IMR Press / FBL / Volume 28 / Issue 4 / DOI: 10.31083/j.fbl2804073
Open Access Original Research
Ethanol Preference Leads to Alterations in Telomere Length, Mitochondria Copy Number, and Antioxidant Enzyme Activity in Zebrafish Brains
Show Less
1 Laboratório de Genética Animal e Humana, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte, Brazil
2 Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia (UFOB), 47810-047 Barreiras, Brazil
3 Centro de Pesquisas em Doenças Inflamatórias (CRID), Faculdade de Medicina de Ribeirão Preto, Departamento de Farmacologia, Universidade de São Paulo (FMRP), 14049-900 Ribeirão Preto, Brazil
4 Laboratório de Bioquímica e Biologia Molecular, Instituto de Biotecnologia, Universidade Federal de Uberlândia (UFU), 38402-045 Uberlândia, Brazil
5 Biotério Central, Departamento de Medicina Veterinária, Universidade Federal de Lavras (UFLA), 37200-000 Lavras, Brazil
*Correspondence: brunialt@ufmg.br (Ana Lúcia Brunialti-Godard)
Front. Biosci. (Landmark Ed) 2023, 28(4), 73; https://doi.org/10.31083/j.fbl2804073
Submitted: 1 December 2022 | Revised: 26 February 2023 | Accepted: 1 March 2023 | Published: 14 April 2023
(This article belongs to the Special Issue Role of Zebrafish in Human Disease Research)
Copyright: © 2023 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.
Abstract

Background: The motivations for and effects of ethanol consumption vary considerably among individuals, and as such, a significant proportion of the population is prone to substance abuse and its negative consequences in the physical, social, and psychological spheres. In a biological context, the characterization of these phenotypes provides clues for understanding the neurological complexity associated with ethanol abuse behavior. Therefore, the objective of this research was to characterize four ethanol preference phenotypes described in zebrafish: Light, Heavy, Inflexible, and Negative Reinforcement. Methods: To do this, we evaluated the telomere length, mtDNA copy number using real-time quantitative PCR (qPCR), and the activity of these antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the brain, and the interactions between these biomarkers. Changes observed in these parameters were associated with ethanol consumption and alcohol abuse. Results: The Heavy, Inflexible, and Negative Reinforcement phenotypes showed ethanol preference. This was particularly the case with the Inflexible phenotype, which was the group with the greatest ethanol preference. These three phenotypes showed telomere shortening as well as high SOD/CAT and/or GPx activities, while the Heavy phenotype also showed an increase in the mtDNA copy number. However, the Light phenotype, containing individuals without ethanol preference, did not demonstrate any changes in the analyzed parameters even after being exposed to the drug. Additionally, the PCA analysis showed a tendency to cluster the Light and Control groups differently from the other ethanol preference phenotypes. There was also a negative correlation between the results of the relative telomere length and SOD and CAT activity, providing further evidence of the biological relationship between these parameters. Conclusions: Our results showed differential molecular and biochemistry patterns in individuals with ethanol preference, suggesting that the molecular and biochemical basis of alcohol abuse behavior extends beyond its harmful physiological effects, but rather is correlated with preference phenotypes.

Keywords
telomeres
antioxidant enzymes
mtDNA
zebrafish
ethanol preference
Funding
AUXPE 1970/2016/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
APQ-01213-21/Fundação de Amparo à Pesquisa do Estado de Minas Gerais
06/2021 -PROPGP/UFOB/Pró-reitoria de Pós-Graduação e Pesquisa (PROPGP) from the Universidade Federal do Oeste da Bahia
CNPq 465669 /2014-0/INCT - TeraNano
PPM-00503-18/FAPEMIG
PQ –312812/2021-3/CNPq
Figures
Fig. 1.
Share
Back to top