida, A. Saiura, M. Isobe, T. Yokochi, J. Inoue, E.F. Wagner, T.W. Mak, T. Kodama, T. Taniguchi: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889–901 (2002)
[148]T. Kukita, N. Wada, A. Kukita, T. Kakimoto, F. Sandra, K. Toh, K. Nagata, T. Iijima, M. Horiuchi, H. Matsusaki, K. Hieshima, O. Yoshie, H. Nomiyama: RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med 200, 941–6 (2004)
[149]T. Koga, M. Inui, K. Inoue, S. Kim, A. Suematsu, E. Kobayashi, T. Iwata, H. Ohnishi, T. Matozaki, T. Kodama, T. Taniguchi, H. Takayanagi, T. Takai: Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–63 (2004)
[150]N. Takahashi, N. Udagawa, T. Suda: Vitamin D endocrine system and osteoclasts. Bonekey Rep 3, 495 (2014)
[151]A.D. Barrow, N. Raynal, T.L. Andersen, D.A. Slatter, D. Bihan, N. Pugh, M. Cella, T. Kim, J. Rho, T. Negishi-Koga, J.-M. Delaisse, H. Takayanagi, J. Lorenzo, M. Colonna, R.W. Farndale, Y. Choi, J. Trowsdale: OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121, 3505–16 (2011)
[152]S. Li, C.H. Miller, E. Giannopoulou, X. Hu, L.B. Ivashkiv, B. Zhao: RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest 124, 5057–73 (2014)
[153]B. Zhao, S.N. Grimes, S. Li, X. Hu, L.B. Ivashkiv: TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209, 319–34 (2012)
[154]C.L. Long, M.B. Humphrey: Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling. Bonekey Rep 1, (2012)
[155]H. Zhao, F. Patrick Ross: Mechanisms of osteoclastic secretion. Ann N Y Acad Sci 1116, 238–44 (2007)
[156]H.K. Vaananen, T. Laitala-Leinonen: Osteoclast lineage and function. Arch Biochem Biophys 473, 132–8 (2008)
[157]A. Broege, L. Pham, E.D. Jensen, A. Emery, T.-H. Huang, M. Stemig, H. Beppu, A. Petryk, M. O’Connor, K. Mansky, R. Gopalakrishnan: Bone morphogenetic proteins signal via SMAD and mitogen-activated protein (MAP) kinase pathways at distinct times during osteoclastogenesis. J Biol Chem 288, 37230–40 (2013)
[158]K. Itoh, N. Udagawa, T. Katagiri, S. Iemura, N. Ueno, H. Yasuda, K. Higashio, J.M. Quinn, M.T. Gillespie, T.J. Martin, T. Suda, N. Takahashi: Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand. Endocrinology 142, 3656–62 (2001)
[159]E.D. Jensen, L. Pham, C.J.J. Billington, K. Espe, A.E. Carlson, J.J. Westendorf, A. Petryk, R. Gopalakrishnan, K. Mansky: Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem 109, 672–82 (2010)
[160]D. Fong, M. Bisson, G. Laberge, S. McManus, G. Grenier, N. Faucheux, S. Roux: Bone morphogenetic protein-9 activates Smad and ERK pathways and supports human osteoclast function and survival in vitro. Cell Signal 25, 717–28 (2013)
[161]T.A. Einhorn, L.C. Gerstenfeld: Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11, 45–54 (2015)
[162]A. Ozaki, M. Tsunoda, S. Kinoshita, R. Saura: Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 5, 64–70 (2000)
[163]Z.S. Ai-Aql, A.S. Alagl, D.T. Graves, L.C. Gerstenfeld, T.A. Einhorn: Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87, 107–18 (2008)
[164]X. Yang, B.F. Ricciardi, A. Hernandez-Soria, Y. Shi, N. Pleshko Camacho, M.P.G. Bostrom: Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41, 928–36 (2007)
[165]X. Du, Y. Xie, C.J. Xian, L. Chen: Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 227, 3731–43 (2012)
[166]E.A. Gorter, N.A.T. Hamdy, N.M. Appelman-Dijkstra, I.B. Schipper: The role of vitamin D in human fracture healing: a systematic review of the literature. Bone 64, 288–97 (2014)
[167]Y.Y. Yu, S. Lieu, C. Lu, C. Colnot: Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone 47, 65–73 (2010)
[168]C. Gabay: Interleukin-6 and chronic inflammation. Arthritis Res Ther 8 Suppl 2, S3 (2006)
[169]J. Scheller, A. Chalaris, D. Schmidt-Arras, S. Rose-John: The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813, 878–88 (2011)
[170]S. Dekel, G. Lenthall, M.J. Francis: Release of prostaglandins from bone and muscle after tibial fracture. An experimental study in rabbits. J Bone Joint Surg Br 63-B, 185–9 (1981)
[171]B. Shen, A. Wei, H. Tao, A.D. Diwan, D.D.F. Ma: BMP-2 enhances TGF-beta3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate bead culture. Tissue Eng Part A 15, 1311–20 (2009)
[172]N.L. Hedgecock, T. Hadi, A.A. Chen, S.B. Curtiss, R.B. Martin, S.J. Hazelwood: Quantitative regional associations between remodeling, modeling, and osteocyte apoptosis and density in rabbit tibial midshafts. Bone 40, 627–37 (2007)
[173]G. Kogianni, V. Mann, B.S. Noble: Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res 23, 915–27 (2008)
[174]T.J. Heino, T.A. Hentunen, H.K. Vaananen: Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 85, 185–97 (2002)
[175]R.O. Hynes: Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–87 (2002)
[176]E. Ruoslahti, M.D. Pierschbacher: New perspectives in cell adhesion: RGD and integrins. Science 238, 491–7 (1987)
[177]A. Jikko, S.E. Harris, D. Chen, D.L. Mendrick, C.H. Damsky: Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 14, 1075–83 (1999)
[178]R. Zaidel-Bar, M. Cohen, L. Addadi, B. Geiger: Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans 32, 416–20 (2004)
[179]M.A. Schwartz: Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2, a005066 (2010)
[180]R. Zaidel-Bar, B. Geiger: The switchable integrin adhesome. J Cell Sci 123, 1385–8 (2010)
[181]S. Huveneers, E.H.J. Danen: Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 122, 1059–69 (2009)
[182]H.B. Schiller, C.C. Friedel, C. Boulegue, R. Fassler: Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12, 259–66 (2011)
[183]J.-C. Kuo, X. Han, C.-T. Hsiao, J.R. 3rdYates, C.M. Waterman: Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13, 383–93 (2011)
[184]J.D. Humphries, A. Byron, M.D. Bass, S.E. Craig, J.W. Pinney, D. Knight, M.J. Humphries: Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2, ra51 (2009)
[185]T. Geiger, R. Zaidel-Bar: Opening the floodgates: proteomics and the integrin adhesome. Curr Opin Cell Biol 24, 562–8 (2012)
[186]J. Robertson, G. Jacquemet, A. Byron, M.C. Jones, S. Warwood, J.N. Selley, D. Knight, J.D. Humphries, M.J. Humphries: Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 6, 6265 (2015)
[187]J.-E. Hoffmann, Y. Fermin, R. Lo Stricker, K. Ickstadt, E. Zamir: Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol. Elife 3, e02257 (2014)
[188]N. Elad, T. Volberg, I. Patla, V. Hirschfeld-Warneken, C. Grashoff, J.P. Spatz, R. Fassler, B. Geiger, O. Medalia: The role of integrin-linked kinase in the molecular architecture of focal adhesions. J Cell Sci 126, 4099–107 (2013)
[189]J.D. Humphries, P. Wang, C. Streuli, B. Geiger, M.J. Humphries, C. Ballestrem: Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179, 1043–57 (2007)
[190]S.J. Shattil, C. Kim, M.H. Ginsberg: The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11, 288–300 (2010)
[191]D.D. Schlaepfer, C.R. Hauck, D.J. Sieg: Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71, 435–78 (1999)
[192]M.D. Schaller: Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540, 1–21 (2001)
[193]M.C. Frame, H. Patel, B. Serrels, D. Lietha, M.J. Eck: The FERM domain: organizing the structure and function of FAK. Nat Rev cell Biol 11, 802–14 (2010)
[194]C.T. Mierke: The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 10, 65005 (2013)
[195]D. Lietha, X. Cai, D.F.J. Ceccarelli, Y. Li, M.D. Schaller, M.J. Eck: Structural basis for the autoinhibition of focal adhesion kinase. Cell 129, 1177–87 (2007)
[196]A. Tomar, D.D. Schlaepfer: Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21, 676–83 (2009)
[197]M.D. Schaller, J.T. Parsons: Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6, 705–10 (1994)
[198]J.E. Sero, A.E. German, A. Mammoto, D.E. Ingber: Paxillin controls directional cell motility in response to physical cues. Cell Adh Migr 6, 502–8 (2012)
[199]B. Geiger, A. Bershadsky, R. Pankov, K.M. Yamada: Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev cell Biol 2, 793–805 (2001)
[200]D.R. Critchley: Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 38, 235–54 (2009)
[201]E. Zamir, M. Katz, Y. Posen, N. Erez, K.M. Yamada, B.-Z. Katz, S. Lin, D.C. Lin, A. Bershadsky, Z. Kam, B. Geiger: Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat Cell Biol 2, 191–6 (2000)
[202]B.Z. Katz, E. Zamir, A. Bershadsky, Z. Kam, K.M. Yamada, B. Geiger: Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell 11, 1047–60 (2000)
[203]M. Lin, H. Wang, C. Ruan, J. Xing, J. Wang, Y. Li, Y. Wang, Y. Luo: Adsorption force of fibronectin on various surface chemistries and its vital role in osteoblast adhesion. Biomacromolecules 16, 973–84 (2015)
[204]K.M. Yamada, R. Pankov, E. Cukierman: Dimensions and dynamics in integrin function. Braz J Med Biol Res 36, 959–66 (2003)
[205]L.H. Golden, K.L. Insogna: The expanding role of PI3-kinase in bone. Bone 34, 3–12 (2004)
[206]S.B. Rodan, G.A. Rodan: Integrin function in osteoclasts. J Endocrinol 154 Suppl, S47–56 (1997)
[207]R. Faccio, S. Takeshita, A. Zallone, F.P. Ross, S.L. Teitelbaum: c-Fms and the alphavbeta3 integrin collaborate during osteoclast differentiation. J Clin Invest 111, 749–58 (2003)
[208]S.M. Frisch, R.A. Screaton: Anoikis mechanisms. Curr Opin Cell Biol 13, 555–62 (2001)
[209]D.G. Stupack, X.S. Puente, S. Boutsaboualoy, C.M. Storgard, D.A. Cheresh: Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155, 459–70 (2001)
[210]H. Zhao, F.P. Ross, S.L. Teitelbaum: Unoccupied alpha(v)beta3 integrin regulates osteoclast apoptosis by transmitting a positive death signal. Mol Endocrinol 19, 771–80 (2005)
[211]H. Schachtner, S.D.J. Calaminus, S.G. Thomas, L.M. Machesky: Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 70, 572–89 (2013)
[212]N. Takegahara, S. Kang, S. Nojima, H. Takamatsu, T. Okuno, H. Kikutani, T. Toyofuku, A. Kumanogoh: Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 24, 4782–92 (2010)
[213]F. Saltel, A. Chabadel, E. Bonnelye, P. Jurdic: Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol 87, 459–68 (2008)
[214]P. Hotulainen, P. Lappalainen: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173, 383–94 (2006)
[215]T. Uruno, J. Liu, Y. Li, N. Smith, X. Zhan: Sequential interaction of actin-related proteins 2 and 3 (Arp2/3) complex with neural Wiscott-Aldrich syndrome protein (N-WASP) and cortactin during branched actin filament network formation. J Biol Chem 278, 26086–93 (2003)
[216]C. Itzstein, F.P. Coxon, M.J. Rogers: The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2, 117–30 (2011)
[217]O. Destaing, F. Saltel, J.-C. Geminard, P. Jurdic, F. Bard: Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14, 407–16 (2003)
[218]C. Luxenburg, L. Addadi, B. Geiger: The molecular dynamics of osteoclast adhesions. Eur J Cell Biol 85, 203–11 (2006)
[219]H. Touaitahuata, E. Planus, C. Albiges-Rizo, A. Blangy, G. Pawlak: Podosomes are dispensable for osteoclast differentiation and migration. Eur J Cell Biol 92, 139–49 (2013)
[220]P. Jurdic, F. Saltel, A. Chabadel, O. Destaing: Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85, 195–202 (2006)
[221]S. Hu, E. Planus, D. Georgess, C. Place, X. Wang, C. Albiges-Rizo, P. Jurdic, J.-C. Geminard: Podosome rings generate forces that drive saltatory osteoclast migration. Mol Biol Cell 22, 3120–6 (2011)
[222]C.F. Lai, S.L. Cheng: Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation. J Bone Miner Res 20, 330–40 (2005)
[223]A.R. Reynolds, I.R. Hart, A.R. Watson, J.C. Welti, R.G. Silva, S.D. Robinson, G. Da Violante, M. Gourlaouen, M. Salih, M.C. Jones, D.T. Jones, G. Saunders, V. Kostourou, F. Perron-Sierra, J.C. Norman, G.C. Tucker, K.M. Hodivala-Dilke: Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15, 392–400 (2009)
[224]H.L. Goel, M. Breen, J. Zhang, I. Das, S. Aznavoorian-Cheshire, N.M. Greenberg, A. Elgavish, L.R. Languino: beta1A integrin expression is required for type1 insulin-like growth factor receptor mitogenic and transforming activities and localization to focal contacts. Cancer Res 65, 6692–700 (2005)
[225]B.P. Eliceiri: Integrin and growth factor receptor crosstalk. Circ Res 89, 1104–10 (2001)
[226]J. Veevers-Lowe, S.G. Ball, A. Shuttleworth, C.M. Kielty: Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. J Cell Sci 124, 1288–300 (2011)
[227]T.-H. Chen, P.-C. Chan, C.-L. Chen, H.-C. Chen: Phosphorylation of focal adhesion kinase on tyrosine 194 by Met leads to its activation through relief of autoinhibition. Oncogene 30, 153–66 (2011)
[228]Y. Jung, J.H. McCarty: Band 4.1. proteins regulate integrin-dependent cell spreading. Biochem Biophys Res Commun 426, 578–84 (2012)
[229]M. Higuchi, R. Kihara, T. Okazaki, I. Aoki, S. Suetsugu, Y. Gotoh: Akt1 promotes focal adhesion disassembly and cell motility through phosphorylation of FAK in growth factor-stimulated cells. J Cell Sci 126, 745–55 (2013)
[230]Y. Tamura, Y. Takeuchi, M. Suzawa, S. Fukumoto, M. Kato, K. Miyazono, T. Fujita: Focal adhesion kinase activity is required for bone morphogenetic protein-Smad1 signaling and osteoblastic differentiation in murine MC3T3-E1 cells. J Bone Miner Res 16, 1772–9 (2001)
[231]Z. Mai, Z. Peng, S. Wu, J. Zhang, L. Chen, H. Liang, D. Bai, G. Yan, H. Ai: Single bout short duration fluid shear stress induces osteogenic differentiation of MC3T3-E1 cells via integrin beta1 and BMP2 signaling cross-talk. PLoS One 8, e61600 (2013)
[232]M.-P. Mena, I. Papiewska-Pajak, P. Przygodzka, A. Kozaczuk, J. Boncela, C.S. Cierniewski: NFAT2 regulates COX-2 expression and modulates the integrin repertoire in endothelial cells at the crossroads of angiogenesis and inflammation. Exp Cell Res 324, 124–36 (2014)
[233]M.E. Marquis, E. Lord, E. Bergeron, L. Bourgoin, N. Faucheux: Short-term effects of adhesion peptides on the responses of preosteoblasts to pBMP-9. Biomaterials 29, 1005–16 (2008)
[234]R.H. Li, J.M. Wozney: Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 19, 255–65 (2001)
[235]B.E. Rapuano, D.E. MacDonald: Structure-activity relationship of human bone sialoprotein peptides. Eur J Oral Sci 121, 600–9 (2013)
[236]L.A. Buchanan, A. El-Ghannam: Effect of bioactive glass crystallization on the conformation and bioactivity of adsorbed proteins. J Biomed Mater Res A 93, 537–46 (2010)
[237]A.B. Faia-Torres, T. Goren, T.O. Ihalainen, S. Guimond-Lischer, M. Charnley, M. Rottmar, K. Maniura-Weber, N.D. Spencer, R.L. Reis, M. Textor, N.M. Neves: Regulation of human mesenchymal stem cell osteogenesis by specific surface density of fibronectin: a gradient study. ACS Appl Mater Interfaces 7, 2367–75 (2015)
[238]A. Shekaran, A.J. Garcia: Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96, 261–72 (2011)
[239]J.H. Collier, T. Segura: Evolving the use of peptides as components of biomaterials. Biomaterials 32, 4198–204 (2011)
[240]O. Drevelle, E. Bergeron, H. Senta, M.A. Lauzon, S. Roux, G. Grenier, N. Faucheux: Effect of functionalized polycaprolactone on the behaviour of murine preosteoblasts. Biomaterials 31, 6468–76 (2010)
[241]Y.M. Shin, S.-Y. Jo, J.-S. Park, H.-J. Gwon, S.I. Jeong, Y.-M. Lim: Synergistic effect of dual-functionalized fibrous scaffold with BCP and RGD containing peptide for improved osteogenic differentiation. Macromol Biosci 14, 1190–8 (2014)
[242]M. Mehta, C.M. Madl, S. Lee, G.N. Duda, D.J. Mooney: The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels. J Biomed Mater Res A (2015)
[243]Y.M. Kolambkar, M. Bajin, A. Wojtowicz, D.W. Hutmacher, A.J. Garcia, R.E. Guldberg: Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro. Tissue Eng Part A 20, 398–409 (2014)
[244]A.M. Wojtowicz, A. Shekaran, M.E. Oest, K.M. Dupont, K.L. Templeman, D.W. Hutmacher, R.E. Guldberg, A.J. García: Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31, 2574–82 (2010)
[245]B.A. Dalton, C.D. McFarland, P.A. Underwood, J.G. Steele: Role of the heparin binding domain of fibronectin in attachment and spreading of human bone-derived cells. J Cell Sci 108, 2083–92 (1995)
[246]S. Sun, W. Yu, Y. Zhang, F. Zhang: Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR. J Mater Sci Mater Med 24, 1079–91 (2013)
[247]K.C. Dee, T.T. Andersen, R. Bizios: Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 40, 371–7 (1998)
[248]O. Drevelle, N. Faucheux: Biomimetic materials for controlling bone cell responses. Front Biosci (Schol Ed) 5, 369–95 (2013)
[249]A. Rezania, K.E. Healy: The effect of peptide surface density on mineralization of a matrix deposited by osteogenic cells. J Biomed Mater Res 52, 595–600 (2000)
[250]S.J. Bogdanowich-Knipp, S. Chakrabarti, T.D. Williams, R.K. Dillman, T.J. Siahaan: Solution stability of linear vs. cyclic RGD peptides. J Pept Res 53, 530–41 (1999)
[251]K.A. Kilian, M. Mrksich: Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. Angew Chem Int Ed Engl 51, 4891–5 (2012)
[252]S.L. Bellis: Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32, 4205–10 (2011)
[253]P.R. Patel, R.C. Kiser, Y.Y. Lu, E. Fong, W.C. Ho, D.A. Tirrell, R.H. Grubbs: Synthesis and cell adhesive properties of linear and cyclic RGD functionalized polynorbornene thin films. Biomacromolecules 13, 2546–53 (2012)
[254]L. Chen, C. Sloey, Z. Zhang, P. VBondarenko, H. Kim, D. Ren, S. Kanapuram: Chemical modifications of therapeutic proteins induced by residual ethylene oxide. J Pharm Sci 104, 731–9 (2015)
[255]N. Huebsch, M. Gilbert, K.E. Healy: Analysis of sterilization protocols for peptide-modified hydrogels. J Biomed Mater Res B Appl Biomater 74, 440–7 (2005)
[256]L.Y. Santiago, R.W. Nowak, J. Peter Rubin, K.G. Marra: Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27, 2962–9 (2006)
[257]S.-K. Min, H.K. Kang, D.H. Jang, S.Y. Jung, O.B. Kim, B.-M. Min, I.-S. Yeo: Titanium surface coating with a laminin-derived functional peptide promotes bone cell adhesion. Biomed Res Int 2013, 638348 (2013)
[258]H.K. Kang, O.B. Kim, S.-K. Min, S.Y. Jung, D.H. Jang, T.-K. Kwon, B.-M. Min, I.-S. Yeo: The effect of the DLTIDDSYWYRI motif of the human laminin alpha2 chain on implant osseointegration. Biomaterials 34, 4027–37 (2013)
[259]Y.J. Choi, J.Y. Lee, S.J. Lee, C.-P. Chung, Y.J. Park: Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP). Biochem Biophys Res Commun 419, 326–32 (2012)
[260]X. Chen, P. Sevilla, C. Aparicio: Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf B Biointerfaces 107, 189–97 (2013)
[261]K. Oya, Y. Tanaka, H. Saito, K. Kurashima, K. Nogi, H. Tsutsumi, Y. Tsutsumi, H. Doi, N. Nomura, T. Hanawa: Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials 30, 1281–6 (2009)
[262]R.N. Palchesko, J.D. Romeo, K.A. McGowan, E.S. Gawalt: Increased osteoblast adhesion on physically optimized KRSR modified calcium aluminate. J Biomed Mater Res Part A 100, 1229–38 (2012)
[263]A.A. Sawyer, K.M. Hennessy, S.L. Bellis: The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 28, 383–92 (2007)
[264]J. Kim, C. Ki, Y. Park, H. Kim, I. Um: Effect of RGDS and KRSR peptides immobilized on silk fibroin nanofibrous mats for cell adhesion and proliferation. Macromol Res 18, 442–8 (2010)
[265]N. Broggini, S. Tosatti, S.J. Ferguson, M. Schuler, M. Textor, M.M. Bornstein, D.D. Bosshardt, D. Buser: Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)-and heparin (KRSR)-binding peptides. J Biomed Mater Res A 100, 703–11 (2012)
[266]S. Aota, M. Nomizu, K.M. Yamada: The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269, 24756–61 (1994)
[267]R. Nakaoka, Y. Hirano, D.J. Mooney, T. Tsuchiya, A. Matsuoka: Study on the potential of RGD-and PHSRN-modified alginates as artificial extracellular matrices for engineering bone. J Artif Organs 16, 284–93 (2013)
[268]D.S.W. Benoit, K.S. Anseth: The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209–20 (2005)
[269]C.D. Reyes, T.A. Petrie, A.J. Garcia: Mixed extracellular matrix ligands synergistically modulate integrin adhesion and signaling. J Cell Physiol 217, 450–8 (2008)
[270]A.J. Garcia, J.E. Schwarzbauer, D. Boettiger: Distinct activation states of alpha5beta1 integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry 41, 9063–9 (2002)
[271]R. Visser, P.M. Arrabal, L. Santos-Ruiz, R. Fernandez-Barranco, J. Becerra, M. Cifuentes: A collagen-targeted biomimetic RGD peptide to promote osteogenesis. Tissue Eng Part A 20, 34–44 (2014)
[272]B. Han, F.L. Hall, M.E. Nimni: Refolding of a recombinant collagen-targeted TGF-beta2 fusion protein expressed in Escherichia coli. Protein Expr Purif 11, 169–78 (1997)
[273]A. Shekaran, J.R. Garcia, A.Y. Clark, T.E. Kavanaugh, A.S. Lin, R.E. Guldberg, A.J. Garcia: Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35, 5453–61 (2014)
[274]M.A. Brown, Q. Zhao, K.A. Baker, C. Naik, C. Chen, L. Pukac, M. Singh, T. Tsareva, Y. Parice, A. Mahoney, V. Roschke, I. Sanyal, S. Choe: Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280, 25111–8 (2005)
[275]Y. Suzuki, M. Tanihara, K. Suzuki, A. Saitou, W. Sufan, Y. Nishimura: Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50, 405–9 (2000)
[276]A. Saito, Y. Suzuki, S. Ogata, C. Ohtsuki, M. Tanihara: Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta 1651, 60–7 (2003)
[277]E. Bergeron, H. Senta, A. Mailloux, H. Park, E. Lord, N. Faucheux: Murine preosteoblast differentiation induced by a peptide derived from bone morphogenetic proteins-9. Tissue Eng A 15, 3341–9 (2009)
[278]E. Bergeron, E. Leblanc, O. Drevelle, R. Giguere, S. Beauvais, G. Grenier, N. Faucheux: The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng A 18, 342–52 (2012)
[279]N.M. Moore, N.J. Lin, N.D. Gallant, M.L. Becker: Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater 7, 2091–100 (2011)
[280]O.F. Zouani, C. Chollet, B. Guillotin, M.-C. Durrieu: Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 31, 8245–53 (2010)
[281]W.-N. Yin, F.-Y. Cao, K. Han, X. Zeng, R.-X. Zhuo, X.-Z. Zhang: The synergistic effect of a BMP-7 derived peptide and cyclic RGD in regulating differentiation behaviours of mesenchymal stem cells. J Mater Chem B 2, 8434–40 (2014)
[282]C.M. Rubert Perez, N. Stephanopoulos, S. Sur, S.S. Lee, C. Newcomb, S.I. Stupp: The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng 43, 501–14 (2015)
[283]S.S. Lee, E.L. Hsu, M. Mendoza, J. Ghodasra, M.S. Nickoli, A. Ashtekar, M. Polavarapu, J. Babu, R.M. Riaz, J.D. Nicolas, D. Nelson, S.Z. Hashmi, S.R. Kaltz, J.S. Earhart, B.R. Merk, J.S. McKee, S.F. Bairstow, R.N. Shah, W.K. Hsu, S.I. Stupp: Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater 4, 131–41 (2015)
[284]Y. Song, Y. Ju, Y. Morita, B. Xu, G. Song: Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 37, 120–6 (2014)
[285]F. Haasters, D. Docheva, C. Gassner, C. Popov, W. Bocker, W. Mutschler, M. Schieker, W.C. Prall: Mesenchymal stem cells from osteoporotic patients reveal reduced migration and invasion upon stimulation with BMP-2 or BMP-7. Biochem Biophys Res Commun 452, 118–23 (2014)
[286]M. Kisiel, M.M. Martino, M. Ventura, J.A. Hubbell, J. Hilborn, D.A. Ossipov: Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials 34, 704–12 (2013)
[287]Z. Hamidouche, O. Fromigue, J. Ringe, T. Haupl, P.J. Marie: Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation. BMC Cell Biol 11, 44 (2010)
[288]G.H. Mahabeleshwar, W. Feng, K. Reddy, E.F. Plow, T. V Byzova: Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101, 570–80 (2007)
[289]S. Mori, C.-Y. Wu, S. Yamaji, J. Saegusa, B. Shi, Z. Ma, Y. Kuwabara, K.S. Lam, R.R. Isseroff, Y.K. Takada, Y. Takada: Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling. J Biol Chem 283, 18066–75 (2008)
[290]S. Yamaji, J. Saegusa, K. Ieguchi, M. Fujita, S. Mori, Y.K. Takada, Y. Takada: A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist. PLoS One 5, e10273 (2010)
[291]Z. Dai, F. Guo, F. Wu, H. Xu, C. Yang, J. Li, P. Liang, H. Zhang, L. Qu, Y. Tan, Y. Wan, Y. Li: Integrin alphavbeta3 mediates the synergetic regulation of core-binding factor alpha1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinase signaling. Bone 69, 126–32 (2014)
[292]J.-L. Su, J. Chiou, C.-H. Tang, M. Zhao, C.-H. Tsai, P.-S. Chen, Y.-W. Chang, M.-H. Chien, C.-Y. Peng, M. Hsiao, M.-L. Kuo, M.-L. Yen: CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 285, 31325–36 (2010)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Scholar (FBS) is published by IMR Press from Volume 13 Issue 1 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Interactions between bone cells and biomaterials: An update
1 Cells-Biomaterials Biohybrid Systems, Universite de Sherbrooke, Department of Chemical and Biotechnological Engineering, 2500, Universite Blvd, Sherbrooke, Quebec, Canada, J1K 2R1
2 Ecole Polytechnique de Montreal, 2900, Blvd Edouard Montpetit, Montreal, Quebec, Canada, H3C 3A7
3 Universite de Sherbrooke, Carrefour d’Innovations en Technologies Ecologiques (CITE), 2500, Universite Blvd, Sherbrooke, Quebec, Canada, J1K 2R1
4 Universite de Sherbrooke, Department of Surgery, 3001 12e Avenue N, Sherbrooke, Quebec, Canada, J1H 5N4
5 Centre de Recherche du CHUS, 3001 12e Avenue N, Sherbrooke, Quebec, J1H 5N4
6 Universite de Sherbrooke, Department of Medicine, 3001 12e Avenue N, Sherbrooke, Quebec, Canada, J1H 5N4
*Author to whom correspondence should be addressed.
Abstract
As the populations of the Western world become older, they will suffer more and more from bone defects related to osteoporosis (non-union fractures, vertebral damages), cancers (malignant osteolysis) and infections (osteomyelitis). Autografts are usually used to fill these defects, but they have several drawbacks such as morbidity at the donor site and the amount and quality of bone that can be harvested. Recent scientific milestones made in biomaterials development were shown to be promising to overcome these limitations. Cell interactions with biomaterials can be improved by adding at their surface functional groups such as adhesive peptides and/or growth factors. The development of such biomimetic materials able to control bone cell responses can only proceed if it is based on a sound understanding of bone cell behavior and regulation. This review focuses on bone physiology and the regulation of bone cell differentiation and function, and how the latest advances in biomimetic materials can be translated within promising clinical outcomes.
Keywords
- Alpha Integrin Subunit
- Adhesion
- Angiogenesis
- Apoptosis
- Beta Integrin Subunit
- Biomaterial
- Biomimetic
- BMP
- Bone
- Bone Remodeling
- Bone Substitute
- Collagen
- Differentiation
- ECM
- Extracellular Matrix
- Fibrillar Adhesion
- Fibronectin
- Focal Adhesion
- Focal Complex
- Growth Factor
- GTPase
- Healing
- Integrin
- Interaction
- Kinase
- MAPK
- Osteoblast
- Osteoclast
- Osteoinduction
- Osteoconduction
- Osteocyte
- Peptide
- Polymer
- Proliferation
- Receptor
- RGD
- Scaffold
- Signal Transduction
- Smad
- TGF
- Vascularization
- VEGF
- Wnt
- Review
References
- [1] Public Health Agency of Canada: The chief public health officer’s report on the state of public health in Canada, 2014: Public health in the future. Public Health Agency of Canada, Ottawa (Canada) (2014)
- [2] Statistics Canada: Population projections for Canada, provinces and territories 2009 to 2036. Statistics Canada, Ottawa (Canada) (2010)
- [3] Statistics Canada: The Canadian population in 2011: age and sex. Statistics Canada, Ottawa (Canada) (2012)
- [4] World Health Organization: Facts about ageing. World Health Organization (2014) (cited 2015 Aug 19) Available from:
- [5] World Health Organization: The burden of musculoskeletal conditions at the start of the new millennium. World Health Organization Technical Report Series 919, World Health Organization, Geneva (Switzerland) (2003)
- [6] Osteoporosis Canada: Facts & Statistics.Osteoporosis Canada (cited 2015 Aug 19) Available from: http://www.osteoporosis.ca/osteoporosis-and-you/osteoporosis-facts-and-statisticsCited within: 0Google Scholar
- [7] Ostéoporose Canada: Qu’est-ce que l’ostéoporose? Ostéoporose Canada (cited 2015 Aug 20) Available from: http://www.osteoporosecanada.ca/losteoporose-et-vous/quest-ce-que-losteoporose
- [8] M.E. Marquis, E. Lord, E. Bergeron, O. Drevelle, H. Park, F. Cabana, H. Senta, N. Faucheux: Bone cells-biomaterials interactions. Front Biosci 14, 1023–67 (2009)
- [9] S.K. Nilsson, H.M. Johnston, J.A. Coverdale: Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97, 2293–9 (2001)
- [10] P. V Giannoudis, H. Dinopoulos, E. Tsiridis: Bone substitutes: An update. Injury 36, S20–7 (2005)
- [11] R. Dimitriou, G.I. Mataliotakis, A.G. Angoules, N.K. Kanakaris, P. V Giannoudis: Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42 Supp l2, S3–15 (2011)
- [12] R.J. Bruno, M.S. Cohen, A. Berzins, D.R. Sumner: Bone graft harvesting from the distal radius, olecranon, and iliac crest: a quantitative analysis. J Hand Surg Am 26, 135–41 (2001)
- [13] J.D. Conway: Autograft and nonunions: morbidity with intramedullary bone graft versus iliac crest bone graft. Orthop Clin North Am 41, 75–84 (2010)
- [14] A. Dumas, C. Gaudin-Audrain, G. Mabilleau, P. Massin, L. Hubert, M.F. Basle, D. Chappard: The influence of processes for the purification of human bone allografts on the matrix surface and cytocompatibility. Biomaterials 27, 4204–11 (2006)
- [15] G.E. Friedlaender, D.M. Strong, W.W. Tomford, H.J. Mankin: Long-term follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am 30, 583–8 (1999)
- [16] G.E. Friedlaender: Bone allografts: the biological consequences of immunological events. J Bone Joint Surg Am 73, 1119–22 (1991)
- [17] S.M. Graham, A. Leonidou, N. Aslam-Pervez, A. Hamza, P. Panteliadis, M. Heliotis, A. Mantalaris, E. Tsiridis: Biological therapy of bone defects: the immunology of bone allo-transplantation. Expert Opin Biol Ther 10, 885–901 (2010)
- [18] R. Russo, N. Scarborough: Inactivation of viruses in demineralized bone matrix. FDA Work tissue Transplant Reprod tissue, p.20–1 (1995)
- [19] L.L. Hench, J.M. Polak: Third-generation biomedical materials. Science 295, 1014–7 (2002)
- [20] F. Monchau, A. Lefevre, M. Descamps, A. Belquin-myrdycz, P. Laffargue, H.F. Hildebrand: In vitro studies of human and rat osteoclast activity on hydroxyapatite, beta-tricalcium phosphate, calcium carbonate. Biomol Eng 19, 143–52 (2002)
- [21] O. Drevelle, A. Daviau, M.A. Lauzon, N. Faucheux: Effect of BMP-2 and/or BMP-9 on preosteoblasts attached to polycaprolactone functionalized by adhesive peptides derived from bone sialoprotein. Biomaterials 34, 1051–62 (2013)
- [22] Y.J. Lee, J.-H. Lee, H.-J. Cho, H.K. Kim, T.R. Yoon, H. Shin: Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration. Biomaterials 34, 5059–69 (2013)
- [23] P.C. Bessa, M. Casal, R.L. Reis: Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2, 1–13 (2008)
- [24] X. He, X. Yang, E. Jabbari: Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. Langmuir 28, 5387–97 (2012)
- [25] R.M. Ajiboye, J.T. Hamamoto, M.A. Eckardt, J.C. Wang: Clinical and radiographic outcomes of concentrated bone marrow aspirate with allograft and demineralized bone matrix for posterolateral and interbody lumbar fusion in elderly patients. Eur Spine J 24, 2567–72 (2015)
- [26] L.S. Pryor, E. Gage, C.-J. Langevin, F. Herrera, A.D. Breithaupt, C.R. Gordon, A.M. Afifi, J.E. Zins, H. Meltzer, A. Gosman, S.R. Cohen, R. Holmes: Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2, 151–60 (2009)
- [27] X. He, J. Ma, E. Jabbari: Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir 24, 12508–16 (2008)
- [28] K. Lavery, P. Swain, D. Falb, M.H. Alaoui-Ismaili: BMP-2/4 and BMP-6/7 differentially utilize cell surface receptors to induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. J Biol Chem 283, 20948–58 (2008)
- [29] T. Nakase, H. Yoshikawa: Potential roles of bone morphogenetic proteins (BMPs) in skeletal repair and regeneration. J Bone Miner Metab 24, 425–33 (2006)
- [30] C.D. Reyes, A.J. Garcia: Alpha2beta1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. J Biomed Mater Res A 69, 591–600 (2004)
- [31] R.S. Carvalho, P.J. Kostenuik, E. Salih, A. Bumann, L.C. Gerstenfeld: Selective adhesion of osteoblastic cells to different integrin ligands induces osteopontin gene expression. Matrix Biol 22, 241–9 (2003)
- [32] W.J. Boyle, W.S. Simonet, D.L. Lacey: Osteoclast differentiation and activation. Nature 423, 337–42 (2003)
- [33] S.C. Manolagas: Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21, 115–37 (2000)
- [34] M. Capulli, R. Paone, N. Rucci: Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 561, 3–12 (2014)
- [35] M.L. Knothe Tate, J.R. Adamson, A.E. Tami, T.W. Bauer: The osteocyte. Int J Biochem Cell Biol 36, 1–8 (2004)
- [36] S. Weinbaum, S.C. Cowin, Y. Zeng: Amodel for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27, 339–60 (1994)
- [37] L.E. Mulcahy, D. Taylor, T.C. Lee, G.P. Duffy: RANKL and OPG activity is regulated by injury size in networks of osteocyte-like cells. Bone 48, 182–8 (2011)
- [38] O. Verborgt, G.J. Gibson, M.B. Schaffler: Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15, 60–7 (2000)
- [39] Z.F. Jaworski, B. Duck, G. Sekaly: Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat 133, 397–405 (1981)
- [40] K. Vaananen: Mechanism of osteoclast mediated bone resorption-rationale for the design of new therapeutics. Adv Drug Deliv Rev 57, 959–71 (2005)
- [41] S.A. Nesbitt, M.A. Horton: Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276, 266–9 (1997)
- [42] S. Ory, H. Brazier, G. Pawlak, A. Blangy: Rho GTPases in osteoclasts: orchestrators of podosome arrangement. Eur J Cell Biol 87, 469–77 (2008)
- [43] K. Gelse, E. Poschl, T. Aigner: Collagens-structure, function, and biosynthesis. Adv Drug Deliv Rev 55, 1531–46 (2003)
- [44] J.P.R.O. Orgel, J.D. San Antonio, O. Antipova: Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res 52, 2–17 (2011)
- [45] T. Gurry, P.S. Nerenberg, C.M. Stultz: The contribution of interchain salt bridges to triple-helical stability in collagen. Biophys J 98, 2634–43 (2010)
- [46] A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler: Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11, 757–66 (2011)
- [47] L.W. Fisher, N.S. Fedarko: Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 Suppl 1, 33–40 (2003)
- [48] K.A. Staines, V.E. MacRae, C. Farquharson: The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol 214, 241–55 (2012)
- [49] G.K. Hunter, H.A. Goldberg: Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 90, 8562–5 (1993)
- [50] W.N. Addison, D.L. Masica, J.J. Gray, M.D. McKee: Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res 25, 695–705 (2010)
- [51] W.J. Landis, R. Jacquet: Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif Tissue Int 93, 329–37 (2013)
- [52] E. Holm, J.E. Aubin, G.K. Hunter, F. Beier, H.A. Goldberg: Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization. Bone 71, 145–54 (2015)
- [53] E.H. Schwab, M. Halbig, K. Glenske, A.-S. Wagner, S. Wenisch, E.A. Cavalcanti-Adam: Distinct effects of RGD-glycoproteins on integrin-mediated adhesion and osteogenic differentiation of human mesenchymal stem cells. Int J Med Sci 10, 1846–59 (2013)
- [54] A. Ode, G.N. Duda, J.D. Glaeser, G. Matziolis, S. Frauenschuh, C. Perka, C.J. Wilson, G. Kasper: Toward biomimetic materials in bone regeneration: functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components. J Biomed Mater Res A 95, 1114–24 (2010)
- [55] R.T. Ingram, B.L. Clarke, L.W. Fisher, L.A. Fitzpatrick: Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8, 1019–29 (1993)
- [56] A. Corsi, T. Xu, X.D. Chen, A. Boyde, J. Liang, M. Mankani, B. Sommer, R. VIozzo, I. Eichstetter, P.G. Robey, P. Bianco, M.F. Young: Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17, 1180–9 (2002)
- [57] L.E. Bertassoni, M. V Swain: The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater 38, 91–104 (2014)
- [58] X.-D. Chen, L.W. Fisher, P.G. Robey, M.F. Young: The small leucine-rich proteoglycan biglycan modulates BMP-4-induced osteoblast differentiation. FASEB J 18, 948–58 (2004)
- [59] I. Fernández-Tresguerres-Hernández-Gil, M.A. Alobera Gracia, M. del Canto Pingarrn, L. Blanco Jerez: Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral 11, E47–51 (2006)
- [60] A. Veis, J.R. Dorvee: Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices. Calcif Tissue Int 93, 307–15 (2013)
- [61] F. Nudelman, K. Pieterse, A. George, P.H.H. Bomans, H. Friedrich, L.J. Brylka, P.A.J. Hilbers, G. de With, N.A.J.M. Sommerdijk: The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9, 1004–9 (2010)
- [62] W.-J. Chung, K.-Y. Kwon, J. Song, S.-W. Lee: Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27, 7620–8 (2011)
- [63] Z. Xu, Y. Yang, W. Zhao, Z. Wang, W.J. Landis, Q. Cui, N. Sahai: Molecular mechanisms for intrafibrillar collagen mineralization in skeletal tissues. Biomaterials 39, 59–66 (2015)
- [64] Y. Wang, T. Azais, M. Robin, A. Vallee, C. Catania, P. Legriel, G. Pehau-Arnaudet, F. Babonneau, M.-M. Giraud-Guille, N. Nassif: The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat Mater 11, 724–33 (2012)
- [65] W.L. Grayson, B.A. Bunnell, E. Martin, T. Frazier, B.P. Hung, J.M. Gimble: Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 11, 140–50 (2015)
- [66] J. Kobolak, A. Dinnyes, A. Memic, A. Khademhosseini, A. Mobasheri: Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro engineering of their niche. Methods (in press) (2015)
- [67] B.P. Hung, D.L. Hutton, K.L. Kozielski, C.J. Bishop, B. Naved, J.J. Green, A.I. Caplan, J.M. Gimble, A.H. Dorafshar, W.L. Grayson: Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells. Stem Cells 33, 2773–84 (2015)
- [68] J. Baker, J.P. Liu, E.J. Robertson, A. Efstratiadis: Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993)
- [69] N. Maegawa, K. Kawamura, M. Hirose, H. Yajima, Y. Takakura, H. Ohgushi: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2). J Tissue Eng Regen Med 1, 306–13 (2007)
- [70] H. Cheng, W. Jiang, F.M. Phillips, R.C. Haydon, Y. Peng, L. Zhou, H.H. Luu, N. An, B. Breyer, P. Vanichakarn, J.P. Szatkowski, J.Y. Park, T.C. He: Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-A, 1544–52 (2003)
- [71] C. Zhao, N. Irie, Y. Takada, K. Shimoda, T. Miyamoto, T. Nishiwaki, T. Suda, K. Matsuo: Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4, 111–21 (2006)
- [72] T. Negishi-Koga, M. Shinohara, N. Komatsu, H. Bito, T. Kodama, R.H. Friedel, H. Takayanagi: Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17, 1473–80 (2011)
- [73] Y.-M. Lee, N. Fujikado, H. Manaka, H. Yasuda, Y. Iwakura: IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol 22, 805–16 (2010)
- [74] T. Cohen, D. Nahari, L.W. Cerem, G. Neufeld, B.Z. Levi: Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271, 736–41 (1996)
- [75] S. Akeel, A. El-Awady, K. Hussein, M. El-Refaey, M. Elsalanty, M. Sharawy, M. Al-Shabrawey: Recombinant bone morphogenetic protein-2 induces up-regulation of vascular endothelial growth factor and interleukin 6 in human pre-osteoblasts: role of reactive oxygen species. Arch Oral Biol 57, 445–52 (2012)
- [76] E. Hay, A. Nouraud, P.J. Marie: N-cadherin negatively regulates osteoblast proliferation and survival by antagonizing Wnt, ERK and PI3K/Akt signalling. PLoS One 4, e8284 (2009)
- [77] C.E. Clarkin, L.C. Gerstenfeld: VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 31, 1–11 (2013)
- [78] J. Street, B. Lenehan: Vascular endothelial growth factor regulates osteoblast survival - evidence for an autocrine feedback mechanism. J Orthop Surg Res 4, 19 (2009)
- [79] H. Tokuda, S. Adachi, R. Matsushima-Nishiwaki, K. Kato, H. Natsume, T. Otsuka, O. Kozawa: Enhancement of basic fibroblast growth factor-stimulated VEGF synthesis by Wnt3a in osteoblasts. Int J Mol Med 27, 859–64 (2011)
- [80] H. Natsume, H. Tokuda, R. Matsushima-Nishiwaki, K. Kato, K. Yamakawa, T. Otsuka, O. Kozawa: Wnt3a upregulates transforming growth factor-beta-stimulated VEGF synthesis in osteoblasts. Cell Biochem Funct 29, 371–7 (2011)
- [81] D. Agas, M.G. Sabbieti, L. Marchetti, L. Xiao, M.M. Hurley: FGF-2 enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in osteoblasts. J Cell Physiol 228, 2149–58 (2013)
- [82] L.F. Charles, J.L. Woodman, D. Ueno, G. Gronowicz, M.M. Hurley, L.T. Kuhn: Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice. Exp Gerontol 64, 62–9 (2015)
- [83] B.-Z. Shilo: The regulation and functions of MAPK pathways in Drosophila. Methods 68, 151–9 (2014)
- [84] H. Miraoui, K. Oudina, H. Petite, Y. Tanimoto, K. Moriyama, P.J. Marie: Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem 284, 4897–904 (2009)
- [85] P. Marie: Differenciation, function and regulation of osteoblast. Medecine/Sciences 17, 1252–9 (2001)
- [86] S. Suttapreyasri, S. Koontongkaew, A. Phongdara, U. Leggat: Expression of bone morphogenetic proteins in normal human intramembranous and endochondral bones. Int J Oral Maxillofac Surg 35, 444–52 (2006)
- [87] M.R. Urist: Bone: formation by autoinduction. Science 150, 893–9 (1965)
- [88] E. Lou: Bone morphogenetic proteins: an overview of therapeutic applications. Orthopedics 24, 501–4 (2001)
- [89] A.H. Reddi: BMPs: from bone morphogenetic proteins to body morphogenetic proteins. Cytokine Growth Factor Rev 16, 249–50 (2005)
- [90] J.M. Wozney, V. Rosen, A.J. Celeste, L.M. Mitsock, M.J. Whitters, R.W. Kriz, R.M. Hewick, E.A. Wang: Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–34 (1988)
- [91] Q. Kang, M.H. Sun, H. Cheng, Y. Peng, A.G. Montag, A.T. Deyrup, W. Jiang, H.H. Luu, J. Luo, J.P. Szatkowski, P. Vanichakarn, J.Y. Park, Y. Li, R.C. Haydon, T.C. He: Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11, 1312–20 (2004)
- [92] M. Kawabata, T. Imamura, K. Miyazono: Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9, 49–61 (1998)
- [93] J.-H. Shim, M.B. Greenblatt, M. Xie, M.D. Schneider, W. Zou, B. Zhai, S. Gygi, L.H. Glimcher: TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J 28, 2028–41 (2009)
- [94] K. Miyazono: Signal transduction by bone morphogenetic protein receptors: functional roles of Smad proteins. Bone 25, 91–3 (1999)
- [95] T. Matsubara, K. Kida, A. Yamaguchi, K. Hata, F. Ichida, H. Meguro, H. Aburatani, R. Nishimura, T. Yoneda: BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283, 29119–25 (2008)
- [96] D.H. Walker, N.M. Wright: Bone morphogenetic proteins and spinal fusion. Neurosurg Focus 13, 1–13 (2002)
- [97] H. Liu, Y. Liu, M. Viggeswarapu, Z. Zheng, L. Titus, S.D. Boden: Activation of c-Jun NH(2)-terminal kinase 1 increases cellular responsiveness to BMP-2 and decreases binding of inhibitory Smad6 to the type1 BMP receptor. J Bone Miner Res 26, 1122–32 (2011)
- [98] L.B. Zimmerman, J.M. De Jesús-Escobar, R.M. Harland: The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996)
- [99] S. Piccolo, Y. Sasai, B. Lu, E.M. De Robertis: Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–98 (1996)
- [100] D.P. Brazil, R.H. Church, S. Surae, C. Godson, F. Martin: BMP signalling: agony and antagony in the family. Trends Cell Biol 25, 249–64 (2015)
- [101] D. Onichtchouk, Y.G. Chen, R. Dosch, V. Gawantka, H. Delius, J. Massague, C. Niehrs: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401, 480–5 (1999)
- [102] S. Souchelnytskyi, T. Nakayama, A. Nakao, A. Moren, C.H. Heldin, J.L. Christian, P. ten Dijke: Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and transforming growth factor-beta receptors. J Biol Chem 273, 25364–70 (1998)
- [103] T. Imamura, M. Takase, A. Nishihara, E. Oeda, J. Hanai, M. Kawabata, K. Miyazono: Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622–6 (1997)
- [104] X. Duan, Y.-Y. Liang, X.-H. Feng, X. Lin: Protein serine/threonine phosphatase PPM1A dephosphorylates Smad1 in the bone morphogenetic protein signaling pathway. J Biol Chem 281, 36526–32 (2006)
- [105] K. Yamaguchi, S. Nagai, J. Ninomiya-Tsuji, M. Nishita, K. Tamai, K. Irie, N. Ueno, E. Nishida, H. Shibuya, K. Matsumoto: XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1–TAK1 in the BMP signaling pathway. EMBO J 18, 179–87 (1999)
- [106] Y. Liu, E.G. Shepherd, L.D. Nelin: MAPK phosphatases—regulating the immune response. Nat Rev Immunol 7, 202–12 (2007)
- [107] D.J. Xu, Y.Z. Zhao, J. Wang, J.W. He, Y.G. Weng, J.Y. Luo: Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep 45, 247–52 (2012)
- [108] M.-A. Lauzon, A. Daviau, O. Drevelle, B. Marcos, N. Faucheux: Identification of a growth factor mimicking the synergistic effect of fetal bovine serum on BMP-9 cell response. Tissue Eng Part A 20, 2524–35 (2014)
- [109] M. Kretzschmar, J. Doody, J. Massague: Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389, 618–22 (1997)
- [110] H. Mitchell, A. Choudhury, R.E. Pagano, E.B. Leof: Ligand-dependent and -independent transforming growth factor-beta receptor recycling regulated by clathrin-mediated endocytosis and Rab11. Mol Biol Cell 15, 4166–78 (2004)
- [111] Y.-G. Chen: Endocytic regulation of TGF-beta signaling. Cell Res 19, 58–70 (2009)
- [112] T. Shen, C. Sun, Z. Zhang, N. Xu, X. Duan, X.-H. Feng, X. Lin: Specific control of BMP signaling and mesenchymal differentiation by cytoplasmic phosphatase PPM1H. Cell Res 24, 727–41 (2014)
- [113] T. Naganawa, L. Xiao, J.D. Coffin, T. Doetschman, M.G. Sabbieti, D. Agas, M.M. Hurley: Reduced expression and function of bone morphogenetic protein-2 in bones of Fgf2 null mice. J Cell Biochem 103, 1975–88 (2008)
- [114] X. Liu, J. Qin, Q. Luo, Y. Bi, G. Zhu, W. Jiang, S.H. Kim, M. Li, Y. Su, G. Nan, J. Cui, W. Zhang, R. Li, X. Chen, Y. Kong, J. Zhang, J. Wang, M.R. Rogers, H. Zhang, W. Shui, C. Zhao, N. Wang, X. Liang, N. Wu, Y. He, H.H. Luu, R.C. Haydon, L.L. Shi, T. Li, T.-C. He, M. Li: Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med 17, 1160–72 (2013)
- [115] G. Luther, E. R Wagner, G. Zhu, Q. Kang, Q. Luo, J. Lamplot, Y. Bi, X. Luo, J. Luo, C. Teven: BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther 11, 229–40 (2011)
- [116] J.F. Chau, W.F. Leong, B. Li: Signaling pathways governing osteoblast proliferation, differentiation and function. Histol Histopathol 24, 1593–606 (2009)
- [117] W.P. Cawthorn, A.J. Bree, Y. Yao, B. Du, N. Hemati, G. Martinez-Santibanez, O.A. MacDougald: Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50, 477–89 (2012)
- [118] Y.-D. Cho, W.-J. Kim, W.-J. Yoon, K.-M. Woo, J.-H. Baek, G. Lee, G.-S. Kim, H.-M. Ryoo: Wnt3a stimulates Mepe, matrix extracellular phosphoglycoprotein, expression directly by the activation of the canonical Wnt signaling pathway and indirectly through the stimulation of autocrine Bmp-2 expression. J Cell Physiol 227, 2287–96 (2012)
- [119] R. Baron, M. Kneissel: WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19, 179–92 (2013)
- [120] T. Gaur, C.J. Lengner, H. Hovhannisyan, R.A. Bhat, P.V.N. Bodine, B.S. Komm, A. Javed, A.J. van Wijnen, J.L. Stein, G.S. Stein, J.B. Lian: Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280, 33132–40 (2005)
- [121] N. Tang, W.-X. Song, J. Luo, X. Luo, J. Chen, K.A. Sharff, Y. Bi, B.-C. He, J.-Y. Huang, G.-H. Zhu, Y.-X. Su, W. Jiang, M. Tang, Y. He, Y. Wang, L. Chen, G.-W. Zuo, J. Shen, X. Pan, R.R. Reid, H.H. Luu, R.C. Haydon, T.-C. He: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 13, 2448–64 (2009)
- [122] M. Plaisant, C. Fontaine, W. Cousin, N. Rochet, C. Dani, P. Peraldi: Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells 27, 703–13 (2009)
- [123] S. Spinella-Jaegle, G. Rawadi, S. Kawai, S. Gallea, C. Faucheu, P. Mollat, B. Courtois, B. Bergaud, V. Ramez, A.M. Blanchet, G. Adelmant, R. Baron, S. Roman-Roman: Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J Cell Sci 114, 2085–94 (2001)
- [124] G.L. Lin, K.D. Hankenson: Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 112, 3491–501 (2011)
- [125] H. Hu, M.J. Hilton, X. Tu, K. Yu, D.M. Ornitz, F. Long: Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132, 49–60 (2005)
- [126] G. Sapkota, C. Alarcon, F.M. Spagnoli, A.H. Brivanlou, J. Massague: Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell 25, 441–54 (2007)
- [127] J.-H. Lee, B.-G. Kim, J.-M. Ahn, H.-J. Park, S.-K. Park, J.-S. Yoo, J.R. 3rd Yates, J.-Y. Cho: Role of PI3K on the regulation of BMP2-induced beta-Catenin activation in human bone marrow stem cells. Bone 46, 1522–32 (2010)
- [128] F. Ugarte, M. Ryser, S. Thieme, F.A. Fierro, K. Navratiel, M. Bornhäuser, S. Brenner: Notch signaling enhances osteogenic differentiation while inhibiting adipogenesis in primary human bone marrow stromal cells. Exp Hematol 37, 867–75. e1 (2009)
- [129] K.A. Sharff, W.-X. Song, X. Luo, N. Tang, J. Luo, J. Chen, Y. Bi, B.-C. He, J. Huang, X. Li, W. Jiang, G.-H. Zhu, Y. Su, Y. He, J. Shen, Y. Wang, L. Chen, G.-W. Zuo, B. Liu, X. Pan, R.R. Reid, H.H. Luu, R.C. Haydon, T.-C. He: Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. J Biol Chem 284, 649–59 (2009)
- [130] D.S. de Jong, W.T. Steegenga, J.M.A. Hendriks, E.J.J. van Zoelen, W. Olijve, K.J. Dechering: Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells. Biochem Biophys Res Commun 320, 100–7 (2004)
- [131] N. Zamurovic, D. Cappellen, D. Rohner, M. Susa: Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279, 37704–15 (2004)
- [132] H. Hojo, S. Ohba, F. Yano, T. Saito, T. Ikeda, K. Nakajima, Y. Komiyama, N. Nakagata, K. Suzuki, T. Takato, H. Kawaguchi, U. Chung: Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J Biol Chem 287, 17860–9 (2012)
- [133] J.M. Hodge, M.A. Kirkland, G.C. Nicholson: Multiple roles of M-CSF in human osteoclastogenesis. J Cell Biochem 102, 759–68 (2007)
- [134] T. Tsurukai, N. Udagawa, K. Matsuzaki, N. Takahashi, T. Suda: Roles of macrophage-colony stimulating factor and osteoclast differentiation factor in osteoclastogenesis. J Bone Miner Metab 18, 177–84 (2000)
- [135] T. Wada, T. Nakashima, N. Hiroshi, J.M. Penninger: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12, 17–25 (2006)
- [136] M. Ishii, J.G. Egen, F. Klauschen, M. Meier-Schellersheim, Y. Saeki, J. Vacher, R.L. Proia, R.N. Germain: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–8 (2009)
- [137] T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-Hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, J.M. Penninger, H. Takayanagi: Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17, 1231–4 (2011)
- [138] E.C. Weir, C.W. Lowik, I. Paliwal, K.L. Insogna: Colony stimulating factor-1 plays a role in osteoclast formation and function in bone resorption induced by parathyroid hormone and parathyroid hormone-related protein. J Bone Miner Res 11, 1474–81 (1996)
- [139] J.W. Pike, S.M. Lee, M.B. Meyer: Regulation of gene expression by 1,25-dihydroxyvitamin D3 in bone cells: exploiting new approaches and defining new mechanisms. Bonekey Rep 3, 482 (2014)
- [140] H. Takayanagi, K. Ogasawara, S. Hida, T. Chiba, S. Murata, K. Sato, A. Takaoka, T. Yokochi, H. Oda, K. Tanaka, K. Nakamura, T. Taniguchi: T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408, 600–5 (2000)
- [141] F.P. Ross: M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann N Y Acad Sci 1068, 110–6 (2006)
- [142] F. Xu, S.L. Teitelbaum: Osteoclasts: New Insights. Bone Res 1, 11–26 (2013)
- [143] S. Amano, Y.-T. Chang, Y. Fukui: ERK5 activation is essential for osteoclast differentiation. PLoS One 10, e0125054 (2015)
- [144] H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95, 3597–602 (1998)
- [145] M. Shinohara, H. Takayanagi: Novel osteoclast signaling mechanisms. Curr Osteoporos Rep 5, 67–72 (2007)
- [146] T. Oikawa, Y. Kuroda, K. Matsuo: Regulation of osteoclasts by membrane-derived lipid mediators. Cell Mol Life Sci 70, 3341–53 (2013)
- [147] H. Takayanagi, S. Kim, T. Koga, H. Nishina, M. Isshiki, H. Yoshida, A. Saiura, M. Isobe, T. Yokochi, J. Inoue, E.F. Wagner, T.W. Mak, T. Kodama, T. Taniguchi: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3, 889–901 (2002)
- [148] T. Kukita, N. Wada, A. Kukita, T. Kakimoto, F. Sandra, K. Toh, K. Nagata, T. Iijima, M. Horiuchi, H. Matsusaki, K. Hieshima, O. Yoshie, H. Nomiyama: RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med 200, 941–6 (2004)
- [149] T. Koga, M. Inui, K. Inoue, S. Kim, A. Suematsu, E. Kobayashi, T. Iwata, H. Ohnishi, T. Matozaki, T. Kodama, T. Taniguchi, H. Takayanagi, T. Takai: Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428, 758–63 (2004)
- [150] N. Takahashi, N. Udagawa, T. Suda: Vitamin D endocrine system and osteoclasts. Bonekey Rep 3, 495 (2014)
- [151] A.D. Barrow, N. Raynal, T.L. Andersen, D.A. Slatter, D. Bihan, N. Pugh, M. Cella, T. Kim, J. Rho, T. Negishi-Koga, J.-M. Delaisse, H. Takayanagi, J. Lorenzo, M. Colonna, R.W. Farndale, Y. Choi, J. Trowsdale: OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. J Clin Invest 121, 3505–16 (2011)
- [152] S. Li, C.H. Miller, E. Giannopoulou, X. Hu, L.B. Ivashkiv, B. Zhao: RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest 124, 5057–73 (2014)
- [153] B. Zhao, S.N. Grimes, S. Li, X. Hu, L.B. Ivashkiv: TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209, 319–34 (2012)
- [154] C.L. Long, M.B. Humphrey: Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling. Bonekey Rep 1, (2012)
- [155] H. Zhao, F. Patrick Ross: Mechanisms of osteoclastic secretion. Ann N Y Acad Sci 1116, 238–44 (2007)
- [156] H.K. Vaananen, T. Laitala-Leinonen: Osteoclast lineage and function. Arch Biochem Biophys 473, 132–8 (2008)
- [157] A. Broege, L. Pham, E.D. Jensen, A. Emery, T.-H. Huang, M. Stemig, H. Beppu, A. Petryk, M. O’Connor, K. Mansky, R. Gopalakrishnan: Bone morphogenetic proteins signal via SMAD and mitogen-activated protein (MAP) kinase pathways at distinct times during osteoclastogenesis. J Biol Chem 288, 37230–40 (2013)
- [158] K. Itoh, N. Udagawa, T. Katagiri, S. Iemura, N. Ueno, H. Yasuda, K. Higashio, J.M. Quinn, M.T. Gillespie, T.J. Martin, T. Suda, N. Takahashi: Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand. Endocrinology 142, 3656–62 (2001)
- [159] E.D. Jensen, L. Pham, C.J.J. Billington, K. Espe, A.E. Carlson, J.J. Westendorf, A. Petryk, R. Gopalakrishnan, K. Mansky: Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem 109, 672–82 (2010)
- [160] D. Fong, M. Bisson, G. Laberge, S. McManus, G. Grenier, N. Faucheux, S. Roux: Bone morphogenetic protein-9 activates Smad and ERK pathways and supports human osteoclast function and survival in vitro. Cell Signal 25, 717–28 (2013)
- [161] T.A. Einhorn, L.C. Gerstenfeld: Fracture healing: mechanisms and interventions. Nat Rev Rheumatol 11, 45–54 (2015)
- [162] A. Ozaki, M. Tsunoda, S. Kinoshita, R. Saura: Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 5, 64–70 (2000)
- [163] Z.S. Ai-Aql, A.S. Alagl, D.T. Graves, L.C. Gerstenfeld, T.A. Einhorn: Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87, 107–18 (2008)
- [164] X. Yang, B.F. Ricciardi, A. Hernandez-Soria, Y. Shi, N. Pleshko Camacho, M.P.G. Bostrom: Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone 41, 928–36 (2007)
- [165] X. Du, Y. Xie, C.J. Xian, L. Chen: Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 227, 3731–43 (2012)
- [166] E.A. Gorter, N.A.T. Hamdy, N.M. Appelman-Dijkstra, I.B. Schipper: The role of vitamin D in human fracture healing: a systematic review of the literature. Bone 64, 288–97 (2014)
- [167] Y.Y. Yu, S. Lieu, C. Lu, C. Colnot: Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair. Bone 47, 65–73 (2010)
- [168] C. Gabay: Interleukin-6 and chronic inflammation. Arthritis Res Ther 8 Suppl 2, S3 (2006)
- [169] J. Scheller, A. Chalaris, D. Schmidt-Arras, S. Rose-John: The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813, 878–88 (2011)
- [170] S. Dekel, G. Lenthall, M.J. Francis: Release of prostaglandins from bone and muscle after tibial fracture. An experimental study in rabbits. J Bone Joint Surg Br 63-B, 185–9 (1981)
- [171] B. Shen, A. Wei, H. Tao, A.D. Diwan, D.D.F. Ma: BMP-2 enhances TGF-beta3-mediated chondrogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in alginate bead culture. Tissue Eng Part A 15, 1311–20 (2009)
- [172] N.L. Hedgecock, T. Hadi, A.A. Chen, S.B. Curtiss, R.B. Martin, S.J. Hazelwood: Quantitative regional associations between remodeling, modeling, and osteocyte apoptosis and density in rabbit tibial midshafts. Bone 40, 627–37 (2007)
- [173] G. Kogianni, V. Mann, B.S. Noble: Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res 23, 915–27 (2008)
- [174] T.J. Heino, T.A. Hentunen, H.K. Vaananen: Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 85, 185–97 (2002)
- [175] R.O. Hynes: Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–87 (2002)
- [176] E. Ruoslahti, M.D. Pierschbacher: New perspectives in cell adhesion: RGD and integrins. Science 238, 491–7 (1987)
- [177] A. Jikko, S.E. Harris, D. Chen, D.L. Mendrick, C.H. Damsky: Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 14, 1075–83 (1999)
- [178] R. Zaidel-Bar, M. Cohen, L. Addadi, B. Geiger: Hierarchical assembly of cell-matrix adhesion complexes. Biochem Soc Trans 32, 416–20 (2004)
- [179] M.A. Schwartz: Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2, a005066 (2010)
- [180] R. Zaidel-Bar, B. Geiger: The switchable integrin adhesome. J Cell Sci 123, 1385–8 (2010)
- [181] S. Huveneers, E.H.J. Danen: Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 122, 1059–69 (2009)
- [182] H.B. Schiller, C.C. Friedel, C. Boulegue, R. Fassler: Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12, 259–66 (2011)
- [183] J.-C. Kuo, X. Han, C.-T. Hsiao, J.R. 3rdYates, C.M. Waterman: Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13, 383–93 (2011)
- [184] J.D. Humphries, A. Byron, M.D. Bass, S.E. Craig, J.W. Pinney, D. Knight, M.J. Humphries: Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2, ra51 (2009)
- [185] T. Geiger, R. Zaidel-Bar: Opening the floodgates: proteomics and the integrin adhesome. Curr Opin Cell Biol 24, 562–8 (2012)
- [186] J. Robertson, G. Jacquemet, A. Byron, M.C. Jones, S. Warwood, J.N. Selley, D. Knight, J.D. Humphries, M.J. Humphries: Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 6, 6265 (2015)
- [187] J.-E. Hoffmann, Y. Fermin, R. Lo Stricker, K. Ickstadt, E. Zamir: Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol. Elife 3, e02257 (2014)
- [188] N. Elad, T. Volberg, I. Patla, V. Hirschfeld-Warneken, C. Grashoff, J.P. Spatz, R. Fassler, B. Geiger, O. Medalia: The role of integrin-linked kinase in the molecular architecture of focal adhesions. J Cell Sci 126, 4099–107 (2013)
- [189] J.D. Humphries, P. Wang, C. Streuli, B. Geiger, M.J. Humphries, C. Ballestrem: Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179, 1043–57 (2007)
- [190] S.J. Shattil, C. Kim, M.H. Ginsberg: The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11, 288–300 (2010)
- [191] D.D. Schlaepfer, C.R. Hauck, D.J. Sieg: Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71, 435–78 (1999)
- [192] M.D. Schaller: Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540, 1–21 (2001)
- [193] M.C. Frame, H. Patel, B. Serrels, D. Lietha, M.J. Eck: The FERM domain: organizing the structure and function of FAK. Nat Rev cell Biol 11, 802–14 (2010)
- [194] C.T. Mierke: The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 10, 65005 (2013)
- [195] D. Lietha, X. Cai, D.F.J. Ceccarelli, Y. Li, M.D. Schaller, M.J. Eck: Structural basis for the autoinhibition of focal adhesion kinase. Cell 129, 1177–87 (2007)
- [196] A. Tomar, D.D. Schlaepfer: Focal adhesion kinase: switching between GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21, 676–83 (2009)
- [197] M.D. Schaller, J.T. Parsons: Focal adhesion kinase and associated proteins. Curr Opin Cell Biol 6, 705–10 (1994)
- [198] J.E. Sero, A.E. German, A. Mammoto, D.E. Ingber: Paxillin controls directional cell motility in response to physical cues. Cell Adh Migr 6, 502–8 (2012)
- [199] B. Geiger, A. Bershadsky, R. Pankov, K.M. Yamada: Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev cell Biol 2, 793–805 (2001)
- [200] D.R. Critchley: Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 38, 235–54 (2009)
- [201] E. Zamir, M. Katz, Y. Posen, N. Erez, K.M. Yamada, B.-Z. Katz, S. Lin, D.C. Lin, A. Bershadsky, Z. Kam, B. Geiger: Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nat Cell Biol 2, 191–6 (2000)
- [202] B.Z. Katz, E. Zamir, A. Bershadsky, Z. Kam, K.M. Yamada, B. Geiger: Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Mol Biol Cell 11, 1047–60 (2000)
- [203] M. Lin, H. Wang, C. Ruan, J. Xing, J. Wang, Y. Li, Y. Wang, Y. Luo: Adsorption force of fibronectin on various surface chemistries and its vital role in osteoblast adhesion. Biomacromolecules 16, 973–84 (2015)
- [204] K.M. Yamada, R. Pankov, E. Cukierman: Dimensions and dynamics in integrin function. Braz J Med Biol Res 36, 959–66 (2003)
- [205] L.H. Golden, K.L. Insogna: The expanding role of PI3-kinase in bone. Bone 34, 3–12 (2004)
- [206] S.B. Rodan, G.A. Rodan: Integrin function in osteoclasts. J Endocrinol 154 Suppl, S47–56 (1997)
- [207] R. Faccio, S. Takeshita, A. Zallone, F.P. Ross, S.L. Teitelbaum: c-Fms and the alphavbeta3 integrin collaborate during osteoclast differentiation. J Clin Invest 111, 749–58 (2003)
- [208] S.M. Frisch, R.A. Screaton: Anoikis mechanisms. Curr Opin Cell Biol 13, 555–62 (2001)
- [209] D.G. Stupack, X.S. Puente, S. Boutsaboualoy, C.M. Storgard, D.A. Cheresh: Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155, 459–70 (2001)
- [210] H. Zhao, F.P. Ross, S.L. Teitelbaum: Unoccupied alpha(v)beta3 integrin regulates osteoclast apoptosis by transmitting a positive death signal. Mol Endocrinol 19, 771–80 (2005)
- [211] H. Schachtner, S.D.J. Calaminus, S.G. Thomas, L.M. Machesky: Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken) 70, 572–89 (2013)
- [212] N. Takegahara, S. Kang, S. Nojima, H. Takamatsu, T. Okuno, H. Kikutani, T. Toyofuku, A. Kumanogoh: Integral roles of a guanine nucleotide exchange factor, FARP2, in osteoclast podosome rearrangements. FASEB J 24, 4782–92 (2010)
- [213] F. Saltel, A. Chabadel, E. Bonnelye, P. Jurdic: Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol 87, 459–68 (2008)
- [214] P. Hotulainen, P. Lappalainen: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173, 383–94 (2006)
- [215] T. Uruno, J. Liu, Y. Li, N. Smith, X. Zhan: Sequential interaction of actin-related proteins 2 and 3 (Arp2/3) complex with neural Wiscott-Aldrich syndrome protein (N-WASP) and cortactin during branched actin filament network formation. J Biol Chem 278, 26086–93 (2003)
- [216] C. Itzstein, F.P. Coxon, M.J. Rogers: The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2, 117–30 (2011)
- [217] O. Destaing, F. Saltel, J.-C. Geminard, P. Jurdic, F. Bard: Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14, 407–16 (2003)
- [218] C. Luxenburg, L. Addadi, B. Geiger: The molecular dynamics of osteoclast adhesions. Eur J Cell Biol 85, 203–11 (2006)
- [219] H. Touaitahuata, E. Planus, C. Albiges-Rizo, A. Blangy, G. Pawlak: Podosomes are dispensable for osteoclast differentiation and migration. Eur J Cell Biol 92, 139–49 (2013)
- [220] P. Jurdic, F. Saltel, A. Chabadel, O. Destaing: Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol 85, 195–202 (2006)
- [221] S. Hu, E. Planus, D. Georgess, C. Place, X. Wang, C. Albiges-Rizo, P. Jurdic, J.-C. Geminard: Podosome rings generate forces that drive saltatory osteoclast migration. Mol Biol Cell 22, 3120–6 (2011)
- [222] C.F. Lai, S.L. Cheng: Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation. J Bone Miner Res 20, 330–40 (2005)
- [223] A.R. Reynolds, I.R. Hart, A.R. Watson, J.C. Welti, R.G. Silva, S.D. Robinson, G. Da Violante, M. Gourlaouen, M. Salih, M.C. Jones, D.T. Jones, G. Saunders, V. Kostourou, F. Perron-Sierra, J.C. Norman, G.C. Tucker, K.M. Hodivala-Dilke: Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15, 392–400 (2009)
- [224] H.L. Goel, M. Breen, J. Zhang, I. Das, S. Aznavoorian-Cheshire, N.M. Greenberg, A. Elgavish, L.R. Languino: beta1A integrin expression is required for type1 insulin-like growth factor receptor mitogenic and transforming activities and localization to focal contacts. Cancer Res 65, 6692–700 (2005)
- [225] B.P. Eliceiri: Integrin and growth factor receptor crosstalk. Circ Res 89, 1104–10 (2001)
- [226] J. Veevers-Lowe, S.G. Ball, A. Shuttleworth, C.M. Kielty: Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. J Cell Sci 124, 1288–300 (2011)
- [227] T.-H. Chen, P.-C. Chan, C.-L. Chen, H.-C. Chen: Phosphorylation of focal adhesion kinase on tyrosine 194 by Met leads to its activation through relief of autoinhibition. Oncogene 30, 153–66 (2011)
- [228] Y. Jung, J.H. McCarty: Band 4.1. proteins regulate integrin-dependent cell spreading. Biochem Biophys Res Commun 426, 578–84 (2012)
- [229] M. Higuchi, R. Kihara, T. Okazaki, I. Aoki, S. Suetsugu, Y. Gotoh: Akt1 promotes focal adhesion disassembly and cell motility through phosphorylation of FAK in growth factor-stimulated cells. J Cell Sci 126, 745–55 (2013)
- [230] Y. Tamura, Y. Takeuchi, M. Suzawa, S. Fukumoto, M. Kato, K. Miyazono, T. Fujita: Focal adhesion kinase activity is required for bone morphogenetic protein-Smad1 signaling and osteoblastic differentiation in murine MC3T3-E1 cells. J Bone Miner Res 16, 1772–9 (2001)
- [231] Z. Mai, Z. Peng, S. Wu, J. Zhang, L. Chen, H. Liang, D. Bai, G. Yan, H. Ai: Single bout short duration fluid shear stress induces osteogenic differentiation of MC3T3-E1 cells via integrin beta1 and BMP2 signaling cross-talk. PLoS One 8, e61600 (2013)
- [232] M.-P. Mena, I. Papiewska-Pajak, P. Przygodzka, A. Kozaczuk, J. Boncela, C.S. Cierniewski: NFAT2 regulates COX-2 expression and modulates the integrin repertoire in endothelial cells at the crossroads of angiogenesis and inflammation. Exp Cell Res 324, 124–36 (2014)
- [233] M.E. Marquis, E. Lord, E. Bergeron, L. Bourgoin, N. Faucheux: Short-term effects of adhesion peptides on the responses of preosteoblasts to pBMP-9. Biomaterials 29, 1005–16 (2008)
- [234] R.H. Li, J.M. Wozney: Delivering on the promise of bone morphogenetic proteins. Trends Biotechnol 19, 255–65 (2001)
- [235] B.E. Rapuano, D.E. MacDonald: Structure-activity relationship of human bone sialoprotein peptides. Eur J Oral Sci 121, 600–9 (2013)
- [236] L.A. Buchanan, A. El-Ghannam: Effect of bioactive glass crystallization on the conformation and bioactivity of adsorbed proteins. J Biomed Mater Res A 93, 537–46 (2010)
- [237] A.B. Faia-Torres, T. Goren, T.O. Ihalainen, S. Guimond-Lischer, M. Charnley, M. Rottmar, K. Maniura-Weber, N.D. Spencer, R.L. Reis, M. Textor, N.M. Neves: Regulation of human mesenchymal stem cell osteogenesis by specific surface density of fibronectin: a gradient study. ACS Appl Mater Interfaces 7, 2367–75 (2015)
- [238] A. Shekaran, A.J. Garcia: Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96, 261–72 (2011)
- [239] J.H. Collier, T. Segura: Evolving the use of peptides as components of biomaterials. Biomaterials 32, 4198–204 (2011)
- [240] O. Drevelle, E. Bergeron, H. Senta, M.A. Lauzon, S. Roux, G. Grenier, N. Faucheux: Effect of functionalized polycaprolactone on the behaviour of murine preosteoblasts. Biomaterials 31, 6468–76 (2010)
- [241] Y.M. Shin, S.-Y. Jo, J.-S. Park, H.-J. Gwon, S.I. Jeong, Y.-M. Lim: Synergistic effect of dual-functionalized fibrous scaffold with BCP and RGD containing peptide for improved osteogenic differentiation. Macromol Biosci 14, 1190–8 (2014)
- [242] M. Mehta, C.M. Madl, S. Lee, G.N. Duda, D.J. Mooney: The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels. J Biomed Mater Res A (2015)
- [243] Y.M. Kolambkar, M. Bajin, A. Wojtowicz, D.W. Hutmacher, A.J. Garcia, R.E. Guldberg: Nanofiber orientation and surface functionalization modulate human mesenchymal stem cell behavior in vitro. Tissue Eng Part A 20, 398–409 (2014)
- [244] A.M. Wojtowicz, A. Shekaran, M.E. Oest, K.M. Dupont, K.L. Templeman, D.W. Hutmacher, R.E. Guldberg, A.J. García: Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31, 2574–82 (2010)
- [245] B.A. Dalton, C.D. McFarland, P.A. Underwood, J.G. Steele: Role of the heparin binding domain of fibronectin in attachment and spreading of human bone-derived cells. J Cell Sci 108, 2083–92 (1995)
- [246] S. Sun, W. Yu, Y. Zhang, F. Zhang: Increased preosteoblast adhesion and osteogenic gene expression on TiO2 nanotubes modified with KRSR. J Mater Sci Mater Med 24, 1079–91 (2013)
- [247] K.C. Dee, T.T. Andersen, R. Bizios: Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J Biomed Mater Res 40, 371–7 (1998)
- [248] O. Drevelle, N. Faucheux: Biomimetic materials for controlling bone cell responses. Front Biosci (Schol Ed) 5, 369–95 (2013)
- [249] A. Rezania, K.E. Healy: The effect of peptide surface density on mineralization of a matrix deposited by osteogenic cells. J Biomed Mater Res 52, 595–600 (2000)
- [250] S.J. Bogdanowich-Knipp, S. Chakrabarti, T.D. Williams, R.K. Dillman, T.J. Siahaan: Solution stability of linear vs. cyclic RGD peptides. J Pept Res 53, 530–41 (1999)
- [251] K.A. Kilian, M. Mrksich: Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. Angew Chem Int Ed Engl 51, 4891–5 (2012)
- [252] S.L. Bellis: Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32, 4205–10 (2011)
- [253] P.R. Patel, R.C. Kiser, Y.Y. Lu, E. Fong, W.C. Ho, D.A. Tirrell, R.H. Grubbs: Synthesis and cell adhesive properties of linear and cyclic RGD functionalized polynorbornene thin films. Biomacromolecules 13, 2546–53 (2012)
- [254] L. Chen, C. Sloey, Z. Zhang, P. VBondarenko, H. Kim, D. Ren, S. Kanapuram: Chemical modifications of therapeutic proteins induced by residual ethylene oxide. J Pharm Sci 104, 731–9 (2015)
- [255] N. Huebsch, M. Gilbert, K.E. Healy: Analysis of sterilization protocols for peptide-modified hydrogels. J Biomed Mater Res B Appl Biomater 74, 440–7 (2005)
- [256] L.Y. Santiago, R.W. Nowak, J. Peter Rubin, K.G. Marra: Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 27, 2962–9 (2006)
- [257] S.-K. Min, H.K. Kang, D.H. Jang, S.Y. Jung, O.B. Kim, B.-M. Min, I.-S. Yeo: Titanium surface coating with a laminin-derived functional peptide promotes bone cell adhesion. Biomed Res Int 2013, 638348 (2013)
- [258] H.K. Kang, O.B. Kim, S.-K. Min, S.Y. Jung, D.H. Jang, T.-K. Kwon, B.-M. Min, I.-S. Yeo: The effect of the DLTIDDSYWYRI motif of the human laminin alpha2 chain on implant osseointegration. Biomaterials 34, 4027–37 (2013)
- [259] Y.J. Choi, J.Y. Lee, S.J. Lee, C.-P. Chung, Y.J. Park: Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP). Biochem Biophys Res Commun 419, 326–32 (2012)
- [260] X. Chen, P. Sevilla, C. Aparicio: Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf B Biointerfaces 107, 189–97 (2013)
- [261] K. Oya, Y. Tanaka, H. Saito, K. Kurashima, K. Nogi, H. Tsutsumi, Y. Tsutsumi, H. Doi, N. Nomura, T. Hanawa: Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials 30, 1281–6 (2009)
- [262] R.N. Palchesko, J.D. Romeo, K.A. McGowan, E.S. Gawalt: Increased osteoblast adhesion on physically optimized KRSR modified calcium aluminate. J Biomed Mater Res Part A 100, 1229–38 (2012)
- [263] A.A. Sawyer, K.M. Hennessy, S.L. Bellis: The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials 28, 383–92 (2007)
- [264] J. Kim, C. Ki, Y. Park, H. Kim, I. Um: Effect of RGDS and KRSR peptides immobilized on silk fibroin nanofibrous mats for cell adhesion and proliferation. Macromol Res 18, 442–8 (2010)
- [265] N. Broggini, S. Tosatti, S.J. Ferguson, M. Schuler, M. Textor, M.M. Bornstein, D.D. Bosshardt, D. Buser: Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)-and heparin (KRSR)-binding peptides. J Biomed Mater Res A 100, 703–11 (2012)
- [266] S. Aota, M. Nomizu, K.M. Yamada: The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269, 24756–61 (1994)
- [267] R. Nakaoka, Y. Hirano, D.J. Mooney, T. Tsuchiya, A. Matsuoka: Study on the potential of RGD-and PHSRN-modified alginates as artificial extracellular matrices for engineering bone. J Artif Organs 16, 284–93 (2013)
- [268] D.S.W. Benoit, K.S. Anseth: The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26, 5209–20 (2005)
- [269] C.D. Reyes, T.A. Petrie, A.J. Garcia: Mixed extracellular matrix ligands synergistically modulate integrin adhesion and signaling. J Cell Physiol 217, 450–8 (2008)
- [270] A.J. Garcia, J.E. Schwarzbauer, D. Boettiger: Distinct activation states of alpha5beta1 integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry 41, 9063–9 (2002)
- [271] R. Visser, P.M. Arrabal, L. Santos-Ruiz, R. Fernandez-Barranco, J. Becerra, M. Cifuentes: A collagen-targeted biomimetic RGD peptide to promote osteogenesis. Tissue Eng Part A 20, 34–44 (2014)
- [272] B. Han, F.L. Hall, M.E. Nimni: Refolding of a recombinant collagen-targeted TGF-beta2 fusion protein expressed in Escherichia coli. Protein Expr Purif 11, 169–78 (1997)
- [273] A. Shekaran, J.R. Garcia, A.Y. Clark, T.E. Kavanaugh, A.S. Lin, R.E. Guldberg, A.J. Garcia: Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials 35, 5453–61 (2014)
- [274] M.A. Brown, Q. Zhao, K.A. Baker, C. Naik, C. Chen, L. Pukac, M. Singh, T. Tsareva, Y. Parice, A. Mahoney, V. Roschke, I. Sanyal, S. Choe: Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280, 25111–8 (2005)
- [275] Y. Suzuki, M. Tanihara, K. Suzuki, A. Saitou, W. Sufan, Y. Nishimura: Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50, 405–9 (2000)
- [276] A. Saito, Y. Suzuki, S. Ogata, C. Ohtsuki, M. Tanihara: Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta 1651, 60–7 (2003)
- [277] E. Bergeron, H. Senta, A. Mailloux, H. Park, E. Lord, N. Faucheux: Murine preosteoblast differentiation induced by a peptide derived from bone morphogenetic proteins-9. Tissue Eng A 15, 3341–9 (2009)
- [278] E. Bergeron, E. Leblanc, O. Drevelle, R. Giguere, S. Beauvais, G. Grenier, N. Faucheux: The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng A 18, 342–52 (2012)
- [279] N.M. Moore, N.J. Lin, N.D. Gallant, M.L. Becker: Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater 7, 2091–100 (2011)
- [280] O.F. Zouani, C. Chollet, B. Guillotin, M.-C. Durrieu: Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 31, 8245–53 (2010)
- [281] W.-N. Yin, F.-Y. Cao, K. Han, X. Zeng, R.-X. Zhuo, X.-Z. Zhang: The synergistic effect of a BMP-7 derived peptide and cyclic RGD in regulating differentiation behaviours of mesenchymal stem cells. J Mater Chem B 2, 8434–40 (2014)
- [282] C.M. Rubert Perez, N. Stephanopoulos, S. Sur, S.S. Lee, C. Newcomb, S.I. Stupp: The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng 43, 501–14 (2015)
- [283] S.S. Lee, E.L. Hsu, M. Mendoza, J. Ghodasra, M.S. Nickoli, A. Ashtekar, M. Polavarapu, J. Babu, R.M. Riaz, J.D. Nicolas, D. Nelson, S.Z. Hashmi, S.R. Kaltz, J.S. Earhart, B.R. Merk, J.S. McKee, S.F. Bairstow, R.N. Shah, W.K. Hsu, S.I. Stupp: Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater 4, 131–41 (2015)
- [284] Y. Song, Y. Ju, Y. Morita, B. Xu, G. Song: Surface functionalization of nanoporous alumina with bone morphogenetic protein 2 for inducing osteogenic differentiation of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 37, 120–6 (2014)
- [285] F. Haasters, D. Docheva, C. Gassner, C. Popov, W. Bocker, W. Mutschler, M. Schieker, W.C. Prall: Mesenchymal stem cells from osteoporotic patients reveal reduced migration and invasion upon stimulation with BMP-2 or BMP-7. Biochem Biophys Res Commun 452, 118–23 (2014)
- [286] M. Kisiel, M.M. Martino, M. Ventura, J.A. Hubbell, J. Hilborn, D.A. Ossipov: Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials 34, 704–12 (2013)
- [287] Z. Hamidouche, O. Fromigue, J. Ringe, T. Haupl, P.J. Marie: Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation. BMC Cell Biol 11, 44 (2010)
- [288] G.H. Mahabeleshwar, W. Feng, K. Reddy, E.F. Plow, T. V Byzova: Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101, 570–80 (2007)
- [289] S. Mori, C.-Y. Wu, S. Yamaji, J. Saegusa, B. Shi, Z. Ma, Y. Kuwabara, K.S. Lam, R.R. Isseroff, Y.K. Takada, Y. Takada: Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling. J Biol Chem 283, 18066–75 (2008)
- [290] S. Yamaji, J. Saegusa, K. Ieguchi, M. Fujita, S. Mori, Y.K. Takada, Y. Takada: A novel fibroblast growth factor-1 (FGF1) mutant that acts as an FGF antagonist. PLoS One 5, e10273 (2010)
- [291] Z. Dai, F. Guo, F. Wu, H. Xu, C. Yang, J. Li, P. Liang, H. Zhang, L. Qu, Y. Tan, Y. Wan, Y. Li: Integrin alphavbeta3 mediates the synergetic regulation of core-binding factor alpha1 transcriptional activity by gravity and insulin-like growth factor-1 through phosphoinositide 3-kinase signaling. Bone 69, 126–32 (2014)
- [292] J.-L. Su, J. Chiou, C.-H. Tang, M. Zhao, C.-H. Tsai, P.-S. Chen, Y.-W. Chang, M.-H. Chien, C.-Y. Peng, M. Hsiao, M.-L. Kuo, M.-L. Yen: CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 285, 31325–36 (2010)Cited within: 0Google Scholar
