Information
References
Contents
Download
[1]O Stuve, SS Zamvil: Neurologic diseases. In: Medical Immunology. Parslow Stites D, Terr AImboden J. Eds: Lange Medical books McGraw-Hill Medical Publishing Division, New York, NY, USA, (2001)
[2]A Sadovnick, PA Baird: Sex ratio in offspring of patients with multiple sclerosis. N Engl J Med, 306, 1114-5 (1982)
[3]JH Noseworthy, C Lucchinetti, M Rodriguez, BG Weinshenker: Multiple sclerosis. N Engl J Med, 343 (13), 938-52 (2000)
[4]R Dutta, BD Trapp: Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology, 68, S22-31; discussion S43-54 (2007)
[5]H Lassmann, W Bruck, CF Lucchinetti: The immunopathology of multiple sclerosis: an overview. Brain Pathol, 17, 210-8 (2007)
[6]J W Peterson, BD Trapp: Neuropathobiology of multiple sclerosis. Neurol Clin, 23, 107-29, vi-vii (2005)
[7]G C DeLuca, SV Ramagopalan, MZ Cader, DA Dyment, BM Herrera, S Orton, A Degenhardt, M Pugliatti, AD Sadovnick, S Sotgiu, GC Ebers: The role of hereditary spastic paraplegia related genes in multiple sclerosis. A study of disease susceptibility and clinical outcome. J Neurol, 254, 1221-6 (2007)
[8]MC Levin, S Lee, LA Gardner, Y Shin, JN Douglas et al.: Pathogenic mechanisms of neurodegeneration based on the phenotypic expression of progressive forms of immune-mediated neurologic disease. Degener Neurol Neuromuscul Dis 2, 175-187 (2012)
[9]H Lassmann: Acute disseminated encephalomyelitis and multiple sclerosis. Brain, 133, 317-9 (2010).
[10]EM Frohman, MK Racke, CS Raine: Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med, 354, 942-55 (2006)
[11]A Bar-Or: Immunology of multiple sclerosis. Neurol Clin, 23, 149-75, vii (2005)
[12]YJ Morales, E Parisi, CF Lucchinetti: The pathology of multiple sclerosis: evidence for heterogeneity. Adv Neurol, 98, 27-45 (2006).
[13]SJ Pittock, CF Lucchinetti: The pathology of MS: new insights and potential clinical applications. Neurologist, 13, 45-56 (2007)
[14]GP Owens, D Gilden, MP Burgoon, X Yu, JL Bennett: Viruses and multiple sclerosis. Neuroscientist, 17, 659-76 (2011)
[15]DC Poskanzer, J Sever, L Sheridan, LB Prenney: Multiple sclerosis in the Orkney and Shetland Islands. IV: Viral antibody titres and viral infections. J Epidemiol Community Health, 34, 258-64 (1980)
[16]G Ordonez, B Pineda, R Garcia-Navarrete, J Sotelo: Brief presence of varicella-zoster vral DNA in mononuclear cells during relapses of multiple sclerosis. Arch Neurol, 61, 529-32 (2004)
[17]R Mancuso, S Delbue, E Borghi, E Pagani, MG Calvo, D Caputo, E Granieri, P Ferrante: Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis. J Med Virol, 79, 192-9 (2007)
[18]J Sotelo, G Ordonez, B Pineda: Varicella-zoster virus at relapses of multiple sclerosis. J Neurol, 254, 493-500 (2007)
[19]J Sotelo, A Martinez-Palomo, G Ordonez, B Pineda: Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis. Ann Neurol, 63, 303-11(2008)
[20]SV Ramagopalan, W Valdar, DA Dyment, GC DeLuca, IM Yee, G Giovannoni, GC Ebers, AD Sadovnick: Association of infectious mononucleosis with multiple sclerosis. A population-based study. Neuroepidemiology, 32, 257-62 (2009)
[21]C Ahlgren, K Toren, A Oden, O Andersen: A population-based case-control study on viral infections and vaccinations and subsequent multiple sclerosis risk. Eur J Epidemiol, 24, 541-52 (2009)
[22]KL Munger, LI Levin, EJ O’Reilly, KI Falk, A Ascherio: Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult Scler, 17, 1185-93 (2011)
[23]J Pakpoor, G Disanto, JE Gerber, R Dobson, UC Meier, G Giovannoni, SV Ramagopalan: The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler, 19, 162-6 (2013)
[24]NY Hernandez-Pedro, G Espinosa-Ramirez, VP de la Cruz, B Pineda, J Sotelo: Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol, 2013, 413465 (2013).
[25]M Sospedra, R Martin: Immunology of multiple sclerosis. Annu Rev Immunol, 23, 683-747 (2005)
[26]HL Weiner: A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol, 255 Suppl 1, 3-11 (2008)
[27]R Gandhi, A Laroni, HL Weiner: Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol, 221, 7-14 (2010)
[28]SY Tsai, JA Segovia, TH Chang, IR Morris, MT Berton, PA Tessier, MR Tardif, A Cesaro, S Bose: DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog, 10, e1003848 (2014)
[29]M Marta, A Andersson, M Isaksson, O Kampe, A Lobell: Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur J Immunol, 38, 565-75 (2008)
[30]ZY Zhang, Z Zhang, HJ Schluesener: Toll-like receptor-2, CD14 and heat-shock protein 70 in inflammatory lesions of rat experimental autoimmune neuritis. Neuroscience, 159, 136-42 (2009)
[31]JM Reynolds, GJ Martinez, Y Chung, C Dong: Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A, 109, 13064-9 (2012)
[32]M. Dorner, S Brandt, M Tinguely, F Zucol, JP Bourquin, L Zauner, C Berger, M Bernasconi, RF Speck, D Nadal: Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production. Immunology, 128, 573-9 (2009)
[33]D Jarrossay, G Napolitani, M Colonna, F Sallusto, A Lanzavecchia: Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol, 31, 3388-93 (2001)
[34]SB Rasmussen, LS Reinert, SR Paludan: Innate recognition of intracellular pathogens: detection and activation of the first line of defense. APMIS, 117, 323-37 (2009)
[35]AM Piccinini, KS Midwood: DAMPening inflammation by modulating TLR signalling. Mediators Inflamm, 2010 (2010)
[36]M Escamilla-Tilch, G Filio-Rodriguez, R Garcia-Rocha, I Mancilla-Herrera, NA Mitchison, JA Ruiz-Pacheco, FJ Sanchez-Garcia, D Sandoval-Borrego, EA Vazquez-Sanchez: The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol, 91, 601-10 (2013)
[37]A. Marshak-Rothstein: Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol, 6, 823-35 (2006)
[38]AD Garg, D Nowis, J Golab, P Vandenabeele, DV Krysko, P. Agostinis: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta, 1805, 53-71(2010)
[39]V Petrilli, C Dostert, DA Muruve, J Tschopp: The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol, 19, 615-22 (2007).
[40]S Chakraborty, DK Kaushik, M Gupta, A Basu: Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res, 88, 1615-31 (2010)
[41]DG Millar, KM Garza, B Odermatt, AR Elford, N Ono, Z Li, PS Ohashi: Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med, 9, 1469-76 (2003)
[42]S Yokota, S Minota, N Fujii: Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors. Int Immunol, 18, 573-80 (2006)
[43]HS Hreggvidsdottir, T Ostberg, H Wahamaa, H Schierbeck, AC Aveberger, L Klevenvall, K Palmblad, L Ottosson, U Andersson, and HE Harris: The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol, 86, 655-62 (2009)
[44]SK Drexler, BM Foxwell: The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol, 42, 506-18 (2010)
[45]DS Wheeler, MA Chase, AP Senft, SE Poynter, HR Wong, K Page: Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res, 10, 31 (2009)
[46]KJ Ishii, K Suzuki, C Coban, F Takeshita, Y Itoh, H Matoba, LD Kohn, DM Klinman: Genomic DNA released by dying cells induces the maturation of APCs. J Immunol, 167, 2602-7 (2001)
[47]K Tani, WJ Murphy, O Chertov, R Salcedo, CY Koh, I Utsunomiya, S Funakoshi, O Asai, SH Herrmann, JM Wang, LW Kwak, JJ Oppenheim: Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol, 12, 691-700 (2000)
[48]SA Hwang, ML Kruzel, JK Actor: Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. Int Immunopharmacol, 5, 591-9 (2005)
[49]KA Scheibner, MA Lutz, S Boodoo, MJ Fenton, JD Powell, MR Horton: Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol, 177, 1272-81 (2006)
[50]S Akira, S Sato: Toll-like receptors and their signaling mechanisms. Scand J Infect Dis, 35, 555-62 (2003)
[51]M Galdiero, E Finamore, F Rossano, M Gambuzza, MR Catania, G Teti, A Midiri, G Mancuso: Haemophilus influenzae porin induces Toll-like receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infect Immun, 72, 1204-9 (2004)
[52]JH Youn, YJ Oh, ES Kim, JE Choi, JS Shin: High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J Immunol, 180, 5067-74 (2008)
[53]SR Saludan, AG Bowie, KA Horan, KA Fitzgerald: Recognition of herpesviruses by the innate immune system. Nat Rev Immunol, 11, 143-54 (2011)
[54]T Bergstrom, O Andersen, A Vahlne: Isolation of herpes simplex virus type 1 during first attack of multiple sclerosis. Ann Neurol, 26, 283-5 (1989)
[55]R Berti, SS Soldan, N Akhyani, HF McFarland, S Jacobson: Extended observations on the association of HHV-6 and multiple sclerosis. J Neurovirol, 6 Suppl 2, S85-7 (2000)
[56]R Berti, MB Brennan, SS Soldan, JM Ohayon, L Casareto, HF McFarland, S Jacobson: Increased detection of serum HHV-6 DNA sequences during multiple sclerosis (MS) exacerbations and correlation with parameters of MS disease progression. J Neurovirol, 8, 250-6 (2002)
[57]M Cirone, L Cuomo, C Zompetta, S Ruggieri, L Frati, A Faggioni, G Ragona: Human herpesvirus 6 and multiple sclerosis: a study of T cell cross-reactivity to viral and myelin basic protein antigens. J Med Virol, 68, 268-72 (2002)
[58]R Alvarez-Lafuente, V De las Heras, M Bartolome, JJ Picazo, R. Arroyo: Relapsing-remitting multiple sclerosis and human herpesvirus 6 active infection. Arch Neurol, 61, 1523-7(2004)
[59]K Voumvourakis, KI, DK Kitsos, S Tsiodras, G Petrikkos, E Stamboulis: Human herpesvirus 6 infection as a trigger of multiple sclerosis. Mayo Clin Proc, 85, 1023-30 (2010)
[60]A Behzad-Behbahani, MH Mikaeili, M Entezam, A Mojiri, GY Pour, MM Arasteh, M Rahsaz, M Banihashemi, B Khadang, A Moaddeb, Z Nematollahi, N Azarpira: Human herpesvirus-6 viral load and antibody titer in serum samples of patients with multiple sclerosis. J Microbiol Immunol Infect, 44, 247-51 (2011
[61]S Vento, L Guella, F Mirandola, F Cainelli, G Di Perri, M Solbiati, T Ferraro, E Concia: Epstein-Barr virus as a trigger for autoimmune hepatitis in susceptible individuals. Lancet, 346, 608-9 (1995)
[62]J Vrbikova, I Janatkova, V Zamrazil, F Tomiska, T Fucikova: Epstein-Barr virus serology in patients with autoimmune thyroiditis. Exp Clin Endocrinol Diabetes, 104, 89-92 (1996)
[63]EY Padalko, X Bossuyt: Anti-dsDNA antibodies associated with acute EBV infection in Sjogren's syndrome. Ann Rheum Dis, 60, 992 (2001)
[64]MP Pender: Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol, 24, 584-8 (2003)
[65]A Ascherio, M Rubertone, D Spiegelman, L Levin, K Munger, C Peck, E Lennette: Notice of retraction: “Multiple sclerosis and Epstein-Barr virus”. (JAMA. 2003;289:1533-1536). JAMA, 293, 2466 (2005)
[66]KH Costenbader, EW Karlson: Epstein-Barr virus and rheumatoid arthritis: is there a link? Arthritis Res Ther, 8, 204 (2006)
[67]S Haahr, P Hollsberg: Multiple sclerosis is linked to Epstein-Barr virus infection. Rev Med Virol, 16, 297-310 (2006)
[68]M Trimeche, S Ziadi, K Amara, M Khelifa, F Bahri, S Mestiri, H Braham, M Hachana, B Sriha, M Mokni, S Korbi: Prevalence of Epstein-Barr virus in Sjogren's syndrome in Tunisia. Rev Med Interne, 27, 519-23 (2006)
[69]FC Purves, WO Ogle, B Roizman: Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc Natl Acad Sci U S A, 90, 6701-5 (1993)
[70]E Gershburg, S Raffa, MR Torrisi, JS Pagano: Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol, 81, 5407-12 (2007)
[71]X Sun, JA Bristol, S Iwahori, SR Hagemeier, Q Meng, EA Barlow, JD Fingeroth, VL Tarakanova, RF Kalejta, SC Kenney: Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol, 87, 10126-38 (2013)
[72]M Kotsiopriftis, JE Tanner, C Alfieri: Heat shock protein 90 expression in Epstein-Barr virus-infected B cells promotes gammadelta T-cell proliferation in vitro. J Virol, 79, 7255-61 (2005)
[73]M Ejima, K Ota, H Tanaka, S Maruyama: Peripheral blood gamma delta T cells in multiple sclerosis. Rinsho Shinkeigaku, 33, 1131-4 (1993)
[74]MJ Mansilla, X Montalban, C Espejo: Heat shock protein 70: roles in multiple sclerosis. Mol Med, 18, 1018-28 (2012)
[75]H Cwiklinska, MP Mycko, O Luvsannorov, B Walkowiak, CF Brosnan, CS Raine, KW Selmaj: Heat shock protein 70 associations with myelin basic protein and proteolipid protein in multiple sclerosis brains. Int Immunol, 15, 241-9 (2003)
[76]SD D’Souza, JP Antel, MS Freedman: Cytokine induction of heat shock protein expression in human oligodendrocytes: an interleukin-1-mediated mechanism. J Neuroimmunol, 50, 17-24 (1994)
[77]YW Han, JY Choi, E Uyangaa, SB Kim, JH Kim, BS Kim, K Kim, SK Eo: Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog, 10, e1004319 (2014)
[78]H Wang, O Bloom, M Zhang, JM Vishnubhakat, M Ombrellino, J Che, A Frazier, H Yang, S Ivanova, L Borovikova, KR Manogue, E Faist, E Abraham, J Andersson, U Andersson, PE Molina, NN Abumrad, A Sama, KJ Tracey: HMG-1 as a late mediator of endotoxin lethality in mice. Science, 285, 248-51 (1999)
[79]U Andersson, KJ Tracey: HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol, 29, 139-62 (2011)
[80]P Scaffidi, T Misteli, ME Bianchi: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418, 191-5 (2002)
[81]MJ Ray, GA Hawson: A comparison of two APTT reagents which use silica activators. Clin Lab Haematol, 11, 221-32 (1989)
[82]P Nowak, B Barqasho, CJ Treutiger, HE Harris, KJ Tracey, J Andersson, A Sonnerborg: HMGB1 activates replication of latent HIV-1 in a monocytic cell-line, but inhibits HIV-1 replication in primary macrophages. Cytokine, 34, 17-23 (2006)
[83]IE Dumitriu, P Baruah, AA Manfredi, ME Bianchi, P Rovere-Querini: HMGB1: An immmune odyssey. Discov Med, 5, 388-92 (2005)
[84]P Fang, M Schachner, YQ Shen: HMGB1 in development and diseases of the central nervous system. Mol Neurobiol, 45, 499-506 (2012)
[85]A Andersson, R Covacu, D Sunnemark, AI Danilov, A Dal Bianco, M Khademi, E Wallstrom, A Lobell, L Brundin, H Lassmann, RA Harris: Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol, 84, 1248-55 (2008)
[86]O Hori, J Brett, T Slattery, R Cao, J Zhang, JX Chen, M Nagashima, ER Lundh, S Vijay, D Nitecki, et al.: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem, 270, 25752-61 (1995)
[87]AP Robinson, MW Caldis, CT Harp, GE Goings, SD Miller: High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis. J Autoimmun, 43, 32-43 (2013)
[88]CS Hwang, GT Liu, MD Chang, IL Liao, HT Chang: Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol Dis, 58, 13-8 (2013)
[89]S Schenk, J Muser, G Vollmer, R Chiquet-Ehrismann: Tenascin-C in serum: a questionable tumor marker. Int J Cancer, 61, 443-9 (1995)
[90]J Tian, AM Avalos, SY Mao, B Chen, K Senthil, H Wu, P Parroche, S Drabic, D Golenbock, C Sirois, J Hua, LL An, L Audoly, G La Rosa, A Bierhaus, P Naworth, A Marshak-Rothstein, MK Crow, KA Fitzgerald, E Latz, PA Kiener, AJ Coyle: Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol, 8, 487-96 (2007)
[91]V Urbonaviciute, BG Furnrohr, S Meister, L Munoz, P Heyder, F De Marchis, ME Bianchi, C Kirschning, H Wagner, AA Manfredi, J. Kalden, G Schett, P Rovere-Querini, M Herrmann, RE Voll: Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med, 205, 3007-18 (2008)
[92]V Urbonaviciute, BG Furnrohr, C Weber, M Haslbeck, S Wilhelm, M Herrmann, RE Voll: Factors masking HMGB1 in human serum and plasma. J Leukoc Biol, 81, 67-74 (2007)
[93]K Hein Nee Maier, A Kohler, R Diem, MB Sattler, I Demmer, P Lange, M Bahr, M Otto: Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci Lett, 436, 72-6 (2008)
[94]H Tumani, C Teunissen, S Sussmuth, M Otto, AC Ludolph, J Brettschneider: Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev Mol Diagn, 8, 479-94 (2008)
[95]K Mitosek-Szewczyk, W Gordon-Krajcer, D Flis, Z Stelmasiak: Some markers of neuronal damage in cerebrospinal fluid of multiple sclerosis patients in relapse. Folia Neuropathol, 49, 191-6 (2011)
[96]RN Kalaria, SU Bhatti, EA Palatinsky, DH Pennington, ER Shelton, HW Chan, G Perry, WD Lust: Accumulation of the beta amyloid precursor protein at sites of ischemic injury in rat brain. Neuroreport, 4, 211-4(1993)
[97]J Gehrmann, RB Banati, ML Cuzner, GW Kreutzberg, J Newcombe: Amyloid precursor protein (APP) expression in multiple sclerosis lesions. Glia, 15, 141-51 (1995)
[98]E Leclerc, G Fritz, SW Vetter, CW Heizmann: Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta, 1793, 993-1007 (2009)
[99]Rothermundt, M., M. Peters, J. H. Prehn & V. Arolt: S100B in brain damage and neurodegeneration. Microsc Res Tech, 60, 614-32 (2003)
[100]R Donato: Intracellular and extracellular roles of S100 proteins. Microsc Res Tech, 60, 540-51 (2003)
[101]HY Sroussi, J Berline, JM Palefsky: Oxidation of methionine 63 and 83 regulates the effect of S100A9 on the migration of neutrophils in vitro. J Leukoc Biol, 81, 818-24 (2007)
[102]C Perera, HP McNeil, CL Geczy: S100 Calgranulins in inflammatory arthritis. Immunol Cell Biol, 88, 41-9 (2010)
[103]PL van Lent, L Grevers, AB Blom, A Sloetjes, JS Mort, T Vogl, W Nacken, WB van den Berg, J Roth: Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis, 67, 1750-8 (2008)
[104]EO Lee, JH Yang, KA Chang, YH Suh, YH Chong: Amyloid-beta peptide-induced extracellular S100A9 depletion is associated with decrease of antimicrobial peptide activity in human THP-1 monocytes. J Neuroinflammation, 10, 68 (2013)
[105]O Erez, R Romero, AL Tarca, T Chaiworapongsa, YM Kim, NG Than, EVaisbuch, S Draghici, G Tromp: Differential expression pattern of genes encoding for anti-microbial peptides in the fetal membranes of patients with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med, 22, 1103-15 (2009)
[106]Hiroshima, Y., M. Bando, M. Kataoka, Y. Inagaki, M. C. Herzberg, K. F. Ross, K. Hosoi, T. Nagata & J. Kido: Regulation of antimicrobial peptide expression in human gingival keratinocytes by interleukin-1alpha. Arch Oral Biol, 56, 761-7 (2011)
[107]T Vogl, K Tenbrock, S Ludwig, N Leukert, C Ehrhardt, MA. van Zoelen, W Nacken, D Foell, T van der Poll, C Sorg, J Roth: Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med, 13, 1042-9 (2007)
[108]P Sun, Q Li, Q Zhang, L Xu, JY Han: Upregulated expression of S100A8 in mice brain after focal cerebral ischemia reperfusion. World J Emerg Med, 4, 210-4 (2013)
[109]PA Hessian, J Edgeworth, N Hogg: MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol, 53, 197-204 (1993)
[110]ME Bianchi: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol, 81, 1-5 (2007)
[111]A Gonzalez-Lopez, A Aguirre, I Lopez-Alonso, L Amado, A Astudillo, MS Fernandez-Garcia, MF Suarez, E Batalla-Solis, E Colado, GM Albaiceta: MMP-8 deficiency increases TLR/RAGE ligands S100A8 and S100A9 and exacerbates lung inflammation during endotoxemia. PLoS One, 7, e39940 (2012)
[112]JJ Archelos, MK Storch, HP Hartung: The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol, 47, 694-706 (2000)
[113]C Lucchinetti, W Bruck, J Parisi, B Scheithauer, M Rodriguez, H Lassmann: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol, 47, 707-17 (2000)
[114]F Mackay, P Schneider: Cracking the BAFF code. Nat Rev Immunol, 9, 491-502 (2009)
[115]GS Cheema, V Roschke, DM Hilbert, W Stohl: Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum, 44, 1313-9 (2001)
[116]M Thangarajh, A Gomes, T Masterman, J Hillert, P Hjelmstrom: Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol, 152, 183-90 (2004)
[117]A Vaknin-Dembinsky, L Brill, N Orpaz, O Abramsky, D Karussis: Preferential increase of B-cell activating factor in the cerebrospinal fluid of neuromyelitis optica in a white population. Mult Scler, 16, 1453-7 (2010)
[118]F Mackay, SA Woodcock, P Lawton, C Ambrose, M Baetscher, P Schneider, J Tschopp, JL Browning: Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med, 190, 1697-710 (1999)
[119]R Magliozzi, S Columba-Cabezas, B Serafini, F Aloisi: Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol, 148, 11-23 (2004)
[120]B Serafini, M Severa, S Columba-Cabezas, B Rosicarelli, C Veroni, G Chiappetta, R Magliozzi, R Reynolds, EM Coccia, F Aloisi: Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J Neuropathol Exp Neurol, 69, 677-93 (2010)
[121]M Krumbholz, D Theil, S Cepok, B Hemmer, P Kivisakk, RM Ransohoff, M Hofbauer, C Farina, T Derfuss, C Hartle, J Newcombe, R Hohlfeld, E Meinl: Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain, 129, 200-11 (2006)
[122]F Piazza, JC DiFrancesco, ML Fusco, D Corti, L Pirovano, B Frigeni, L Mattavelli, S Andreoni, M Frigo, C Ferrarese, G Tredici, G Cavaletti: Cerebrospinal fluid levels of BAFF and APRIL in untreated multiple sclerosis. J Neuroimmunol, 220, 104-7 (2010)
[123]X Chen, L Hui, NH Geiger, NJ Haughey, JD Geiger: Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging, 34, 2370-8 (2013)
[124]SL Deshmane, R Mukerjee, S Fan, BE Sawaya: High-performance capillary electrophoresis for determining HIV-1 Tat protein in neurons. PLoS One, 6, e16148 (2011)
[125]LS Young, JR Arrand, PG Murray: EBV gene expression and regulation. Cambridge (2007)
[126]LS Young, AB Rickinson: Epstein-Barr virus: 40 years on. Nat Rev Cancer, 4, 757-68 (2004)
[127]E Freire, C Oddo, L Frappier, G de Prat-Gay: Kinetically driven refolding of the hyperstable EBNA1 origin DNA-binding dimeric beta-barrel domain into amyloid-like spherical oligomers. Proteins, 70, 450-61 (2008)
[128]DF Angelini, B Serafini, E Piras, M Severa, EM Coccia, B Rosicarelli, S Ruggieri, C Gasperini, F Buttari, D Centonze, R Mechelli, M Salvetti, G Borsellino, F Aloisi, L Battistini: Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog, 9, e1003220 (2013)
[129]RM Leskowitz, XY Zhou, F Villinger, MH Fogg, A Kaur, PM Lieberman, F Wang, HC Ertl: CD4+ and CD8+ T-cell responses to latent antigen EBNA-1 and lytic antigen BZLF-1 during persistent lymphocryptovirus infection of rhesus macaques. J Virol, 87, 8351-62 (2013)
[130]A Grahn, L Hagberg, S Nilsson, K Blennow, H Zetterberg, M Studahl: Cerebrospinal fluid biomarkers in patients with varicella-zoster virus CNS infections. J Neurol, 260, 1813-21 (2013)
[131]P Matzinger: Tolerance, danger, and the extended family. Annu Rev Immunol, 12, 991-1045 (1994)
[132]Z Zhang, C Wang, L Nie, G Soon: Assessing the heterogeneity of treatment effects via potential outcomes of individual patients. J R Stat Soc Ser C Appl Stat, 62, 687-704 (2013).
[133]N Jounai, K Kobiyama, F Takeshita, KJ Ishii: Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol, 2, 168 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Scholar (FBS) is published by IMR Press from Volume 13 Issue 1 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
PAMP-DAMPS interactions mediates development and progression of multiple sclerosis
1 Experimental Oncology Laboratory, National Cancer Institute, Av. San Fernando 22, 14080 Mexico City, Mexico
2 Neuroimmunology and Neuro-Oncology Unit, National Neurology and Neurosurgery Institute (INNN), Insurgentes sur 3877, 14269, Mexico City, Mexico
3 Neurochemistry Unit, National Neurology and Neurosurgery Institute (INNN), Insurgentes sur 3877, 14269, Mexico City, Mexico
4 Excitatory Amino Acids Laboratory, National Neurology and Neurosurgery Institute (INNN), Insurgentes sur 3877, 14269, Mexico City, Mexico
*Author to whom correspondence should be addressed.
Abstract
Multiple sclerosis (MS) is a disease presumably associated with chronic immune stimulation promoted by either pathogens or autoimmune processes. It has been hypothesized that MS could be the result of previous viral infections rendering a permanent immune stimulation that could be triggered by molecular similarities, or by modulating the antigens expression of major histocompatibility complex (MHC) on target cells, which in turn act as super antigens. During immune stimulation occurs the recruitment of immunological cells, resulting in local tissue damage and leading to the release of damage-associated molecular patterns (DAMPs), which also act as inflammation inducers. Recently, it has been proposed that the association between pathogen-associated molecular patterns (PAMP's) with DAMPs constitutes an additional level of immune regulation. The properties of DAMPs to act as carriers of PAMPs and their role as enhancers or inhibitors of PAMPs could play a role during inflammatory responses triggered by infections. Here, we focused this review in outcomes which support the hypothesis that particular PAMP– DAMPs interactions could regulated the relapse and progressive disability observed in multiple sclerosis.
Keywords
- Key Words: Pathogen-Associated Molecular Patterns
- Damage-Associated Molecular Patterns
- Multiple Sclerosis
- Immune Response
- Inflammation
- Review
References
- [1] O Stuve, SS Zamvil: Neurologic diseases. In: Medical Immunology. Parslow Stites D, Terr AImboden J. Eds: Lange Medical books McGraw-Hill Medical Publishing Division, New York, NY, USA, (2001)
- [2] A Sadovnick, PA Baird: Sex ratio in offspring of patients with multiple sclerosis. N Engl J Med, 306, 1114-5 (1982)
- [3] JH Noseworthy, C Lucchinetti, M Rodriguez, BG Weinshenker: Multiple sclerosis. N Engl J Med, 343 (13), 938-52 (2000)
- [4] R Dutta, BD Trapp: Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology, 68, S22-31; discussion S43-54 (2007)
- [5] H Lassmann, W Bruck, CF Lucchinetti: The immunopathology of multiple sclerosis: an overview. Brain Pathol, 17, 210-8 (2007)
- [6] J W Peterson, BD Trapp: Neuropathobiology of multiple sclerosis. Neurol Clin, 23, 107-29, vi-vii (2005)
- [7] G C DeLuca, SV Ramagopalan, MZ Cader, DA Dyment, BM Herrera, S Orton, A Degenhardt, M Pugliatti, AD Sadovnick, S Sotgiu, GC Ebers: The role of hereditary spastic paraplegia related genes in multiple sclerosis. A study of disease susceptibility and clinical outcome. J Neurol, 254, 1221-6 (2007)
- [8] MC Levin, S Lee, LA Gardner, Y Shin, JN Douglas et al.: Pathogenic mechanisms of neurodegeneration based on the phenotypic expression of progressive forms of immune-mediated neurologic disease. Degener Neurol Neuromuscul Dis 2, 175-187 (2012)
- [9] H Lassmann: Acute disseminated encephalomyelitis and multiple sclerosis. Brain, 133, 317-9 (2010).
- [10] EM Frohman, MK Racke, CS Raine: Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med, 354, 942-55 (2006)
- [11] A Bar-Or: Immunology of multiple sclerosis. Neurol Clin, 23, 149-75, vii (2005)
- [12] YJ Morales, E Parisi, CF Lucchinetti: The pathology of multiple sclerosis: evidence for heterogeneity. Adv Neurol, 98, 27-45 (2006).
- [13] SJ Pittock, CF Lucchinetti: The pathology of MS: new insights and potential clinical applications. Neurologist, 13, 45-56 (2007)
- [14] GP Owens, D Gilden, MP Burgoon, X Yu, JL Bennett: Viruses and multiple sclerosis. Neuroscientist, 17, 659-76 (2011)
- [15] DC Poskanzer, J Sever, L Sheridan, LB Prenney: Multiple sclerosis in the Orkney and Shetland Islands. IV: Viral antibody titres and viral infections. J Epidemiol Community Health, 34, 258-64 (1980)
- [16] G Ordonez, B Pineda, R Garcia-Navarrete, J Sotelo: Brief presence of varicella-zoster vral DNA in mononuclear cells during relapses of multiple sclerosis. Arch Neurol, 61, 529-32 (2004)
- [17] R Mancuso, S Delbue, E Borghi, E Pagani, MG Calvo, D Caputo, E Granieri, P Ferrante: Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis. J Med Virol, 79, 192-9 (2007)
- [18] J Sotelo, G Ordonez, B Pineda: Varicella-zoster virus at relapses of multiple sclerosis. J Neurol, 254, 493-500 (2007)
- [19] J Sotelo, A Martinez-Palomo, G Ordonez, B Pineda: Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis. Ann Neurol, 63, 303-11(2008)
- [20] SV Ramagopalan, W Valdar, DA Dyment, GC DeLuca, IM Yee, G Giovannoni, GC Ebers, AD Sadovnick: Association of infectious mononucleosis with multiple sclerosis. A population-based study. Neuroepidemiology, 32, 257-62 (2009)
- [21] C Ahlgren, K Toren, A Oden, O Andersen: A population-based case-control study on viral infections and vaccinations and subsequent multiple sclerosis risk. Eur J Epidemiol, 24, 541-52 (2009)
- [22] KL Munger, LI Levin, EJ O’Reilly, KI Falk, A Ascherio: Anti-Epstein-Barr virus antibodies as serological markers of multiple sclerosis: a prospective study among United States military personnel. Mult Scler, 17, 1185-93 (2011)
- [23] J Pakpoor, G Disanto, JE Gerber, R Dobson, UC Meier, G Giovannoni, SV Ramagopalan: The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler, 19, 162-6 (2013)
- [24] NY Hernandez-Pedro, G Espinosa-Ramirez, VP de la Cruz, B Pineda, J Sotelo: Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol, 2013, 413465 (2013).
- [25] M Sospedra, R Martin: Immunology of multiple sclerosis. Annu Rev Immunol, 23, 683-747 (2005)
- [26] HL Weiner: A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol, 255 Suppl 1, 3-11 (2008)
- [27] R Gandhi, A Laroni, HL Weiner: Role of the innate immune system in the pathogenesis of multiple sclerosis. J Neuroimmunol, 221, 7-14 (2010)
- [28] SY Tsai, JA Segovia, TH Chang, IR Morris, MT Berton, PA Tessier, MR Tardif, A Cesaro, S Bose: DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog, 10, e1003848 (2014)
- [29] M Marta, A Andersson, M Isaksson, O Kampe, A Lobell: Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur J Immunol, 38, 565-75 (2008)
- [30] ZY Zhang, Z Zhang, HJ Schluesener: Toll-like receptor-2, CD14 and heat-shock protein 70 in inflammatory lesions of rat experimental autoimmune neuritis. Neuroscience, 159, 136-42 (2009)
- [31] JM Reynolds, GJ Martinez, Y Chung, C Dong: Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A, 109, 13064-9 (2012)
- [32] M. Dorner, S Brandt, M Tinguely, F Zucol, JP Bourquin, L Zauner, C Berger, M Bernasconi, RF Speck, D Nadal: Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production. Immunology, 128, 573-9 (2009)
- [33] D Jarrossay, G Napolitani, M Colonna, F Sallusto, A Lanzavecchia: Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol, 31, 3388-93 (2001)
- [34] SB Rasmussen, LS Reinert, SR Paludan: Innate recognition of intracellular pathogens: detection and activation of the first line of defense. APMIS, 117, 323-37 (2009)
- [35] AM Piccinini, KS Midwood: DAMPening inflammation by modulating TLR signalling. Mediators Inflamm, 2010 (2010)
- [36] M Escamilla-Tilch, G Filio-Rodriguez, R Garcia-Rocha, I Mancilla-Herrera, NA Mitchison, JA Ruiz-Pacheco, FJ Sanchez-Garcia, D Sandoval-Borrego, EA Vazquez-Sanchez: The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol, 91, 601-10 (2013)
- [37] A. Marshak-Rothstein: Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol, 6, 823-35 (2006)
- [38] AD Garg, D Nowis, J Golab, P Vandenabeele, DV Krysko, P. Agostinis: Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta, 1805, 53-71(2010)
- [39] V Petrilli, C Dostert, DA Muruve, J Tschopp: The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol, 19, 615-22 (2007).
- [40] S Chakraborty, DK Kaushik, M Gupta, A Basu: Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res, 88, 1615-31 (2010)
- [41] DG Millar, KM Garza, B Odermatt, AR Elford, N Ono, Z Li, PS Ohashi: Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat Med, 9, 1469-76 (2003)
- [42] S Yokota, S Minota, N Fujii: Anti-HSP auto-antibodies enhance HSP-induced pro-inflammatory cytokine production in human monocytic cells via Toll-like receptors. Int Immunol, 18, 573-80 (2006)
- [43] HS Hreggvidsdottir, T Ostberg, H Wahamaa, H Schierbeck, AC Aveberger, L Klevenvall, K Palmblad, L Ottosson, U Andersson, and HE Harris: The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol, 86, 655-62 (2009)
- [44] SK Drexler, BM Foxwell: The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol, 42, 506-18 (2010)
- [45] DS Wheeler, MA Chase, AP Senft, SE Poynter, HR Wong, K Page: Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res, 10, 31 (2009)
- [46] KJ Ishii, K Suzuki, C Coban, F Takeshita, Y Itoh, H Matoba, LD Kohn, DM Klinman: Genomic DNA released by dying cells induces the maturation of APCs. J Immunol, 167, 2602-7 (2001)
- [47] K Tani, WJ Murphy, O Chertov, R Salcedo, CY Koh, I Utsunomiya, S Funakoshi, O Asai, SH Herrmann, JM Wang, LW Kwak, JJ Oppenheim: Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. Int Immunol, 12, 691-700 (2000)
- [48] SA Hwang, ML Kruzel, JK Actor: Lactoferrin augments BCG vaccine efficacy to generate T helper response and subsequent protection against challenge with virulent Mycobacterium tuberculosis. Int Immunopharmacol, 5, 591-9 (2005)
- [49] KA Scheibner, MA Lutz, S Boodoo, MJ Fenton, JD Powell, MR Horton: Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol, 177, 1272-81 (2006)
- [50] S Akira, S Sato: Toll-like receptors and their signaling mechanisms. Scand J Infect Dis, 35, 555-62 (2003)
- [51] M Galdiero, E Finamore, F Rossano, M Gambuzza, MR Catania, G Teti, A Midiri, G Mancuso: Haemophilus influenzae porin induces Toll-like receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infect Immun, 72, 1204-9 (2004)
- [52] JH Youn, YJ Oh, ES Kim, JE Choi, JS Shin: High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. J Immunol, 180, 5067-74 (2008)
- [53] SR Saludan, AG Bowie, KA Horan, KA Fitzgerald: Recognition of herpesviruses by the innate immune system. Nat Rev Immunol, 11, 143-54 (2011)
- [54] T Bergstrom, O Andersen, A Vahlne: Isolation of herpes simplex virus type 1 during first attack of multiple sclerosis. Ann Neurol, 26, 283-5 (1989)
- [55] R Berti, SS Soldan, N Akhyani, HF McFarland, S Jacobson: Extended observations on the association of HHV-6 and multiple sclerosis. J Neurovirol, 6 Suppl 2, S85-7 (2000)
- [56] R Berti, MB Brennan, SS Soldan, JM Ohayon, L Casareto, HF McFarland, S Jacobson: Increased detection of serum HHV-6 DNA sequences during multiple sclerosis (MS) exacerbations and correlation with parameters of MS disease progression. J Neurovirol, 8, 250-6 (2002)
- [57] M Cirone, L Cuomo, C Zompetta, S Ruggieri, L Frati, A Faggioni, G Ragona: Human herpesvirus 6 and multiple sclerosis: a study of T cell cross-reactivity to viral and myelin basic protein antigens. J Med Virol, 68, 268-72 (2002)
- [58] R Alvarez-Lafuente, V De las Heras, M Bartolome, JJ Picazo, R. Arroyo: Relapsing-remitting multiple sclerosis and human herpesvirus 6 active infection. Arch Neurol, 61, 1523-7(2004)
- [59] K Voumvourakis, KI, DK Kitsos, S Tsiodras, G Petrikkos, E Stamboulis: Human herpesvirus 6 infection as a trigger of multiple sclerosis. Mayo Clin Proc, 85, 1023-30 (2010)
- [60] A Behzad-Behbahani, MH Mikaeili, M Entezam, A Mojiri, GY Pour, MM Arasteh, M Rahsaz, M Banihashemi, B Khadang, A Moaddeb, Z Nematollahi, N Azarpira: Human herpesvirus-6 viral load and antibody titer in serum samples of patients with multiple sclerosis. J Microbiol Immunol Infect, 44, 247-51 (2011
- [61] S Vento, L Guella, F Mirandola, F Cainelli, G Di Perri, M Solbiati, T Ferraro, E Concia: Epstein-Barr virus as a trigger for autoimmune hepatitis in susceptible individuals. Lancet, 346, 608-9 (1995)
- [62] J Vrbikova, I Janatkova, V Zamrazil, F Tomiska, T Fucikova: Epstein-Barr virus serology in patients with autoimmune thyroiditis. Exp Clin Endocrinol Diabetes, 104, 89-92 (1996)
- [63] EY Padalko, X Bossuyt: Anti-dsDNA antibodies associated with acute EBV infection in Sjogren's syndrome. Ann Rheum Dis, 60, 992 (2001)
- [64] MP Pender: Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol, 24, 584-8 (2003)
- [65] A Ascherio, M Rubertone, D Spiegelman, L Levin, K Munger, C Peck, E Lennette: Notice of retraction: “Multiple sclerosis and Epstein-Barr virus”. (JAMA. 2003;289:1533-1536). JAMA, 293, 2466 (2005)
- [66] KH Costenbader, EW Karlson: Epstein-Barr virus and rheumatoid arthritis: is there a link? Arthritis Res Ther, 8, 204 (2006)
- [67] S Haahr, P Hollsberg: Multiple sclerosis is linked to Epstein-Barr virus infection. Rev Med Virol, 16, 297-310 (2006)
- [68] M Trimeche, S Ziadi, K Amara, M Khelifa, F Bahri, S Mestiri, H Braham, M Hachana, B Sriha, M Mokni, S Korbi: Prevalence of Epstein-Barr virus in Sjogren's syndrome in Tunisia. Rev Med Interne, 27, 519-23 (2006)
- [69] FC Purves, WO Ogle, B Roizman: Processing of the herpes simplex virus regulatory protein alpha 22 mediated by the UL13 protein kinase determines the accumulation of a subset of alpha and gamma mRNAs and proteins in infected cells. Proc Natl Acad Sci U S A, 90, 6701-5 (1993)
- [70] E Gershburg, S Raffa, MR Torrisi, JS Pagano: Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol, 81, 5407-12 (2007)
- [71] X Sun, JA Bristol, S Iwahori, SR Hagemeier, Q Meng, EA Barlow, JD Fingeroth, VL Tarakanova, RF Kalejta, SC Kenney: Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. J Virol, 87, 10126-38 (2013)
- [72] M Kotsiopriftis, JE Tanner, C Alfieri: Heat shock protein 90 expression in Epstein-Barr virus-infected B cells promotes gammadelta T-cell proliferation in vitro. J Virol, 79, 7255-61 (2005)
- [73] M Ejima, K Ota, H Tanaka, S Maruyama: Peripheral blood gamma delta T cells in multiple sclerosis. Rinsho Shinkeigaku, 33, 1131-4 (1993)
- [74] MJ Mansilla, X Montalban, C Espejo: Heat shock protein 70: roles in multiple sclerosis. Mol Med, 18, 1018-28 (2012)
- [75] H Cwiklinska, MP Mycko, O Luvsannorov, B Walkowiak, CF Brosnan, CS Raine, KW Selmaj: Heat shock protein 70 associations with myelin basic protein and proteolipid protein in multiple sclerosis brains. Int Immunol, 15, 241-9 (2003)
- [76] SD D’Souza, JP Antel, MS Freedman: Cytokine induction of heat shock protein expression in human oligodendrocytes: an interleukin-1-mediated mechanism. J Neuroimmunol, 50, 17-24 (1994)
- [77] YW Han, JY Choi, E Uyangaa, SB Kim, JH Kim, BS Kim, K Kim, SK Eo: Distinct dictation of Japanese encephalitis virus-induced neuroinflammation and lethality via triggering TLR3 and TLR4 signal pathways. PLoS Pathog, 10, e1004319 (2014)
- [78] H Wang, O Bloom, M Zhang, JM Vishnubhakat, M Ombrellino, J Che, A Frazier, H Yang, S Ivanova, L Borovikova, KR Manogue, E Faist, E Abraham, J Andersson, U Andersson, PE Molina, NN Abumrad, A Sama, KJ Tracey: HMG-1 as a late mediator of endotoxin lethality in mice. Science, 285, 248-51 (1999)
- [79] U Andersson, KJ Tracey: HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol, 29, 139-62 (2011)
- [80] P Scaffidi, T Misteli, ME Bianchi: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418, 191-5 (2002)
- [81] MJ Ray, GA Hawson: A comparison of two APTT reagents which use silica activators. Clin Lab Haematol, 11, 221-32 (1989)
- [82] P Nowak, B Barqasho, CJ Treutiger, HE Harris, KJ Tracey, J Andersson, A Sonnerborg: HMGB1 activates replication of latent HIV-1 in a monocytic cell-line, but inhibits HIV-1 replication in primary macrophages. Cytokine, 34, 17-23 (2006)
- [83] IE Dumitriu, P Baruah, AA Manfredi, ME Bianchi, P Rovere-Querini: HMGB1: An immmune odyssey. Discov Med, 5, 388-92 (2005)
- [84] P Fang, M Schachner, YQ Shen: HMGB1 in development and diseases of the central nervous system. Mol Neurobiol, 45, 499-506 (2012)
- [85] A Andersson, R Covacu, D Sunnemark, AI Danilov, A Dal Bianco, M Khademi, E Wallstrom, A Lobell, L Brundin, H Lassmann, RA Harris: Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol, 84, 1248-55 (2008)
- [86] O Hori, J Brett, T Slattery, R Cao, J Zhang, JX Chen, M Nagashima, ER Lundh, S Vijay, D Nitecki, et al.: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem, 270, 25752-61 (1995)
- [87] AP Robinson, MW Caldis, CT Harp, GE Goings, SD Miller: High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis. J Autoimmun, 43, 32-43 (2013)
- [88] CS Hwang, GT Liu, MD Chang, IL Liao, HT Chang: Elevated serum autoantibody against high mobility group box 1 as a potent surrogate biomarker for amyotrophic lateral sclerosis. Neurobiol Dis, 58, 13-8 (2013)
- [89] S Schenk, J Muser, G Vollmer, R Chiquet-Ehrismann: Tenascin-C in serum: a questionable tumor marker. Int J Cancer, 61, 443-9 (1995)
- [90] J Tian, AM Avalos, SY Mao, B Chen, K Senthil, H Wu, P Parroche, S Drabic, D Golenbock, C Sirois, J Hua, LL An, L Audoly, G La Rosa, A Bierhaus, P Naworth, A Marshak-Rothstein, MK Crow, KA Fitzgerald, E Latz, PA Kiener, AJ Coyle: Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol, 8, 487-96 (2007)
- [91] V Urbonaviciute, BG Furnrohr, S Meister, L Munoz, P Heyder, F De Marchis, ME Bianchi, C Kirschning, H Wagner, AA Manfredi, J. Kalden, G Schett, P Rovere-Querini, M Herrmann, RE Voll: Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med, 205, 3007-18 (2008)
- [92] V Urbonaviciute, BG Furnrohr, C Weber, M Haslbeck, S Wilhelm, M Herrmann, RE Voll: Factors masking HMGB1 in human serum and plasma. J Leukoc Biol, 81, 67-74 (2007)
- [93] K Hein Nee Maier, A Kohler, R Diem, MB Sattler, I Demmer, P Lange, M Bahr, M Otto: Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci Lett, 436, 72-6 (2008)
- [94] H Tumani, C Teunissen, S Sussmuth, M Otto, AC Ludolph, J Brettschneider: Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev Mol Diagn, 8, 479-94 (2008)
- [95] K Mitosek-Szewczyk, W Gordon-Krajcer, D Flis, Z Stelmasiak: Some markers of neuronal damage in cerebrospinal fluid of multiple sclerosis patients in relapse. Folia Neuropathol, 49, 191-6 (2011)
- [96] RN Kalaria, SU Bhatti, EA Palatinsky, DH Pennington, ER Shelton, HW Chan, G Perry, WD Lust: Accumulation of the beta amyloid precursor protein at sites of ischemic injury in rat brain. Neuroreport, 4, 211-4(1993)
- [97] J Gehrmann, RB Banati, ML Cuzner, GW Kreutzberg, J Newcombe: Amyloid precursor protein (APP) expression in multiple sclerosis lesions. Glia, 15, 141-51 (1995)
- [98] E Leclerc, G Fritz, SW Vetter, CW Heizmann: Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta, 1793, 993-1007 (2009)
- [99] Rothermundt, M., M. Peters, J. H. Prehn & V. Arolt: S100B in brain damage and neurodegeneration. Microsc Res Tech, 60, 614-32 (2003)Cited within: 0Google Scholar
- [100] R Donato: Intracellular and extracellular roles of S100 proteins. Microsc Res Tech, 60, 540-51 (2003)
- [101] HY Sroussi, J Berline, JM Palefsky: Oxidation of methionine 63 and 83 regulates the effect of S100A9 on the migration of neutrophils in vitro. J Leukoc Biol, 81, 818-24 (2007)
- [102] C Perera, HP McNeil, CL Geczy: S100 Calgranulins in inflammatory arthritis. Immunol Cell Biol, 88, 41-9 (2010)
- [103] PL van Lent, L Grevers, AB Blom, A Sloetjes, JS Mort, T Vogl, W Nacken, WB van den Berg, J Roth: Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis, 67, 1750-8 (2008)
- [104] EO Lee, JH Yang, KA Chang, YH Suh, YH Chong: Amyloid-beta peptide-induced extracellular S100A9 depletion is associated with decrease of antimicrobial peptide activity in human THP-1 monocytes. J Neuroinflammation, 10, 68 (2013)
- [105] O Erez, R Romero, AL Tarca, T Chaiworapongsa, YM Kim, NG Than, EVaisbuch, S Draghici, G Tromp: Differential expression pattern of genes encoding for anti-microbial peptides in the fetal membranes of patients with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med, 22, 1103-15 (2009)
- [106] Hiroshima, Y., M. Bando, M. Kataoka, Y. Inagaki, M. C. Herzberg, K. F. Ross, K. Hosoi, T. Nagata & J. Kido: Regulation of antimicrobial peptide expression in human gingival keratinocytes by interleukin-1alpha. Arch Oral Biol, 56, 761-7 (2011)Cited within: 0Google Scholar
- [107] T Vogl, K Tenbrock, S Ludwig, N Leukert, C Ehrhardt, MA. van Zoelen, W Nacken, D Foell, T van der Poll, C Sorg, J Roth: Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med, 13, 1042-9 (2007)
- [108] P Sun, Q Li, Q Zhang, L Xu, JY Han: Upregulated expression of S100A8 in mice brain after focal cerebral ischemia reperfusion. World J Emerg Med, 4, 210-4 (2013)
- [109] PA Hessian, J Edgeworth, N Hogg: MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol, 53, 197-204 (1993)
- [110] ME Bianchi: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol, 81, 1-5 (2007)
- [111] A Gonzalez-Lopez, A Aguirre, I Lopez-Alonso, L Amado, A Astudillo, MS Fernandez-Garcia, MF Suarez, E Batalla-Solis, E Colado, GM Albaiceta: MMP-8 deficiency increases TLR/RAGE ligands S100A8 and S100A9 and exacerbates lung inflammation during endotoxemia. PLoS One, 7, e39940 (2012)
- [112] JJ Archelos, MK Storch, HP Hartung: The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol, 47, 694-706 (2000)
- [113] C Lucchinetti, W Bruck, J Parisi, B Scheithauer, M Rodriguez, H Lassmann: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol, 47, 707-17 (2000)
- [114] F Mackay, P Schneider: Cracking the BAFF code. Nat Rev Immunol, 9, 491-502 (2009)
- [115] GS Cheema, V Roschke, DM Hilbert, W Stohl: Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum, 44, 1313-9 (2001)
- [116] M Thangarajh, A Gomes, T Masterman, J Hillert, P Hjelmstrom: Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol, 152, 183-90 (2004)
- [117] A Vaknin-Dembinsky, L Brill, N Orpaz, O Abramsky, D Karussis: Preferential increase of B-cell activating factor in the cerebrospinal fluid of neuromyelitis optica in a white population. Mult Scler, 16, 1453-7 (2010)
- [118] F Mackay, SA Woodcock, P Lawton, C Ambrose, M Baetscher, P Schneider, J Tschopp, JL Browning: Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med, 190, 1697-710 (1999)
- [119] R Magliozzi, S Columba-Cabezas, B Serafini, F Aloisi: Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol, 148, 11-23 (2004)
- [120] B Serafini, M Severa, S Columba-Cabezas, B Rosicarelli, C Veroni, G Chiappetta, R Magliozzi, R Reynolds, EM Coccia, F Aloisi: Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J Neuropathol Exp Neurol, 69, 677-93 (2010)
- [121] M Krumbholz, D Theil, S Cepok, B Hemmer, P Kivisakk, RM Ransohoff, M Hofbauer, C Farina, T Derfuss, C Hartle, J Newcombe, R Hohlfeld, E Meinl: Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain, 129, 200-11 (2006)
- [122] F Piazza, JC DiFrancesco, ML Fusco, D Corti, L Pirovano, B Frigeni, L Mattavelli, S Andreoni, M Frigo, C Ferrarese, G Tredici, G Cavaletti: Cerebrospinal fluid levels of BAFF and APRIL in untreated multiple sclerosis. J Neuroimmunol, 220, 104-7 (2010)
- [123] X Chen, L Hui, NH Geiger, NJ Haughey, JD Geiger: Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging, 34, 2370-8 (2013)
- [124] SL Deshmane, R Mukerjee, S Fan, BE Sawaya: High-performance capillary electrophoresis for determining HIV-1 Tat protein in neurons. PLoS One, 6, e16148 (2011)
- [125] LS Young, JR Arrand, PG Murray: EBV gene expression and regulation. Cambridge (2007)
- [126] LS Young, AB Rickinson: Epstein-Barr virus: 40 years on. Nat Rev Cancer, 4, 757-68 (2004)
- [127] E Freire, C Oddo, L Frappier, G de Prat-Gay: Kinetically driven refolding of the hyperstable EBNA1 origin DNA-binding dimeric beta-barrel domain into amyloid-like spherical oligomers. Proteins, 70, 450-61 (2008)
- [128] DF Angelini, B Serafini, E Piras, M Severa, EM Coccia, B Rosicarelli, S Ruggieri, C Gasperini, F Buttari, D Centonze, R Mechelli, M Salvetti, G Borsellino, F Aloisi, L Battistini: Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. PLoS Pathog, 9, e1003220 (2013)
- [129] RM Leskowitz, XY Zhou, F Villinger, MH Fogg, A Kaur, PM Lieberman, F Wang, HC Ertl: CD4+ and CD8+ T-cell responses to latent antigen EBNA-1 and lytic antigen BZLF-1 during persistent lymphocryptovirus infection of rhesus macaques. J Virol, 87, 8351-62 (2013)
- [130] A Grahn, L Hagberg, S Nilsson, K Blennow, H Zetterberg, M Studahl: Cerebrospinal fluid biomarkers in patients with varicella-zoster virus CNS infections. J Neurol, 260, 1813-21 (2013)
- [131] P Matzinger: Tolerance, danger, and the extended family. Annu Rev Immunol, 12, 991-1045 (1994)
- [132] Z Zhang, C Wang, L Nie, G Soon: Assessing the heterogeneity of treatment effects via potential outcomes of individual patients. J R Stat Soc Ser C Appl Stat, 62, 687-704 (2013).
- [133] N Jounai, K Kobiyama, F Takeshita, KJ Ishii: Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol, 2, 168 (2012)
