Information
References
Contents
Download
[1]K. Rahman: Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging 2(2):219–236 (2007)
[2]J.S. Aprioku: Pharmacology of Free Radicals and the Impact of Reactive Oxygen Species on the Testis. J Reprod Infertil 14(4):158–172 (2013)
[3]M. S. Hatwalne: Free radical scavengers in anaesthesiology and critical care. Indian J Anaesth 56(3):227–233 (2012)
[4]S. Gaweł, M. Wardas, E. Niedworok, P. Wardas: Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 57(9-10):453-5 (2004)
[5]V. Lobo, A. Pati, A. Phatak, N. Chandra: Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4(8):118–126 (2010)
[6]S. Li, Y. Wang, M. Zhao, J. Wu, S. Peng: BPIC: A novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals. Bioorg Med Chem Lett 25(5):1146-50 (2014)
[7]P. Møller: Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic Clin Pharmacol Toxicol 96;1:1-42 (2005)
[8]C. Sánchez-Moreno: Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems, Food Science and Technology. International (8)3 121-137 (2002)
[9]V.O. Kaminskyy, B. Zhivotovsky: Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal. 1;21(1):86-102 (2014)
[10]E.W. Albrecht, C.A. Stegeman, A.T. Tiebosch, A.M. Tegzess, and H. van Goor: Expression of inducible and endothelial nitric oxide synthases, formation of peroxynitrite and reactive oxygen species in human chronic renal transplant failure. Am J Transplant. 2(5):448-53 (2002)
[11]V. Cecarini, J. Gee, E. Fioretti, M. Amici, M. Angeletti, A.M. Eleuteri, J.N. Keller: Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochimica et Biophysica Acta 1773:93–104 (2007)
[12]W.H, Koppenol: The Haber-Weiss cycle--70 years later. Redox Rep 6(4):229-34 (2001)
[13]E. Cabiscol, J. Tamarit, J. Ros: Oxidative stress in bacteria and protein damage by reactive oxygen species. Internatl Microbiol 3:3–8 (2000)
[14]B. Lipinski: Hydroxyl Radical and Its Scavengers in Health and Disease. Oxidative Medicine and Cellular Longevity vol 2011 pp 1-9 (2011)
[15]R. Mancinelli, E. Barlocci, S. Palminiell, L. Saso: Oxidative stress and brain diseases: Biomarkers and analytical methodologies. Indian journal of biotechnology 10:395-403 (2011)
[16]E.R. Stadtman: Protein oxidation and aging. Science, 257:1220–1224 (1992)
[17]E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci: Oxidative stress and antioxidant defense. World Allergy Organ J. 5(1):9-19 (2012)
[18]L. Vitetta, A.W. Linnane: Endocellular regulation by free radicals and hydrogen peroxide: key determinants of the inflammatory response. Inflammopharmacology. 22(2):69-72 (2014)
[19]M.J. Davies: Oxidative Damage to Proteins Chemical Biology. John Wiley &Sons, (2012)
[20]M.J. Davies: The oxidative environment and protein damage. Biochem. Biophys.Acta. 1703:93-109 (2005)
[21]H. Miki and Y.J. Funato: Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. Biochem.151(3):255-61 (2012)
[22]C. Jacob, G. I. Giles, N.M. Giles, H. Sies: Sulfur and Selenium: The Role of Oxidation State in Protein Structure and Function. Angewandte Chemie International 42 (39) 4742–4758 (2003)
[23]M.V. Trivedi, J.S. Laurence, T.J. Siahaan: The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sci 10(6):614-625 (2009)
[24]I.G. Shabalina, M. Vrbacký, A. Pecinová, A.V. Kalinovich, Z. Drahota, J. Houštěk, T. Mráček, B. Cannon, J. Nedergaard: ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. Biochim Biophys Acta. 1837(12):2017-30 (2014)
[25]I. Dalle-Donne, R. Rossi, D. Giustarini and A. Milzani, R. Colombo: Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 329 (1-2):23-38 (2003)
[26]S.G. Schwartz, M.A. Brantley, H.W. Flynn: Genetics and diabetic retinopathy. Curr Diabetes Rev. 1;9(1):86-92
[27]S. Vasan, P.G. Foiles, H.W. Founds: Therapeutic potential of AGE inhibitors and breakers of AGE protein cross-links. Expert Opin Investig Drugs. 10(11):1977-87 (2001)
[28]A. Piwowar: Perspectives on the pharmacotherapy of diseases extending with advanced oxidation protein products participation. Postepy Hig Med Dosw 7;68:1264-75 (2014)
[29]I. Dalle-Donne, R. Rossi, D. Giustarini and A. Milzani, R. Colombo: Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 329(1-2):23-38 (2003)
[30]J.D. Bridgewater, J. Lim, R.W. Vachet: Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10 A of the metal in Cu-binding proteins. J Am Soc Mass Spectrom. 17(11):1552-9 (2006)
[31]V. Cecarini, J. Gee, E. Fioretti, M. Amici, M. Angeletti, A.E. Maria, J.N. Keller: Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochim Biophys Acta.1773(2):93-104 (2006)
[32]A. Stolzing, A. Wengner, T. Grune: Degradation of oxidized extracellular proteins by microglia. Arch Biochem Biophys.15;400(2):171-9 (2002)
[33]B.M. Riederer: Oxidation Proteomics: The Role of Thiol Modifications. Current Proteomics, 6:51-62 (2009)
[34]J.G. Kiselar, M.R. Chance: Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting. J Mass Spectrom 45(12):1373–1382 (2010)
[35]A. Fiser, I. Simon: Predicting the oxidation state of cysteines by multiple sequence alignment. Bioinformatics 16 (3):251-256 (2000)
[36]R.L. Levine, L. Mosoni L, B.S. Berlett, E.R. Stadtman: Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci, 93:15036–40 (1996)
[37]J. Moskovitz: Methionine sulfoxide reductases: Ubiquitous enzymes involved in antioxidant defense, protein regulation and prevention of aging-related diseases. Biochim Biophys Acta. 1703:213–9 (2005)
[38]B. Sperandio, P. Polard, D. S. Ehrlich, P. Renault, E. Guédon: Sulfur Amino Acid Metabolism and Its Control in Lactococcus lactis IL1403. J Bacteriol 187(11):3762–3778 (2005)
[39]D. Luo, S.W. Smith, B.D: Anderson: Kinetics and Mechanism of the Reaction of Cysteine and Hydrogen Peroxide in Aqueous Solution. J Pharm Sci 94:304–316 (2004)
[40]N. Wiradharma, M. Khan, L.K.Yong, C.A.E. Hauser, S.V. Seow, S. Zhang, Y.Y. Yang: The effect of thiol functional group incorporation into cationic helical peptides on antimicrobial activities and spectra. Biomaterials 32 (34):9100–9108 (2011)
[41]G. Tajc, B.S. Tolbert, R. Basavappa, B.L. Miller: Direct determination of thiol pKa by isothermal titration microcalorimetry. J Am Chem Soc 126:10508–10509 (2004)
[42]S.D. Copley, W.R.P. Novak, P.C. Babbitt: Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43:13981–13995 (2004)
[43]S. Goto, Z. Radak: Implications of oxidative damage to proteins and DNA in aging and its intervention by caloric restriction and exercise. Journal of Sport and Health Science 2:75-80 (2013)
[44]T. Finkel, N.J. Holbrook: Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247 (2000)
[45]J. Boonstra, J.A. Post: Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene. 4:1-13 (2004)
[46]J.M. Chalker, S.B. Gunnoo, O. Boutureira, S.C. Gerstberger, M. Fernández-González, G.J.L. Bernardes, L. Griffin, H. Hailu, C.J. Schofield, B.G. Davis: Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci. 2:1666–1676 (2011)
[47]L.B. Poole, P.A. Karplus A, Claiborne: Protein sulfenic acids in redox signalling. Annu. Rev. Pharmacol. Toxicol 44:325–347 (2004)
[48]D.S. Rehder, C.R. Borges: Cysteine sulfenic Acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 49:7748–7755 (2010)
[49]M.L. Moreno, J. Escobar, A. Izquierdo-Álvarez, A. Gil, S. Pérez, J. Pereda, I. Zapico, M. Vento, L. Sabater, A. Marina, A. Martínez-Ruiz, J. Sastre: Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med. 70:265-77 (2014)
[50]D. Butera, K.M. Cook, J. Chiu, J.S.H. Wong, P.J. Hogg: Control of blood proteins by functional disulfide bonds. Blood. 123:(13) (2014)
[51]P.J. Hogg: Contribution of allosteric disulfide bonds to regulation of hemostasis. Journal of Thrombosis and Haemostasis 1:13-6 (2009)
[52]I. Azimi, J.W. Wong, P.J. Hogg: Control of mature protein function by allosteric disulfide bonds. Antioxid Redox Signal 4:113–126 (2011)
[53]K.M. Cook, P.J. Hogg: Post- translational control of protein function by disulfide bond cleavage. Antioxid Redox Signal 18:1987–2015 (2013)
[54]M.A. Wouters, S.W. Fan, N.L, Haworth: Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal. 12:53–91 (2010)
[55]P.J. Hogg: Targeting allosteric disulphide bonds in cancer. Nature Reviews Cancer 13:425-43 (2013)
[56]S.M. Marino, V.N. Gladyshev: Analysis and Functional Prediction of Reactive Cysteine Residues. J Biol Chem 287:4419–4425 (2012)
[57]C. Kumsta, U. Jakob: Redox-regulated chaperones. Biochemistry 48:4666–4676 (2009)
[58]H.H. Lin., L.Y. Tseng: DBCP: A web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines. Nucleic Acids Res 38:503–507 (2010)
[59]M.S. Paget, M.J, Buttner: Thiol-based regulatory switches. Annu Rev Genet. 37:91–121 (2003)
[60]H.S. Chung, S.W. Wang, V. Venkatraman, C.I. Murray, J.E.Van Eyk: Cysteine Oxidative Post-translational Modifications: Emerging Regulation in the Cardiovascular System. Circ Res 112(2):382–392 (2013)
[61]Z.A. Wood, E. Schroder, J. Robin Harris, L.B. Poole: Structure, mechanism and regulation of peroxiredoxins, Trends. Biochem Sci. 28:32–40 (2003)
[62]K. Apel, H. Hirt: Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu Rev Plant Biol 55:373-99 (2004)
[63]J.T. Hancock, R. Desikan, S.J, Neill: Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans.29:345-50 (2001)
[64]N.M. Giles, A.B. Watts, I.G. Giles, F.H. Fry, J.A. Little child, C. Jacob C Metal: Redox Modulation of Cysteine Protein Function. Chemistry and biology 10:677-693 (2003)
[65]J.V. Cross, D.J. Templeton: Thiol oxidation of cell signaling proteins: Controlling an apoptotic equilibrium. J Cell Biochem 93:104–111 (2004)
[66]P. Pacher, J.S. Beckman, L. Liaudet: Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87:315–424 (2007)
[67]L.B. Poole, K.J. Nelson: Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol, 12:18–24 (2008)
[68]Y. Diao, W. Liu, C.C.L. Wong, X. Wang, K. Lee, P. Cheung, L. Pan, T. Xu, J. Han, J.R. Yates III, M. Zhang, Z. Wu: Oxidation-induced intramolecular disulfide bond inactivates mitogen-activated protein kinase kinase 6 by inhibiting ATP binding. Proc Natl Acad Sci U S A 107:20974–20979 (2010)
[69]A. Matsuzawa, H. Ichijo: Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signalling. Biochim Biophys Acta 1780:1325–1336 (2008)
[70]P.J. Nadeau, S.J. Charette, J. Landry: REDOX reaction at ASK1-Cys250 is essential for activation of JNK and induction of apoptosis. Mol Biol Cell. 20:3628–3637 (2009)
[71]U. Bhattacharya, B. Halder, S. Mukhopadhyay, A.K. Giri: Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. Cancer Sci 100(10):1971-8 (2009)
[72]H. Kamata, S. Honda, S. Maeda, L. Chang, H. Hirata and M. Karin: Reactive oxygen species promote TNF alpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatises.http://www.ncbi.nlm.nih.gov/pubmed/15766528Cell 120:649-61 (2005)
[73]J.A. McCubrey, M.M. Lahair, R.A. Franklin: Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signaling. 8:1775–1789 (2006)
[74]Y.M. Go, J.J. Gipp, R.T. Mulcahy, D.P. Jones: H2O2-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1. J Biol Chem. 279:5837–5845 (2004)
[75]L.I. Leichert, F. Gehrke, H.V. Gudiseva, T. Blackwell, M. Ilbert, A.K. Walker, J.R. Strahler, P.C. Andrews, U. Jakob: Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. U.S.A 105:8197–8202 (2008)
[76]C. Colussi, M.C. Albertini, S. Coppola, S. Rovidati, F. Galli L. Ghibelli: H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. FASEB J. 14:2266–2276 (2000)
[77]C.H. Chen, W. Li, R. Sultana, M.H. You, A. Kondo, K. Shahpasand, B.M. Kim, M.L. Luo, M. Nechama, Y.M. Lin, Y. Yao, T.H. Lee, X.Z. Zhou, A.M. Swomley, D.A. Butterfield, Y. Zhang, K.P. Lu: Pin1: cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer’s disease. Neurobiology of disease 76:13-23 (2015)
[78]V.M. Chen, J. Ahamed, H.H. Versteeg, M.C. Berndt, W. Ruf, P.J. Hogg: Evidence for activation of tissue factor by an allosteric disulfide bond. Biochemistry. 3;45:12020-8 (2006)
[79]E.J. Hart, S.G. Powers-Lee: Role of Cys-1327 and Cys-1337 in redox sensitivity and allosteric monitoring in human carbamoyl phosphate synthetase. J Biol Chem. 284:5977-85 (2009)
[80]C.B. Poor, P.R. Chen, E. Duguid, P.A. Rice, C. He: Crystal Structures of the Reduced, Sulfenic Acid, and Mixed Disulfide Forms of SarZ, a Redox Active Global Regulator in Staphylococcus aureus. J Biol Chem. 284:23517–23524 (2008)
[81]K.M. Cook, H.P. McNeil, P.J. Hogg: Allosteric Control of βII-Tryptase by a Redox Active Disulfide Bond. The Journal of Biological Chemistry. 288:34920-34929 (2013)
[82]D. Butera, K.M. Cook, J. Chiu, J.S.W. Wong, P.J. Hogg: Control of blood proteins by functional disulfide bonds. Blood, 2000-2007 (2014)
[83]L.G. van den Hengel, Y.W. van den Berg, P.H. Reitsma, M.H.A. Bos, H.H. Versteeg: Evolutionary conservation of the tissue factor disulfide bonds and identification of a possible oxidoreductase binding motif. J Thromb Haemost 10:161–2 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Scholar (FBS) is published by IMR Press from Volume 13 Issue 1 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine
1 Department of Biosciences, Integral University, Lucknow-226026, India
2 Department of Biochemistry, King George Medical University, Lucknow, India
3 Rajiv Gandhi Center for Diabetes and Endocrinology, J.N. Medical College, Aligarh Muslim University, Aligarh-202002, India
4 Department of Bioengineering, Integral University, Lucknow-226026, India
5 Department of Biochemistry, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
6 Department of Biochemistry, J.N. Medical College, Aligarh Muslim University, Aligarh-202002, India
*Author to whom correspondence should be addressed.
Abstract
The available data suggest that among cellular constituents, proteins are the major target for oxidation primarily because of their quantity and high rate of interactions with ROS. Proteins are susceptible to ROS modifications of amino acid side chains which alter protein structure. Among the amino acids, Cysteine (Cys) is more prone to oxidation by ROS because of its high nucleophilic property. The reactivity of Cys with ROS is due to the presence of thiol group. In the oxidised form, Cys forms disulfide bond, which are primary covalent cross-link found in proteins, and which stabilize the native conformation of a protein. Indirect evidence suggests that thiol modifications by ROS may be involved in neurodegenerative disorders, but the significance and precise extent of the contributions are poorly understood. Here, we review the role of oxidized Cys in different pathological consequences and its biochemistry may increase the research in the discovery of new therapies. The purpose of this review is to re-examine the role and biochemistry of oxidised Cys residues.
Keywords
- Reactive oxygen species
- ROS
- Protein Oxidation
- Sulphur containing amino acids
- Cysteine
- Cys
- Thiol Group
- Disulfide Bond
- Review
References
- [1] K. Rahman: Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging 2(2):219–236 (2007)
- [2] J.S. Aprioku: Pharmacology of Free Radicals and the Impact of Reactive Oxygen Species on the Testis. J Reprod Infertil 14(4):158–172 (2013)
- [3] M. S. Hatwalne: Free radical scavengers in anaesthesiology and critical care. Indian J Anaesth 56(3):227–233 (2012)
- [4] S. Gaweł, M. Wardas, E. Niedworok, P. Wardas: Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 57(9-10):453-5 (2004)
- [5] V. Lobo, A. Pati, A. Phatak, N. Chandra: Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 4(8):118–126 (2010)
- [6] S. Li, Y. Wang, M. Zhao, J. Wu, S. Peng: BPIC: A novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals. Bioorg Med Chem Lett 25(5):1146-50 (2014)
- [7] P. Møller: Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic Clin Pharmacol Toxicol 96;1:1-42 (2005)
- [8] C. Sánchez-Moreno: Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems, Food Science and Technology. International (8)3 121-137 (2002)
- [9] V.O. Kaminskyy, B. Zhivotovsky: Free radicals in cross talk between autophagy and apoptosis. Antioxid Redox Signal. 1;21(1):86-102 (2014)
- [10] E.W. Albrecht, C.A. Stegeman, A.T. Tiebosch, A.M. Tegzess, and H. van Goor: Expression of inducible and endothelial nitric oxide synthases, formation of peroxynitrite and reactive oxygen species in human chronic renal transplant failure. Am J Transplant. 2(5):448-53 (2002)
- [11] V. Cecarini, J. Gee, E. Fioretti, M. Amici, M. Angeletti, A.M. Eleuteri, J.N. Keller: Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochimica et Biophysica Acta 1773:93–104 (2007)
- [12] W.H, Koppenol: The Haber-Weiss cycle--70 years later. Redox Rep 6(4):229-34 (2001)
- [13] E. Cabiscol, J. Tamarit, J. Ros: Oxidative stress in bacteria and protein damage by reactive oxygen species. Internatl Microbiol 3:3–8 (2000)
- [14] B. Lipinski: Hydroxyl Radical and Its Scavengers in Health and Disease. Oxidative Medicine and Cellular Longevity vol 2011 pp 1-9 (2011)
- [15] R. Mancinelli, E. Barlocci, S. Palminiell, L. Saso: Oxidative stress and brain diseases: Biomarkers and analytical methodologies. Indian journal of biotechnology 10:395-403 (2011)
- [16] E.R. Stadtman: Protein oxidation and aging. Science, 257:1220–1224 (1992)
- [17] E. Birben, U.M. Sahiner, C. Sackesen, S. Erzurum, O. Kalayci: Oxidative stress and antioxidant defense. World Allergy Organ J. 5(1):9-19 (2012)
- [18] L. Vitetta, A.W. Linnane: Endocellular regulation by free radicals and hydrogen peroxide: key determinants of the inflammatory response. Inflammopharmacology. 22(2):69-72 (2014)
- [19] M.J. Davies: Oxidative Damage to Proteins Chemical Biology. John Wiley &Sons, (2012)Cited within: 0Google Scholar
- [20] M.J. Davies: The oxidative environment and protein damage. Biochem. Biophys.Acta. 1703:93-109 (2005)
- [21] H. Miki and Y.J. Funato: Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. Biochem.151(3):255-61 (2012)
- [22] C. Jacob, G. I. Giles, N.M. Giles, H. Sies: Sulfur and Selenium: The Role of Oxidation State in Protein Structure and Function. Angewandte Chemie International 42 (39) 4742–4758 (2003)
- [23] M.V. Trivedi, J.S. Laurence, T.J. Siahaan: The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sci 10(6):614-625 (2009)
- [24] I.G. Shabalina, M. Vrbacký, A. Pecinová, A.V. Kalinovich, Z. Drahota, J. Houštěk, T. Mráček, B. Cannon, J. Nedergaard: ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. Biochim Biophys Acta. 1837(12):2017-30 (2014)
- [25] I. Dalle-Donne, R. Rossi, D. Giustarini and A. Milzani, R. Colombo: Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 329 (1-2):23-38 (2003)
- [26] S.G. Schwartz, M.A. Brantley, H.W. Flynn: Genetics and diabetic retinopathy. Curr Diabetes Rev. 1;9(1):86-92
- [27] S. Vasan, P.G. Foiles, H.W. Founds: Therapeutic potential of AGE inhibitors and breakers of AGE protein cross-links. Expert Opin Investig Drugs. 10(11):1977-87 (2001)
- [28] A. Piwowar: Perspectives on the pharmacotherapy of diseases extending with advanced oxidation protein products participation. Postepy Hig Med Dosw 7;68:1264-75 (2014)
- [29] I. Dalle-Donne, R. Rossi, D. Giustarini and A. Milzani, R. Colombo: Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 329(1-2):23-38 (2003)
- [30] J.D. Bridgewater, J. Lim, R.W. Vachet: Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10 A of the metal in Cu-binding proteins. J Am Soc Mass Spectrom. 17(11):1552-9 (2006)
- [31] V. Cecarini, J. Gee, E. Fioretti, M. Amici, M. Angeletti, A.E. Maria, J.N. Keller: Protein oxidation and cellular homeostasis: Emphasis on metabolism. Biochim Biophys Acta.1773(2):93-104 (2006)
- [32] A. Stolzing, A. Wengner, T. Grune: Degradation of oxidized extracellular proteins by microglia. Arch Biochem Biophys.15;400(2):171-9 (2002)
- [33] B.M. Riederer: Oxidation Proteomics: The Role of Thiol Modifications. Current Proteomics, 6:51-62 (2009)
- [34] J.G. Kiselar, M.R. Chance: Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting. J Mass Spectrom 45(12):1373–1382 (2010)
- [35] A. Fiser, I. Simon: Predicting the oxidation state of cysteines by multiple sequence alignment. Bioinformatics 16 (3):251-256 (2000)
- [36] R.L. Levine, L. Mosoni L, B.S. Berlett, E.R. Stadtman: Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci, 93:15036–40 (1996)
- [37] J. Moskovitz: Methionine sulfoxide reductases: Ubiquitous enzymes involved in antioxidant defense, protein regulation and prevention of aging-related diseases. Biochim Biophys Acta. 1703:213–9 (2005)
- [38] B. Sperandio, P. Polard, D. S. Ehrlich, P. Renault, E. Guédon: Sulfur Amino Acid Metabolism and Its Control in Lactococcus lactis IL1403. J Bacteriol 187(11):3762–3778 (2005)
- [39] D. Luo, S.W. Smith, B.D: Anderson: Kinetics and Mechanism of the Reaction of Cysteine and Hydrogen Peroxide in Aqueous Solution. J Pharm Sci 94:304–316 (2004)
- [40] N. Wiradharma, M. Khan, L.K.Yong, C.A.E. Hauser, S.V. Seow, S. Zhang, Y.Y. Yang: The effect of thiol functional group incorporation into cationic helical peptides on antimicrobial activities and spectra. Biomaterials 32 (34):9100–9108 (2011)
- [41] G. Tajc, B.S. Tolbert, R. Basavappa, B.L. Miller: Direct determination of thiol pKa by isothermal titration microcalorimetry. J Am Chem Soc 126:10508–10509 (2004)
- [42] S.D. Copley, W.R.P. Novak, P.C. Babbitt: Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43:13981–13995 (2004)
- [43] S. Goto, Z. Radak: Implications of oxidative damage to proteins and DNA in aging and its intervention by caloric restriction and exercise. Journal of Sport and Health Science 2:75-80 (2013)
- [44] T. Finkel, N.J. Holbrook: Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247 (2000)
- [45] J. Boonstra, J.A. Post: Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene. 4:1-13 (2004)
- [46] J.M. Chalker, S.B. Gunnoo, O. Boutureira, S.C. Gerstberger, M. Fernández-González, G.J.L. Bernardes, L. Griffin, H. Hailu, C.J. Schofield, B.G. Davis: Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem Sci. 2:1666–1676 (2011)
- [47] L.B. Poole, P.A. Karplus A, Claiborne: Protein sulfenic acids in redox signalling. Annu. Rev. Pharmacol. Toxicol 44:325–347 (2004)
- [48] D.S. Rehder, C.R. Borges: Cysteine sulfenic Acid as an intermediate in disulfide bond formation and nonenzymatic protein folding. Biochemistry 49:7748–7755 (2010)
- [49] M.L. Moreno, J. Escobar, A. Izquierdo-Álvarez, A. Gil, S. Pérez, J. Pereda, I. Zapico, M. Vento, L. Sabater, A. Marina, A. Martínez-Ruiz, J. Sastre: Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med. 70:265-77 (2014)
- [50] D. Butera, K.M. Cook, J. Chiu, J.S.H. Wong, P.J. Hogg: Control of blood proteins by functional disulfide bonds. Blood. 123:(13) (2014)
- [51] P.J. Hogg: Contribution of allosteric disulfide bonds to regulation of hemostasis. Journal of Thrombosis and Haemostasis 1:13-6 (2009)
- [52] I. Azimi, J.W. Wong, P.J. Hogg: Control of mature protein function by allosteric disulfide bonds. Antioxid Redox Signal 4:113–126 (2011)
- [53] K.M. Cook, P.J. Hogg: Post- translational control of protein function by disulfide bond cleavage. Antioxid Redox Signal 18:1987–2015 (2013)
- [54] M.A. Wouters, S.W. Fan, N.L, Haworth: Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal. 12:53–91 (2010)
- [55] P.J. Hogg: Targeting allosteric disulphide bonds in cancer. Nature Reviews Cancer 13:425-43 (2013)
- [56] S.M. Marino, V.N. Gladyshev: Analysis and Functional Prediction of Reactive Cysteine Residues. J Biol Chem 287:4419–4425 (2012)
- [57] C. Kumsta, U. Jakob: Redox-regulated chaperones. Biochemistry 48:4666–4676 (2009)
- [58] H.H. Lin., L.Y. Tseng: DBCP: A web server for disulfide bonding connectivity pattern prediction without the prior knowledge of the bonding state of cysteines. Nucleic Acids Res 38:503–507 (2010)
- [59] M.S. Paget, M.J, Buttner: Thiol-based regulatory switches. Annu Rev Genet. 37:91–121 (2003)
- [60] H.S. Chung, S.W. Wang, V. Venkatraman, C.I. Murray, J.E.Van Eyk: Cysteine Oxidative Post-translational Modifications: Emerging Regulation in the Cardiovascular System. Circ Res 112(2):382–392 (2013)
- [61] Z.A. Wood, E. Schroder, J. Robin Harris, L.B. Poole: Structure, mechanism and regulation of peroxiredoxins, Trends. Biochem Sci. 28:32–40 (2003)
- [62] K. Apel, H. Hirt: Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu Rev Plant Biol 55:373-99 (2004)
- [63] J.T. Hancock, R. Desikan, S.J, Neill: Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans.29:345-50 (2001)
- [64] N.M. Giles, A.B. Watts, I.G. Giles, F.H. Fry, J.A. Little child, C. Jacob C Metal: Redox Modulation of Cysteine Protein Function. Chemistry and biology 10:677-693 (2003)
- [65] J.V. Cross, D.J. Templeton: Thiol oxidation of cell signaling proteins: Controlling an apoptotic equilibrium. J Cell Biochem 93:104–111 (2004)
- [66] P. Pacher, J.S. Beckman, L. Liaudet: Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87:315–424 (2007)
- [67] L.B. Poole, K.J. Nelson: Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol, 12:18–24 (2008)
- [68] Y. Diao, W. Liu, C.C.L. Wong, X. Wang, K. Lee, P. Cheung, L. Pan, T. Xu, J. Han, J.R. Yates III, M. Zhang, Z. Wu: Oxidation-induced intramolecular disulfide bond inactivates mitogen-activated protein kinase kinase 6 by inhibiting ATP binding. Proc Natl Acad Sci U S A 107:20974–20979 (2010)
- [69] A. Matsuzawa, H. Ichijo: Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signalling. Biochim Biophys Acta 1780:1325–1336 (2008)
- [70] P.J. Nadeau, S.J. Charette, J. Landry: REDOX reaction at ASK1-Cys250 is essential for activation of JNK and induction of apoptosis. Mol Biol Cell. 20:3628–3637 (2009)
- [71] U. Bhattacharya, B. Halder, S. Mukhopadhyay, A.K. Giri: Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. Cancer Sci 100(10):1971-8 (2009)
- [72] H. Kamata, S. Honda, S. Maeda, L. Chang, H. Hirata and M. Karin: Reactive oxygen species promote TNF alpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatises.http://www.ncbi.nlm.nih.gov/pubmed/15766528Cell 120:649-61 (2005)
- [73] J.A. McCubrey, M.M. Lahair, R.A. Franklin: Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signaling. 8:1775–1789 (2006)
- [74] Y.M. Go, J.J. Gipp, R.T. Mulcahy, D.P. Jones: H2O2-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1. J Biol Chem. 279:5837–5845 (2004)
- [75] L.I. Leichert, F. Gehrke, H.V. Gudiseva, T. Blackwell, M. Ilbert, A.K. Walker, J.R. Strahler, P.C. Andrews, U. Jakob: Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. U.S.A 105:8197–8202 (2008)
- [76] C. Colussi, M.C. Albertini, S. Coppola, S. Rovidati, F. Galli L. Ghibelli: H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. FASEB J. 14:2266–2276 (2000)
- [77] C.H. Chen, W. Li, R. Sultana, M.H. You, A. Kondo, K. Shahpasand, B.M. Kim, M.L. Luo, M. Nechama, Y.M. Lin, Y. Yao, T.H. Lee, X.Z. Zhou, A.M. Swomley, D.A. Butterfield, Y. Zhang, K.P. Lu: Pin1: cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer’s disease. Neurobiology of disease 76:13-23 (2015)
- [78] V.M. Chen, J. Ahamed, H.H. Versteeg, M.C. Berndt, W. Ruf, P.J. Hogg: Evidence for activation of tissue factor by an allosteric disulfide bond. Biochemistry. 3;45:12020-8 (2006)
- [79] E.J. Hart, S.G. Powers-Lee: Role of Cys-1327 and Cys-1337 in redox sensitivity and allosteric monitoring in human carbamoyl phosphate synthetase. J Biol Chem. 284:5977-85 (2009)
- [80] C.B. Poor, P.R. Chen, E. Duguid, P.A. Rice, C. He: Crystal Structures of the Reduced, Sulfenic Acid, and Mixed Disulfide Forms of SarZ, a Redox Active Global Regulator in Staphylococcus aureus. J Biol Chem. 284:23517–23524 (2008)
- [81] K.M. Cook, H.P. McNeil, P.J. Hogg: Allosteric Control of βII-Tryptase by a Redox Active Disulfide Bond. The Journal of Biological Chemistry. 288:34920-34929 (2013)
- [82] D. Butera, K.M. Cook, J. Chiu, J.S.W. Wong, P.J. Hogg: Control of blood proteins by functional disulfide bonds. Blood, 2000-2007 (2014)
- [83] L.G. van den Hengel, Y.W. van den Berg, P.H. Reitsma, M.H.A. Bos, H.H. Versteeg: Evolutionary conservation of the tissue factor disulfide bonds and identification of a possible oxidoreductase binding motif. J Thromb Haemost 10:161–2 (2012)
