Information
References
Contents
Download
[1]T. Lindahl and B. Nyberg: Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11(19), 3610-8 (1972)
[2]J. Cadet and J. R. Wagner: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol, 5(2) (2013)
[3]S. V. Jovanovic and M. G. Simic: One-Electron Redox Potentials of Purines and Pyrimidines. Journal of Physical Chemistry, 90(5), 974-978 (1986)
[4]Y. Zhang, F. Yuan, X. Wu, J. S. Taylor and Z. Wang: Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res, 29(4), 928-35 (2001)
[5]Y. Oda, S. Uesugi, M. Ikehara, S. Nishimura, Y. Kawase, H. Ishikawa, H. Inoue and E. Ohtsuka: NMR studies of a DNA containing 8-hydroxydeoxyguanosine. Nucleic Acids Res, 19(7), 1407-12 (1991)
[6]W. L. Neeley and J. M. Essigmann: Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol, 19(4), 491-505 (2006)
[7]M. K. Hailer, P. G. Slade, B. D. Martin, T. A. Rosenquist and K. D. Sugden: Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst), 4(1), 41-50 (2005)
[8]M. A. Kalam, K. Haraguchi, S. Chandani, E. L. Loechler, M. Moriya, M. M. Greenberg and A. K. Basu: Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Nucleic Acids Res, 34(8), 2305-15 (2006)
[9]M. M. Greenberg: The formamidopyrimidines: purine lesions formed in competition with 8-oxopurines from oxidative stress. Acc Chem Res, 45(4), 588-97 (2012)
[10]F. Bergeron, F. Auvre, J. P. Radicella and J. L. Ravanat: HO* radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci U S A, 107(12), 5528-33 (2010)
[11]R. Olinski, T. Zastawny, J. Budzbon, J. Skokowski, W. Zegarski and M. Dizdaroglu: DNA base modifications in chromatin of human cancerous tissues. FEBS Lett, 309(2), 193-8 (1992)
[12]C. J. Chetsanga and C. Grigorian: A dose-response study on opening of imidazole ring of adenine in DNA by ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med, 44(4), 321-31 (1983)
[13]M. O. Delaney, C. J. Wiederholt and M. M. Greenberg: Fapy.dA induces nucleotide misincorporation translesionally by a DNA polymerase. Angew Chem Int Ed Engl, 41(5), 771-3 (2002)
[14]H. Kamiya, H. Miura, N. Murata-Kamiya, H. Ishikawa, T. Sakaguchi, H. Inoue, T. Sasaki, C. Masutani, F. Hanaoka, S. Nishimura and et al.: 8-Hydroxyadenine (7,8-dihydro-8-oxoadenine) induces misincorporation in in vitro DNA synthesis and mutations in NIH 3T3 cells. Nucleic Acids Res, 23(15), 2893-9 (1995)
[15]X. Tan, A. P. Grollman and S. Shibutani: Comparison of the mutagenic properties of 8-oxo-7,8-dihydro-2’-deoxyadenosine and 8-oxo-7,8-dihydro-2’-deoxyguanosine DNA lesions in mammalian cells. Carcinogenesis, 20(12), 2287-92 (1999)
[16]K. Satou, H. Harashima and H. Kamiya: Mutagenic effects of 2-hydroxy-dATP on replication in a HeLa extract: induction of substitution and deletion mutations. Nucleic Acids Res, 31(10), 2570-5 (2003)
[17]S. Bjelland and E. Seeberg: Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res, 531(1-2), 37-80 (2003)
[18]K. Takata, T. Shimizu, S. Iwai and R. D. Wood: Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J Biol Chem, 281(33), 23445-55 (2006)
[19]R. Kusumoto, C. Masutani, S. Iwai and F. Hanaoka: Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Biochemistry, 41(19), 6090-9 (2002)
[20]P. L. Fischhaber, V. L. Gerlach, W. J. Feaver, Z. Hatahet, S. S. Wallace and E. C. Friedberg: Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides. J Biol Chem, 277(40), 37604-11 (2002)
[21]E. A. Belousova, G. Maga, Y. Fan, E. A. Kubareva, E. A. Romanova, N. A. Lebedeva, T. S. Oretskaya and O. I. Lavrik: DNA polymerases beta and lambda bypass thymine glycol in gapped DNA structures. Biochemistry, 49(22), 4695-704 (2010)
[22]B. van Loon, E. Markkanen and U. Hubscher: Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst), 9(6), 604-16 (2010)
[23]H. Maki and M. Sekiguchi: MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature, 355(6357), 273-5 (1992)
[24]K. Fujikawa, H. Kamiya, H. Yakushiji, Y. Nakabeppu and H. Kasai: Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res, 29(2), 449-54 (2001)
[25]A. Klungland and T. Lindahl: Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J, 16(11), 3341-8 (1997)
[26]L. Aravind and E. V. Koonin: The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biology, 1(4), research0007.1.-research0007.8. (2000)
[27]J. L. Caulfield, J. S. Wishnok and S. R. Tannenbaum: Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem, 273(21), 12689-95 (1998)
[28]D. R. Denver, S. L. Swenson and M. Lynch: An evolutionary analysis of the helix-hairpin-helix superfamily of DNA repair glycosylases. Mol Biol Evol, 20(10), 1603-11 (2003)
[29]A. L. Jacobs and P. Schär: DNA glycosylases: in DNA repair and beyond. Chromosoma, 121(1), 1-20 (2012)
[30]J. I. Friedman and J. T. Stivers: Detection of Damaged DNA Bases by DNA Glycosylase Enzymes. Biochemistry, 49(24), 4957-4967 (2010)
[31]S. S. Wallace: DNA glycosylases search for and remove oxidized DNA bases. Environ Mol Mutagen, 54(9), 691-704 (2013)
[32]C. N. Buechner, A. Maiti, A. C. Drohat and I. Tessmer: Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Res, 43(5), 2716-29 (2015)
[33]S. D. Bruner, D. P. Norman and G. L. Verdine: Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 403(6772), 859-66 (2000)
[34]A. K. Boal, J. C. Genereux, P. A. Sontz, J. A. Gralnick, D. K. Newman and J. K. Barton: Redox signaling between DNA repair proteins for efficient lesion detection. Proc Natl Acad Sci U S A, 106(36), 15237-42 (2009)
[35]C. J. Burrows and J. G. Muller: Oxidative Nucleobase Modifications Leading to Strand Scission. Chem Rev, 98(3), 1109-1152 (1998)
[36]A. A. Gorodetsky, A. K. Boal and J. K. Barton: Direct electrochemistry of endonuclease III in the presence and absence of DNA. J Am Chem Soc, 128(37), 12082-3 (2006)
[37]D. D. Eley and D. I. Spivey: Semiconductivity of organic substances. Part 9.-Nucleic acid in the dry state. Transactions of the Faraday Society, 58(0), 411-415 (1962)
[38]A. R. Arnold, M. A. Grodick and J. K. Barton: DNA Charge Transport: from Chemical Principles to the Cell. Cell Chem Biol, 23(1), 183-97 (2016)
[39]J. T. Stivers and Y. L. Jiang: A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev, 103(7), 2729-59 (2003)
[40]C. T. Coey, S. S. Malik, L. S. Pidugu, K. M. Varney, E. Pozharski and A. C. Drohat: Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Nucleic Acids Res (2016)
[41]Y. L. Jiang, K. Kwon and J. T. Stivers: Turning On uracil-DNA glycosylase using a pyrene nucleotide switch. J Biol Chem, 276(45), 42347-54 (2001)
[42]A. Y. Lau, M. D. Wyatt, B. J. Glassner, L. D. Samson and T. Ellenberger: Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A, 97(25), 13573-8 (2000)
[43]S. Lee and G. L. Verdine: Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Proc Natl Acad Sci U S A, 106(44), 18497-502 (2009)
[44]A. Maiti, M. T. Morgan, E. Pozharski and A. C. Drohat: Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proc Natl Acad Sci U S A, 105(26), 8890-5 (2008)
[45]S. S. Parikh, G. Walcher, G. D. Jones, G. Slupphaug, H. E. Krokan, G. M. Blackburn and J. A. Tainer: Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc Natl Acad Sci U S A, 97(10), 5083-8 (2000)
[46]J. E. Wibley, T. R. Waters, K. Haushalter, G. L. Verdine and L. H. Pearl: Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol Cell, 11(6), 1647-59 (2003)
[47]C. Zhu, L. Lu, J. Zhang, Z. Yue, J. Song, S. Zong, M. Liu, O. Stovicek, Y. Q. Gao and C. Yi: Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair. Proc Natl Acad Sci U S A, 113(28), 7792-7 (2016)
[48]E. A. Mullins, R. Shi, Z. D. Parsons, P. K. Yuen, S. S. David, Y. Igarashi and B. F. Eichman: The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature, 527(7577), 254-8 (2015)
[49]A. S. Bernards, J. K. Miller, K. K. Bao and I. Wong: Flipping duplex DNA inside out: a double base-flipping reaction mechanism by Escherichia coli MutY adenine glycosylase. J Biol Chem, 277(23), 20960-4 (2002)
[50]L. A. Loeb and B. D. Preston: Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet, 20, 201-30 (1986)
[51]S. Prakash, R. E. Johnson and L. Prakash: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem, 74, 317-53 (2005)
[52]J. T. Sczepanski, R. S. Wong, J. N. McKnight, G. D. Bowman and M. M. Greenberg: Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc Natl Acad Sci U S A, 107(52), 22475-80 (2010)
[53]V. Viswesh, K. Gates and D. Sun: Characterization of DNA damage induced by a natural product antitumor antibiotic leinamycin in human cancer cells. Chem Res Toxicol, 23(1), 99-107 (2010)
[54]D. R. McNeill, W. Lam, T. L. DeWeese, Y. C. Cheng and D. M. Wilson, 3rd: Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res, 7(6), 897-906 (2009)
[55]D. M. Wilson, 3rd and D. Barsky: The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res, 485(4), 283-307 (2001)
[56]R. L. Maher and L. B. Bloom: Pre-steady-state kinetic characterization of the AP endonuclease activity of human AP endonuclease 1. J Biol Chem, 282(42), 30577-85 (2007)
[57]G. Fritz: Human APE/Ref-1 protein. Int J Biochem Cell Biol, 32(9), 925-9 (2000)
[58]B. D. Freudenthal, W. A. Beard, M. J. Cuneo, N. S. Dyrkheeva and S. H. Wilson: Capturing snapshots of APE1 processing DNA damage. Nat Struct Mol Biol, 22(11), 924-31 (2015)
[59]C. D. Mol, T. Izumi, S. Mitra and J. A. Tainer: DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination (corrected). Nature, 403(6768), 451-6 (2000)
[60]M. Dlakic: Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem Sci, 25(6), 272-3 (2000)
[61]P. R. Strauss, W. A. Beard, T. A. Patterson and S. H. Wilson: Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs-Haldane mechanism. J Biol Chem, 272(2), 1302-7 (1997)
[62]N. G. Beloglazova, O. O. Kirpota, K. V. Starostin, A. A. Ishchenko, V. I. Yamkovoy, D. O. Zharkov, K. T. Douglas and G. A. Nevinsky: Thermodynamic, kinetic and structural basis for recognition and repair of abasic sites in DNA by apurinic/apyrimidinic endonuclease from human placenta. Nucleic Acids Res, 32(17), 5134-46 (2004)
[63]M. Z. Hadi, K. Ginalski, L. H. Nguyen and D. M. Wilson, 3rd: Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III. J Mol Biol, 316(3), 853-66 (2002)
[64]J. C. Shen and L. A. Loeb: Mutations in the alpha8 loop of human APE1 alter binding and cleavage of DNA containing an abasic site. J Biol Chem, 278(47), 46994-7001 (2003)
[65]S. N. Andres, M. J. Schellenberg, B. D. Wallace, P. Tumbale and R. S. Williams: Recognition and Repair of Chemically Heterogeneous Structures at DNA Ends. Environmental and Molecular Mutagenesis, 56(1), 1-21 (2015)
[66]J. L. Parsons, Dianova, II and G. L. Dianov: APE1 is the major 3’-phosphoglycolate activity in human cell extracts. Nucleic Acids Res, 32(12), 3531-6 (2004)
[67]T. Izumi, T. K. Hazra, I. Boldogh, A. E. Tomkinson, M. S. Park, S. Ikeda and S. Mitra: Requirement for human AP endonuclease 1 for repair of 3’-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis, 21(7), 1329-34 (2000)
[68]J. L. Parsons, Dianova, II and G. L. Dianov: APE1-dependent repair of DNA single-strand breaks containing 3’-end 8-oxoguanine. Nucleic Acids Res, 33(7), 2204-9 (2005)
[69]A. Mazouzi, A. Vigouroux, B. Aikeshev, P. J. Brooks, M. K. Saparbaev, S. Morera and A. A. Ishchenko: Insight into mechanisms of 3’-5’ exonuclease activity and removal of bulky 8,5’-cyclopurine adducts by apurinic/apyrimidinic endonucleases. Proc Natl Acad Sci U S A, 110(33), E3071-80 (2013)
[70]K. M. Chou and Y. C. Cheng: An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3’ mispaired DNA. Nature, 415(6872), 655-9 (2002)
[71]A. A. Ishchenko, X. Yang, D. Ramotar and M. Saparbaev: The 3’->5’ exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Mol Cell Biol, 25(15), 6380-90 (2005)
[72]Y. Matsumoto and K. Kim: Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science, 269(5224), 699-702 (1995)
[73]C. E. Piersen, R. Prasad, S. H. Wilson and R. S. Lloyd: Evidence for an imino intermediate in the DNA polymerase beta deoxyribose phosphate excision reaction. J Biol Chem, 271(30), 17811-5 (1996)
[74]M. R. Sawaya, R. Prasad, S. H. Wilson, J. Kraut and H. Pelletier: Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36(37), 11205-15 (1997)
[75]R. Prasad, W. A. Beard, J. Y. Chyan, M. W. Maciejewski, G. P. Mullen and S. H. Wilson: Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5’-deoxyribose phosphate lyase activities. J Biol Chem, 273(18), 11121-6 (1998)
[76]L. J. Deterding, R. Prasad, G. P. Mullen, S. H. Wilson and K. B. Tomer: Mapping of the 5’-2-deoxyribose-5-phosphate lyase active site in DNA polymerase beta by mass spectrometry. J Biol Chem, 275(14), 10463-71 (2000)
[77]R. Prasad, V. K. Batra, X. P. Yang, J. M. Krahn, L. C. Pedersen, W. A. Beard and S. H. Wilson: Structural insight into the DNA polymerase beta deoxyribose phosphate lyase mechanism. DNA Repair (Amst), 4(12), 1347-57 (2005)
[78]M. Caglayan, V. K. Batra, A. Sassa, R. Prasad and S. H. Wilson: Role of polymerase beta in complementing aprataxin deficiency during abasic-site base excision repair. Nat Struct Mol Biol, 21(5), 497-9 (2014)
[79]W. A. Beard and S. H. Wilson: Structure and mechanism of DNA polymerase Beta. Chem Rev, 106(2), 361-82 (2006)
[80]B. D. Freudenthal, W. A. Beard, D. D. Shock and S. H. Wilson: Observing a DNA polymerase choose right from wrong. Cell, 154(1), 157-68 (2013)
[81]L. Perera, B. D. Freudenthal, W. A. Beard, D. D. Shock, L. G. Pedersen and S. H. Wilson: Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Proc Natl Acad Sci U S A, 112(38), E5228-36 (2015)
[82]B. D. Freudenthal, W. A. Beard, L. Perera, D. D. Shock, T. Kim, T. Schlick and S. H. Wilson: Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature, 517(7536), 635-9 (2015)
[83]V. K. Batra, D. D. Shock, W. A. Beard, C. E. McKenna and S. H. Wilson: Binary complex crystal structure of DNA polymerase beta reveals multiple conformations of the templating 8-oxoguanine lesion. Proc Natl Acad Sci U S A, 109(1), 113-8 (2012)
[84]B. D. Freudenthal, W. A. Beard and S. H. Wilson: DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Nucleic Acids Res, 41(3), 1848-58 (2013)
[85]E. Fouquerel, D. Parikh and P. Opresko: DNA damage processing at telomeres: The ends justify the means. DNA Repair, 44, 159-168 (2016)
[86]T. Helleday, E. Petermann, C. Lundin, B. Hodgson and R. A. Sharma: DNA repair pathways as targets for cancer therapy. Nat Rev Cancer, 8(3), 193-204 (2008)
[87]S. G. Rudd, N. C. Valerie and T. Helleday: Pathways controlling dNTP pools to maintain genome stability. DNA Repair (Amst), 44, 193-204 (2016)
[88]M. Caglayan and S. H. Wilson: Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair. DNA Repair (Amst), 35, 85-9 (2015)
[89]U. Rass, I. Ahel and S. C. West: Actions of aprataxin in multiple DNA repair pathways. J Biol Chem, 282(13), 9469-74 (2007)
[90]J. J. Reynolds, S. F. El-Khamisy, S. Katyal, P. Clements, P. J. McKinnon and K. W. Caldecott: Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1. Mol Cell Biol, 29(5), 1354-62 (2009)
[91]R. Scott Williams: 108 Aprataxin and the threat of RNA contamination in DNA. J Biomol Struct Dyn, 33 Suppl 1, 68 (2015)
[92]M. Weinfeld, R. S. Mani, I. Abdou, R. D. Aceytuno and J. N. Glover: Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci, 36(5), 262-71 (2011)
[93]A. J. Doherty and S. P. Jackson: DNA repair: how Ku makes ends meet. Curr Biol, 11(22), R920-4 (2001)
[94]S. F. El-Khamisy and K. W. Caldecott: TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis, 21(4), 219-24 (2006)
[95]D. D’Amours, S. Desnoyers, I. D’Silva and G. G. Poirier: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J, 342 ( Pt 2), 249-68 (1999)
[96]F. Dantzer, G. de la Rubia, J. M. D. Murcia, Z. Hostomsky, G. de Murcia and V. Schreiber: Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry, 39(25), 7559-7569 (2000)
[97]V. Schreiber, J. C. Ame, P. Dolle, I. Schultz, B. Rinaldi, V. Fraulob, J. Menissier-de Murcia and G. de Murcia: Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. Journal of Biological Chemistry, 277(25), 23028-23036 (2002)
[98]O. I. Lavrik, R. Prasad, R. W. Sobol, J. K. Horton, E. J. Ackermann and S. H. Wilson: Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate - Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. Journal of Biological Chemistry, 276(27), 25541-25548 (2001)
[99]M. V. Sukhanova, S. N. Khodyreva, N. A. Lebedeva, R. Prasad, S. H. Wilson and O. I. Lavrik: Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Research, 33(4), 1222-1229 (2005)
[100]M. M. Kutuzov, S. N. Khodyreva, J. C. Ame, E. S. Ilina, M. V. Sukhanova, V. Schreiber and O. I. Lavrik: Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie, 95(6), 1208-1215 (2013)
[101]C. A. Realini and F. R. Althaus: Histone shuttling by poly(ADP-ribosylation). J Biol Chem, 267(26), 18858-65 (1992)
[102]N. Ogata, K. Ueda, M. Kawaichi and O. Hayaishi: Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J Biol Chem, 256(9), 4135-7 (1981)
[103]A. Huletsky, G. de Murcia, S. Muller, M. Hengartner, L. Menard, D. Lamarre and G. G. Poirier: The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin. A role of poly(ADP-ribosyl)ation on core nucleosome structure. J Biol Chem, 264(15), 8878-86 (1989)
[104]R. Prasad, N. Dyrkheeva, J. Williams and S. H. Wilson: Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. Plos One, 10(5) (2015)
[105]P. Reynolds, S. Cooper, M. Lomax and P. O’Neill: Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res, 43(8), 4028-38 (2015)
[106]K. W. Caldecott: Single-strand break repair and genetic disease. Nat Rev Genet, 9(8), 619-31 (2008)
[107]P. T. Beernink, M. Hwang, M. Ramirez, M. B. Murphy, S. A. Doyle and M. P. Thelen: Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein. J Biol Chem, 280(34), 30206-13 (2005)
[108]A. Hanssen-Bauer, K. Solvang-Garten, K. M. Gilljam, K. Torseth, D. M. Wilson, M. Akbari and M. Otterlei: The region of XRCC1 which harbours the three most common nonsynonymous polymorphic variants, is essential for the scaffolding function of XRCC1. DNA Repair, 11(4), 357-366 (2012)
[109]A. Marintchev, M. A. Mullen, M. W. Maciejewski, B. Pan, M. R. Gryk and G. P. Mullen: Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat Struct Biol, 6(9), 884-93 (1999)
[110]M. J. Cuneo and R. E. London: Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity. Proc Natl Acad Sci U S A, 107(15), 6805-10 (2010)
[111]R. M. Taylor, B. Wickstead, S. Cronin and K. W. Caldecott: Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1. Curr Biol, 8(15), 877-80 (1998)
[112]M. J. Cuneo, S. A. Gabel, J. M. Krahn, M. A. Ricker and R. E. London: The structural basis for partitioning of the XRCC1/DNA ligase III-alpha BRCT-mediated dimer complexes. Nucleic Acids Research, 39(17), 7816-7827 (2011)
[113]S. H. Wilson: Mammalian base excision repair and DNA polymerase beta. Mutat Res, 407(3), 203-15 (1998)
[114]S. H. Wilson and T. A. Kunkel: Passing the baton in base excision repair. Nat Struct Biol, 7(3), 176-8 (2000)
[115]R. Prasad, W. A. Beard, V. K. Batra, Y. Liu, D. D. Shock and S. H. Wilson: A review of recent experiments on step-to-step “hand-off” of the DNA intermediates in mammalian base excision repair pathways. Mol Biol (Mosk), 45(4), 586-600 (2011)
[116]R. Prasad, D. D. Shock, W. A. Beard and S. H. Wilson: Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem, 285(52), 40479-88 (2010)
[117]H. Yang, W. M. Clendenin, D. Wong, B. Demple, M. M. Slupska, J. H. Chiang and J. H. Miller: Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res, 29(3), 743-52 (2001)
[118]P. J. Luncsford, B. A. Manvilla, D. N. Patterson, S. S. Malik, J. Jin, B. J. Hwang, R. Gunther, S. Kalvakolanu, L. J. Lipinski, W. Yuan, W. Lu, A. C. Drohat, A. L. Lu and E. A. Toth: Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions. DNA Repair (Amst), 12(12), 1043-52 (2013)
[119]A. A. Kuznetsova, N. A. Kuznetsov, A. A. Ishchenko, M. K. Saparbaev and O. S. Fedorova: Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Biochim Biophys Acta, 1840(10), 3042-51 (2014)
[120]N. A. Moor, I. A. Vasil’eva, R. O. Anarbaev, A. A. Antson and O. I. Lavrik: Quantitative characterization of protein-protein complexes involved in base excision DNA repair. Nucleic Acids Res, 43(12), 6009-22 (2015)
[121]B. M. Brenerman, J. L. Illuzzi and D. M. Wilson, 3rd: Base excision repair capacity in informing healthspan. Carcinogenesis, 35(12), 2643-52 (2014)
[122]D. Cortazar, C. Kunz, J. Selfridge, T. Lettieri, Y. Saito, E. MacDougall, A. Wirz, D. Schuermann, A. L. Jacobs, F. Siegrist, R. Steinacher, J. Jiricny, A. Bird and P. Schar: Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature, 470(7334), 419-23 (2011)
[123]Z. Li, T.-P. Gu, A. R. Weber, J.-Z. Shen, B.-Z. Li, Z.-G. Xie, R. Yin, F. Guo, X. Liu, F. Tang, H. Wang, P. Schär and G.-L. Xu: Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Research, 43(8), 3986-3997 (2015)
[124]L. B. Meira, J. M. Bugni, S. L. Green, C.-W. Lee, B. Pang, D. Borenshtein, B. H. Rickman, A. B. Rogers, C. A. Moroski-Erkul, J. L. McFaline, D. B. Schauer, P. C. Dedon, J. G. Fox and L. D. Samson: DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. The Journal of Clinical Investigation, 118(7), 2516-2525 (2008)
[125]M. T. Russo, G. De Luca, P. Degan, E. Parlanti, E. Dogliotti, D. E. Barnes, T. Lindahl, H. Yang, J. H. Miller and M. Bignami: Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res, 64(13), 4411-4 (2004)
[126]L. B. Meira, S. Devaraj, G. E. Kisby, D. K. Burns, R. L. Daniel, R. E. Hammer, S. Grundy, I. Jialal and E. C. Friedberg: Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res, 61(14), 5552-7 (2001)
[127]A. Unnikrishnan, J. J. Raffoul, H. V. Patel, T. M. Prychitko, N. Anyangwe, L. B. Meira, E. C. Friedberg, D. C. Cabelof and A. R. Heydari: Oxidative stress alters base excision repair pathway and increases apoptotic response in apurinic/apyrimidinic endonuclease 1/redox factor-1 haploinsufficient mice. Free Radic Biol Med, 46(11), 1488-99 (2009)
[128]A. G. Senejani, S. Dalal, Y. Liu, T. P. Nottoli, J. M. McGrath, C. S. Clairmont and J. B. Sweasy: Y265C DNA polymerase beta knockin mice survive past birth and accumulate base excision repair intermediate substrates. Proc Natl Acad Sci U S A, 109(17), 6632-7 (2012)
[129]A. A. Nemec, K. A. Donigan, D. L. Murphy, J. Jaeger and J. B. Sweasy: Colon cancer-associated DNA polymerase beta variant induces genomic instability and cellular transformation. J Biol Chem, 287(28), 23840-9 (2012)
[130]R. S. Tebbs, M. L. Flannery, J. J. Meneses, A. Hartmann, J. D. Tucker, L. H. Thompson, J. E. Cleaver and R. A. Pedersen: Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol, 208(2), 513-29 (1999)
[131]D. R. McNeill, P. C. Lin, M. G. Miller, P. J. Pistell, N. C. de Souza-Pinto, K. W. Fishbein, R. G. Spencer, Y. Liu, C. Pettan-Brewer, W. C. Ladiges and D. M. Wilson, 3rd: XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility. Nucleic Acids Res, 39(18), 7992-8004 (2011)
[132]M. Belanger, I. Allaman and P. J. Magistretti: Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab, 14(6), 724-38 (2011)
[133]A. Sliwinska, D. Kwiatkowski, P. Czarny, M. Toma, P. Wigner, J. Drzewoski, K. Fabianowska-Majewska, J. Szemraj, M. Maes, P. Galecki and T. Sliwinski: The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) - A potential diagnostic biomarkers of Alzheimer’s disease. J Neurol Sci, 368, 155-9 (2016)
[134]C. Shao, S. Xiong, G. M. Li, L. Gu, G. Mao, W. R. Markesbery and M. A. Lovell: Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer’s disease brain. Free Radic Biol Med, 45(6), 813-9 (2008)
[135]L. Weissman, D. G. Jo, M. M. Sorensen, N. C. de Souza-Pinto, W. R. Markesbery, M. P. Mattson and V. A. Bohr: Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res, 35(16), 5545-55 (2007)
[136]V. Davydov, L. A. Hansen and D. A. Shackelford: Is DNA repair compromised in Alzheimer’s disease? Neurobiol Aging, 24(7), 953-68 (2003)
[137]P. Sykora, M. Misiak, Y. Wang, S. Ghosh, G. S. Leandro, D. Liu, J. Tian, B. A. Baptiste, W. N. Cong, B. M. Brenerman, E. Fang, K. G. Becker, R. J. Hamilton, S. Chigurupati, Y. Zhang, J. M. Egan, D. L. Croteau, D. M. Wilson, 3rd, M. P. Mattson and V. A. Bohr: DNA polymerase beta deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res, 43(2), 943-59 (2015)
[138]S. Martire, L. Mosca and M. d’Erme: PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev, 146-148, 53-64 (2015)
[139]R. Sharifi, R. Morra, C. D. Appel, M. Tallis, B. Chioza, G. Jankevicius, M. A. Simpson, I. Matic, E. Ozkan, B. Golia, M. J. Schellenberg, R. Weston, J. G. Williams, M. N. Rossi, H. Galehdari, J. Krahn, A. Wan, R. C. Trembath, A. H. Crosby, D. Ahel, R. Hay, A. G. Ladurner, G. Timinszky, R. S. Williams and I. Ahel: Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. Embo j, 32(9), 1225-37 (2013)
[140]T. M. Kauppinen and R. A. Swanson: The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience, 145(4), 1267-72 (2007)
[141]P. Pacher and C. Szabo: Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal, 7(11-12), 1568-80 (2005)
[142]A. Peralta-Leal, J. M. Rodriguez-Vargas, R. Aguilar-Quesada, M. I. Rodriguez, J. L. Linares, M. R. de Almodovar and F. J. Oliver: PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med, 47(1), 13-26 (2009)
[143]R. Strosznajder, R. Gadamski and M. Walski: Inhibition of poly(ADP-ribose) polymerase activity protects hippocampal cells against morphological and ultrastructural alteration evoked by ischemia-reperfusion injury. Folia Neuropathol, 43(3), 156-65 (2005)
[144]I. Tempera, Z. Deng, C. Atanasiu, C. J. Chen, M. D’Erme and P. M. Lieberman: Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1. J Virol, 84(10), 4988-97 (2010)
[145]M. Y. Kim, T. Zhang and W. L. Kraus: Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev, 19(17), 1951-67 (2005)
[146]N. Noren Hooten, M. Fitzpatrick, K. Kompaniez, K. D. Jacob, B. R. Moore, J. Nagle, J. Barnes, A. Lohani and M. K. Evans: Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging (Albany NY), 4(10), 674-85 (2012)
[147]S. Martire, A. Fuso, L. Mosca, E. Forte, V. Correani, M. Fontana, S. Scarpa, B. Maras and M. d’Erme: Bioenergetic Impairment in Animal and Cellular Models of Alzheimer’s Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions. J Alzheimers Dis, 54(1), 307-24 (2016)
[148]T. Helleday: PARP inhibitor receives FDA breakthrough therapy designation in castration resistant prostate cancer: beyond germline BRCA mutations. Annals of Oncology, 27(5), 755-757 (2016)
[149]I. V. Kovtun, Y. Liu, M. Bjoras, A. Klungland, S. H. Wilson and C. T. McMurray: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature, 447(7143), 447-52 (2007)
[150]Y. Liu, R. Prasad, W. A. Beard, E. W. Hou, J. K. Horton, C. T. McMurray and S. H. Wilson: Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. J Biol Chem, 284(41), 28352-66 (2009)
[151]X. N. Zhao and K. Usdin: The Repeat Expansion Diseases: The dark side of DNA repair. DNA Repair (Amst), 32, 96-105 (2015)
[152]X. Ba, L. Aguilera-Aguirre, Q. T. Rashid, A. Bacsi, Z. Radak, S. Sur, K. Hosoki, M. L. Hegde and I. Boldogh: The role of 8-oxoguanine DNA glycosylase-1 in inflammation. Int J Mol Sci, 15(9), 16975-97 (2014)
[153]K. K. Belanger, B. T. Ameredes, I. Boldogh and L. Aguilera-Aguirre: The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma. Mediators of Inflammation, 2016, 3762561 (2016)
[154]K. Tsuruya, M. Furuichi, Y. Tominaga, M. Shinozaki, M. Tokumoto, T. Yoshimitsu, K. Fukuda, H. Kanai, H. Hirakata, M. Iida and Y. Nakabeppu: Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGG1 expression during ischemia-reperfusion injury in the rat kidney. DNA Repair (Amst), 2(2), 211-29 (2003)
[155]M. Akbari, M. Morevati, D. Croteau and V. A. Bohr: The role of DNA base excision repair in brain homeostasis and disease. DNA Repair (Amst), 32, 172-9 (2015)
[156]M. Poletto, A. J. Legrand, S. C. Fletcher and G. L. Dianov: p53 coordinates base excision repair to prevent genomic instability. Nucleic Acids Res, 44(7), 3165-75 (2016)
[157]D. M. Wilson, 3rd, D. Kim, B. R. Berquist and A. J. Sigurdson: Variation in base excision repair capacity. Mutat Res, 711(1-2), 100-12 (2011)
[158]H. A. Galick, S. Kathe, M. Liu, S. Robey-Bond, D. Kidane, S. S. Wallace and J. B. Sweasy: Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc Natl Acad Sci U S A, 110(35), 14314-9 (2013)
[159]T. Ozaki and A. Nakagawara: Role of p53 in Cell Death and Human Cancers. Cancers, 3(1), 994-1013 (2011)
[160]S. Sengupta, A. K. Mantha, H. Song, S. Roychoudhury, S. Nath, S. Ray and K. K. Bhakat: Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair. Oncotarget (2016)
[161]M. Z. Hadi, M. A. Coleman, K. Fidelis, H. W. Mohrenweiser and D. M. Wilson, 3rd: Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res, 28(20), 3871-9 (2000)
[162]L. Lirussi, G. Antoniali, C. D’Ambrosio, A. Scaloni, H. Nilsen and G. Tell: APE1 polymorphic variants cause persistent genomic stress and affect cancer cell proliferation. Oncotarget, 7(18), 26293-306 (2016)
[163]D. Gu, M. Wang, M. Wang, Z. Zhang and J. Chen: The DNA repair gene APE1 T1349G polymorphism and cancer risk: a meta-analysis of 27 case-control studies. Mutagenesis, 24(6), 507-12 (2009)
[164]J. L. Illuzzi, N. A. Harris, B. A. Manvilla, D. Kim, M. Li, A. C. Drohat and D. M. Wilson, 3rd: Functional assessment of population and tumor-associated APE1 protein variants. PLoS One, 8(6), e65922 (2013)
[165]N. J. Curtin: DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer, 12(12), 801-17 (2012)
[166]K. A. Donigan, K.-w. Sun, A. A. Nemec, D. L. Murphy, X. Cong, V. Northrup, D. Zelterman and J. B. Sweasy: Human POLB Gene Is Mutated in High Percentage of Colorectal Tumors. The Journal of Biological Chemistry, 287(28), 23830-23839 (2012)
[167]T. Lang, M. Maitra, D. Starcevic, S. X. Li and J. B. Sweasy: A DNA polymerase beta mutant from colon cancer cells induces mutations. Proc Natl Acad Sci U S A, 101(16), 6074-9 (2004)
[168]J. Yamtich, A. A. Nemec, A. Keh and J. B. Sweasy: A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation. PLoS Genet, 8(11), e1003052 (2012)
[169]E. J. Duell, R. C. Millikan, G. S. Pittman, S. Winkel, R. M. Lunn, C. K. Tse, A. Eaton, H. W. Mohrenweiser, B. Newman and D. A. Bell: Polymorphisms in the DNA repair gene XRCC1 and breast cancer. Cancer Epidemiol Biomarkers Prev, 10(3), 217-22 (2001)
[170]L. J. Wang, H. T. Wang and X. X. Wang: Association of XRCC1 gene polymorphisms and pancreatic cancer risk in a Chinese population. Genet Mol Res, 15(2) (2016)
[171]A. Sanjari Moghaddam, M. Nazarzadeh, R. Noroozi, H. Darvish and A. Mosavi Jarrahi: XRCC1 and OGG1 Gene Polymorphisms and Breast Cancer: A Systematic Review of Literature. Iran J Cancer Prev, 9(1), e3467 (2016)
[172]A. Campalans, E. Moritz, T. Kortulewski, D. Biard, B. Epe and J. P. Radicella: Interaction with OGG1 is required for efficient recruitment of XRCC1 to base excision repair and maintenance of genetic stability after exposure to oxidative stress. Mol Cell Biol, 35(9), 1648-58 (2015)
[173]W.-X. Zong, D. Ditsworth, D. E. Bauer, Z.-Q. Wang and C. B. Thompson: Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes & Development, 18(11), 1272-1282 (2004)
[174]T. Xu, Y. Nie, J. Bai, L. Li, B. Yang, G. Zheng, J. Zhang, J. Yu, X. Cheng, J. Jiao and H. Jing: Suppression of human 8-oxoguanine DNA glycosylase (OGG1) augments ultrasound-induced apoptosis in cervical cancer cells. Ultrasonics, 72, 1-14 (2016)
[175]G. E. Konecny and R. S. Kristeleit: PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J Cancer (2016)
[176]N. J. Curtin: Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors. Drug Discovery Today: Disease Models, 9(2), e51-e58 (2012)
[177]T. Helleday: DNA repair as treatment target. Eur J Cancer, 47 Suppl 3, S333-5 (2011)
[178]J. S. Brown, S. B. Kaye and T. A. Yap: PARP inhibitors: the race is on. Br J Cancer, 114(7), 713-715 (2016)
[179]A. Weaver and E. Yang: Beyond DNA Repair: Additional Functions of PARP-1 in Cancer. Frontiers in Oncology, 3(290) (2013)
[180]H. Farmer, N. McCabe, C. J. Lord, A. N. J. Tutt, D. A. Johnson, T. B. Richardson, M. Santarosa, K. J. Dillon, I. Hickson, C. Knights, N. M. B. Martin, S. P. Jackson, G. C. M. Smith and A. Ashworth: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917-921 (2005)
[181]V. A. Roberts, M. E. Pique, S. Hsu, S. Li, G. Slupphaug, R. P. Rambo, J. W. Jamison, T. Liu, J. H. Lee, J. A. Tainer, L. F. Ten Eyck and V. L. Woods, Jr.: Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Nucleic Acids Res, 40(13), 6070-81 (2012)
[182]A. Darwanto, J. A. Theruvathu, J. L. Sowers, D. K. Rogstad, T. Pascal, W. Goddard, 3rd and L. C. Sowers: Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase. J Biol Chem, 284(23), 15835-46 (2009)
[183]A. Maiti, M. T. Morgan and A. C. Drohat: Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. J Biol Chem, 284(52), 36680-8 (2009)
[184]S. Moréra, I. Grin, A. Vigouroux, S. Couvé, V. Henriot, M. Saparbaev and A. A. Ishchenko: Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Research, 40(19), 9917-9926 (2012)
[185]M. V. Lukina, A. V. Popov, V. V. Koval, Y. N. Vorobjev, O. S. Fedorova and D. O. Zharkov: DNA Damage Processing by Human 8-Oxoguanine-DNA Glycosylase Mutants with the Occluded Active Site. The Journal of Biological Chemistry, 288(40), 28936-28947 (2013)
[186]S. D. Williams and S. S. David: Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA. Nucleic Acids Res, 26(22), 5123-33 (1998)
[187]J. C. Fromme, A. Banerjee, S. J. Huang and G. L. Verdine: Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature, 427(6975), 652-6 (2004)
[188]A. Prasad, S. S. Wallace and D. S. Pederson: Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol Cell Biol, 27(24), 8442-53 (2007)
[189]J. C. Fromme and G. L. Verdine: Structure of a trapped endonuclease III-DNA covalent intermediate. Embo j, 22(13), 3461-71 (2003)
[190]A. Y. Lau, M. D. Wyatt, B. J. Glassner, L. D. Samson and T. Ellenberger: Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13573-13578 (2000)
[191]C. Y. Lee, J. C. Delaney, M. Kartalou, G. M. Lingaraju, A. Maor-Shoshani, J. M. Essigmann and L. D. Samson: Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Biochemistry, 48(9), 1850-61 (2009)
[192]S. Z. Krokeide, J. K. Laerdahl, M. Salah, L. Luna, F. H. Cederkvist, A. M. Fleming, C. J. Burrows, B. Dalhus and M. Bjoras: Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst), 12(12), 1159-64 (2013)
[193]S. Doublié, V. Bandaru, J. P. Bond and S. S. Wallace: The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10284-10289 (2004)
[194]T. K. Hazra, T. Izumi, I. Boldogh, B. Imhoff, Y. W. Kow, P. Jaruga, M. Dizdaroglu and S. Mitra: Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3523-3528 (2002)
[195]A. Prakash, B. E. Eckenroth, A. M. Averill, K. Imamura, S. S. Wallace and S. Doublié: Structural Investigation of a Viral Ortholog of Human NEIL2/3 DNA Glycosylases. DNA repair, 12(12) (2013)
[196]M. Liu, K. Imamura, A. M. Averill, S. S. Wallace and S. Doublié: Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA. Structure (London, England : 1993), 21(2), 10.1.0.1.6/j.str.2012.1.2.0.0.8. (2013)
[197]S. Tagami, S. Sekine, L. Minakhin, D. Esyunina, R. Akasaka, M. Shirouzu, A. Kulbachinskiy, K. Severinov and S. Yokoyama: Structural basis for promoter specificity switching of RNA polymerase by a phage factor. Genes Dev, 28(5), 521-31 (2014)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Base excision repair of oxidative DNA damage: from mechanism to disease
1 Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
Abstract
Reactive oxygen species continuously assault the structure of DNA resulting in oxidation and fragmentation of the nucleobases. Both oxidative DNA damage itself and its repair mediate the progression of many prevalent human maladies. The major pathway tasked with removal of oxidative DNA damage, and hence maintaining genomic integrity, is base excision repair (BER). The aphorism that structure often dictates function has proven true, as numerous recent structural biology studies have aided in clarifying the molecular mechanisms used by key BER enzymes during the repair of damaged DNA. This review focuses on the mechanistic details of the individual BER enzymes and the association of these enzymes during the development and progression of human diseases, including cancer and neurological diseases. Expanding on these structural and biochemical studies to further clarify still elusive BER mechanisms, and focusing our efforts toward gaining an improved appreciation of how these enzymes form co-complexes to facilitate DNA repair is a crucial next step toward understanding how BER contributes to human maladies and how it can be manipulated to alter patient outcomes.
Keywords
- Base excision repair
- Oxidative DNA damage
- DNA repair
- Review
References
- [1] T. Lindahl and B. Nyberg: Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11(19), 3610-8 (1972)
- [2] J. Cadet and J. R. Wagner: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol, 5(2) (2013)
- [3] S. V. Jovanovic and M. G. Simic: One-Electron Redox Potentials of Purines and Pyrimidines. Journal of Physical Chemistry, 90(5), 974-978 (1986)
- [4] Y. Zhang, F. Yuan, X. Wu, J. S. Taylor and Z. Wang: Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res, 29(4), 928-35 (2001)
- [5] Y. Oda, S. Uesugi, M. Ikehara, S. Nishimura, Y. Kawase, H. Ishikawa, H. Inoue and E. Ohtsuka: NMR studies of a DNA containing 8-hydroxydeoxyguanosine. Nucleic Acids Res, 19(7), 1407-12 (1991)
- [6] W. L. Neeley and J. M. Essigmann: Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol, 19(4), 491-505 (2006)
- [7] M. K. Hailer, P. G. Slade, B. D. Martin, T. A. Rosenquist and K. D. Sugden: Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair (Amst), 4(1), 41-50 (2005)
- [8] M. A. Kalam, K. Haraguchi, S. Chandani, E. L. Loechler, M. Moriya, M. M. Greenberg and A. K. Basu: Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Nucleic Acids Res, 34(8), 2305-15 (2006)
- [9] M. M. Greenberg: The formamidopyrimidines: purine lesions formed in competition with 8-oxopurines from oxidative stress. Acc Chem Res, 45(4), 588-97 (2012)
- [10] F. Bergeron, F. Auvre, J. P. Radicella and J. L. Ravanat: HO* radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci U S A, 107(12), 5528-33 (2010)
- [11] R. Olinski, T. Zastawny, J. Budzbon, J. Skokowski, W. Zegarski and M. Dizdaroglu: DNA base modifications in chromatin of human cancerous tissues. FEBS Lett, 309(2), 193-8 (1992)
- [12] C. J. Chetsanga and C. Grigorian: A dose-response study on opening of imidazole ring of adenine in DNA by ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med, 44(4), 321-31 (1983)
- [13] M. O. Delaney, C. J. Wiederholt and M. M. Greenberg: Fapy.dA induces nucleotide misincorporation translesionally by a DNA polymerase. Angew Chem Int Ed Engl, 41(5), 771-3 (2002)
- [14] H. Kamiya, H. Miura, N. Murata-Kamiya, H. Ishikawa, T. Sakaguchi, H. Inoue, T. Sasaki, C. Masutani, F. Hanaoka, S. Nishimura and et al.: 8-Hydroxyadenine (7,8-dihydro-8-oxoadenine) induces misincorporation in in vitro DNA synthesis and mutations in NIH 3T3 cells. Nucleic Acids Res, 23(15), 2893-9 (1995)
- [15] X. Tan, A. P. Grollman and S. Shibutani: Comparison of the mutagenic properties of 8-oxo-7,8-dihydro-2’-deoxyadenosine and 8-oxo-7,8-dihydro-2’-deoxyguanosine DNA lesions in mammalian cells. Carcinogenesis, 20(12), 2287-92 (1999)
- [16] K. Satou, H. Harashima and H. Kamiya: Mutagenic effects of 2-hydroxy-dATP on replication in a HeLa extract: induction of substitution and deletion mutations. Nucleic Acids Res, 31(10), 2570-5 (2003)
- [17] S. Bjelland and E. Seeberg: Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res, 531(1-2), 37-80 (2003)
- [18] K. Takata, T. Shimizu, S. Iwai and R. D. Wood: Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J Biol Chem, 281(33), 23445-55 (2006)
- [19] R. Kusumoto, C. Masutani, S. Iwai and F. Hanaoka: Translesion synthesis by human DNA polymerase eta across thymine glycol lesions. Biochemistry, 41(19), 6090-9 (2002)
- [20] P. L. Fischhaber, V. L. Gerlach, W. J. Feaver, Z. Hatahet, S. S. Wallace and E. C. Friedberg: Human DNA polymerase kappa bypasses and extends beyond thymine glycols during translesion synthesis in vitro, preferentially incorporating correct nucleotides. J Biol Chem, 277(40), 37604-11 (2002)
- [21] E. A. Belousova, G. Maga, Y. Fan, E. A. Kubareva, E. A. Romanova, N. A. Lebedeva, T. S. Oretskaya and O. I. Lavrik: DNA polymerases beta and lambda bypass thymine glycol in gapped DNA structures. Biochemistry, 49(22), 4695-704 (2010)
- [22] B. van Loon, E. Markkanen and U. Hubscher: Oxygen as a friend and enemy: How to combat the mutational potential of 8-oxo-guanine. DNA Repair (Amst), 9(6), 604-16 (2010)
- [23] H. Maki and M. Sekiguchi: MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature, 355(6357), 273-5 (1992)
- [24] K. Fujikawa, H. Kamiya, H. Yakushiji, Y. Nakabeppu and H. Kasai: Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res, 29(2), 449-54 (2001)
- [25] A. Klungland and T. Lindahl: Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J, 16(11), 3341-8 (1997)
- [26] L. Aravind and E. V. Koonin: The alpha/beta fold uracil DNA glycosylases: a common origin with diverse fates. Genome Biology, 1(4), research0007.1.-research0007.8. (2000)
- [27] J. L. Caulfield, J. S. Wishnok and S. R. Tannenbaum: Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides. J Biol Chem, 273(21), 12689-95 (1998)
- [28] D. R. Denver, S. L. Swenson and M. Lynch: An evolutionary analysis of the helix-hairpin-helix superfamily of DNA repair glycosylases. Mol Biol Evol, 20(10), 1603-11 (2003)
- [29] A. L. Jacobs and P. Schär: DNA glycosylases: in DNA repair and beyond. Chromosoma, 121(1), 1-20 (2012)
- [30] J. I. Friedman and J. T. Stivers: Detection of Damaged DNA Bases by DNA Glycosylase Enzymes. Biochemistry, 49(24), 4957-4967 (2010)
- [31] S. S. Wallace: DNA glycosylases search for and remove oxidized DNA bases. Environ Mol Mutagen, 54(9), 691-704 (2013)
- [32] C. N. Buechner, A. Maiti, A. C. Drohat and I. Tessmer: Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Res, 43(5), 2716-29 (2015)
- [33] S. D. Bruner, D. P. Norman and G. L. Verdine: Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature, 403(6772), 859-66 (2000)
- [34] A. K. Boal, J. C. Genereux, P. A. Sontz, J. A. Gralnick, D. K. Newman and J. K. Barton: Redox signaling between DNA repair proteins for efficient lesion detection. Proc Natl Acad Sci U S A, 106(36), 15237-42 (2009)
- [35] C. J. Burrows and J. G. Muller: Oxidative Nucleobase Modifications Leading to Strand Scission. Chem Rev, 98(3), 1109-1152 (1998)
- [36] A. A. Gorodetsky, A. K. Boal and J. K. Barton: Direct electrochemistry of endonuclease III in the presence and absence of DNA. J Am Chem Soc, 128(37), 12082-3 (2006)
- [37] D. D. Eley and D. I. Spivey: Semiconductivity of organic substances. Part 9.-Nucleic acid in the dry state. Transactions of the Faraday Society, 58(0), 411-415 (1962)
- [38] A. R. Arnold, M. A. Grodick and J. K. Barton: DNA Charge Transport: from Chemical Principles to the Cell. Cell Chem Biol, 23(1), 183-97 (2016)
- [39] J. T. Stivers and Y. L. Jiang: A mechanistic perspective on the chemistry of DNA repair glycosylases. Chem Rev, 103(7), 2729-59 (2003)
- [40] C. T. Coey, S. S. Malik, L. S. Pidugu, K. M. Varney, E. Pozharski and A. C. Drohat: Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Nucleic Acids Res (2016)
- [41] Y. L. Jiang, K. Kwon and J. T. Stivers: Turning On uracil-DNA glycosylase using a pyrene nucleotide switch. J Biol Chem, 276(45), 42347-54 (2001)
- [42] A. Y. Lau, M. D. Wyatt, B. J. Glassner, L. D. Samson and T. Ellenberger: Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A, 97(25), 13573-8 (2000)
- [43] S. Lee and G. L. Verdine: Atomic substitution reveals the structural basis for substrate adenine recognition and removal by adenine DNA glycosylase. Proc Natl Acad Sci U S A, 106(44), 18497-502 (2009)
- [44] A. Maiti, M. T. Morgan, E. Pozharski and A. C. Drohat: Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proc Natl Acad Sci U S A, 105(26), 8890-5 (2008)
- [45] S. S. Parikh, G. Walcher, G. D. Jones, G. Slupphaug, H. E. Krokan, G. M. Blackburn and J. A. Tainer: Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc Natl Acad Sci U S A, 97(10), 5083-8 (2000)
- [46] J. E. Wibley, T. R. Waters, K. Haushalter, G. L. Verdine and L. H. Pearl: Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol Cell, 11(6), 1647-59 (2003)
- [47] C. Zhu, L. Lu, J. Zhang, Z. Yue, J. Song, S. Zong, M. Liu, O. Stovicek, Y. Q. Gao and C. Yi: Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair. Proc Natl Acad Sci U S A, 113(28), 7792-7 (2016)
- [48] E. A. Mullins, R. Shi, Z. D. Parsons, P. K. Yuen, S. S. David, Y. Igarashi and B. F. Eichman: The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions. Nature, 527(7577), 254-8 (2015)
- [49] A. S. Bernards, J. K. Miller, K. K. Bao and I. Wong: Flipping duplex DNA inside out: a double base-flipping reaction mechanism by Escherichia coli MutY adenine glycosylase. J Biol Chem, 277(23), 20960-4 (2002)
- [50] L. A. Loeb and B. D. Preston: Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet, 20, 201-30 (1986)
- [51] S. Prakash, R. E. Johnson and L. Prakash: Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem, 74, 317-53 (2005)
- [52] J. T. Sczepanski, R. S. Wong, J. N. McKnight, G. D. Bowman and M. M. Greenberg: Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc Natl Acad Sci U S A, 107(52), 22475-80 (2010)
- [53] V. Viswesh, K. Gates and D. Sun: Characterization of DNA damage induced by a natural product antitumor antibiotic leinamycin in human cancer cells. Chem Res Toxicol, 23(1), 99-107 (2010)
- [54] D. R. McNeill, W. Lam, T. L. DeWeese, Y. C. Cheng and D. M. Wilson, 3rd: Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res, 7(6), 897-906 (2009)
- [55] D. M. Wilson, 3rd and D. Barsky: The major human abasic endonuclease: formation, consequences and repair of abasic lesions in DNA. Mutat Res, 485(4), 283-307 (2001)
- [56] R. L. Maher and L. B. Bloom: Pre-steady-state kinetic characterization of the AP endonuclease activity of human AP endonuclease 1. J Biol Chem, 282(42), 30577-85 (2007)
- [57] G. Fritz: Human APE/Ref-1 protein. Int J Biochem Cell Biol, 32(9), 925-9 (2000)
- [58] B. D. Freudenthal, W. A. Beard, M. J. Cuneo, N. S. Dyrkheeva and S. H. Wilson: Capturing snapshots of APE1 processing DNA damage. Nat Struct Mol Biol, 22(11), 924-31 (2015)
- [59] C. D. Mol, T. Izumi, S. Mitra and J. A. Tainer: DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination (corrected). Nature, 403(6768), 451-6 (2000)
- [60] M. Dlakic: Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem Sci, 25(6), 272-3 (2000)
- [61] P. R. Strauss, W. A. Beard, T. A. Patterson and S. H. Wilson: Substrate binding by human apurinic/apyrimidinic endonuclease indicates a Briggs-Haldane mechanism. J Biol Chem, 272(2), 1302-7 (1997)
- [62] N. G. Beloglazova, O. O. Kirpota, K. V. Starostin, A. A. Ishchenko, V. I. Yamkovoy, D. O. Zharkov, K. T. Douglas and G. A. Nevinsky: Thermodynamic, kinetic and structural basis for recognition and repair of abasic sites in DNA by apurinic/apyrimidinic endonuclease from human placenta. Nucleic Acids Res, 32(17), 5134-46 (2004)
- [63] M. Z. Hadi, K. Ginalski, L. H. Nguyen and D. M. Wilson, 3rd: Determinants in nuclease specificity of Ape1 and Ape2, human homologues of Escherichia coli exonuclease III. J Mol Biol, 316(3), 853-66 (2002)
- [64] J. C. Shen and L. A. Loeb: Mutations in the alpha8 loop of human APE1 alter binding and cleavage of DNA containing an abasic site. J Biol Chem, 278(47), 46994-7001 (2003)
- [65] S. N. Andres, M. J. Schellenberg, B. D. Wallace, P. Tumbale and R. S. Williams: Recognition and Repair of Chemically Heterogeneous Structures at DNA Ends. Environmental and Molecular Mutagenesis, 56(1), 1-21 (2015)
- [66] J. L. Parsons, Dianova, II and G. L. Dianov: APE1 is the major 3’-phosphoglycolate activity in human cell extracts. Nucleic Acids Res, 32(12), 3531-6 (2004)
- [67] T. Izumi, T. K. Hazra, I. Boldogh, A. E. Tomkinson, M. S. Park, S. Ikeda and S. Mitra: Requirement for human AP endonuclease 1 for repair of 3’-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis, 21(7), 1329-34 (2000)
- [68] J. L. Parsons, Dianova, II and G. L. Dianov: APE1-dependent repair of DNA single-strand breaks containing 3’-end 8-oxoguanine. Nucleic Acids Res, 33(7), 2204-9 (2005)
- [69] A. Mazouzi, A. Vigouroux, B. Aikeshev, P. J. Brooks, M. K. Saparbaev, S. Morera and A. A. Ishchenko: Insight into mechanisms of 3’-5’ exonuclease activity and removal of bulky 8,5’-cyclopurine adducts by apurinic/apyrimidinic endonucleases. Proc Natl Acad Sci U S A, 110(33), E3071-80 (2013)
- [70] K. M. Chou and Y. C. Cheng: An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3’ mispaired DNA. Nature, 415(6872), 655-9 (2002)
- [71] A. A. Ishchenko, X. Yang, D. Ramotar and M. Saparbaev: The 3’->5’ exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae. Mol Cell Biol, 25(15), 6380-90 (2005)
- [72] Y. Matsumoto and K. Kim: Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science, 269(5224), 699-702 (1995)
- [73] C. E. Piersen, R. Prasad, S. H. Wilson and R. S. Lloyd: Evidence for an imino intermediate in the DNA polymerase beta deoxyribose phosphate excision reaction. J Biol Chem, 271(30), 17811-5 (1996)
- [74] M. R. Sawaya, R. Prasad, S. H. Wilson, J. Kraut and H. Pelletier: Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36(37), 11205-15 (1997)
- [75] R. Prasad, W. A. Beard, J. Y. Chyan, M. W. Maciejewski, G. P. Mullen and S. H. Wilson: Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase beta as revealed by site-directed mutagenesis. DNA binding and 5’-deoxyribose phosphate lyase activities. J Biol Chem, 273(18), 11121-6 (1998)
- [76] L. J. Deterding, R. Prasad, G. P. Mullen, S. H. Wilson and K. B. Tomer: Mapping of the 5’-2-deoxyribose-5-phosphate lyase active site in DNA polymerase beta by mass spectrometry. J Biol Chem, 275(14), 10463-71 (2000)
- [77] R. Prasad, V. K. Batra, X. P. Yang, J. M. Krahn, L. C. Pedersen, W. A. Beard and S. H. Wilson: Structural insight into the DNA polymerase beta deoxyribose phosphate lyase mechanism. DNA Repair (Amst), 4(12), 1347-57 (2005)
- [78] M. Caglayan, V. K. Batra, A. Sassa, R. Prasad and S. H. Wilson: Role of polymerase beta in complementing aprataxin deficiency during abasic-site base excision repair. Nat Struct Mol Biol, 21(5), 497-9 (2014)
- [79] W. A. Beard and S. H. Wilson: Structure and mechanism of DNA polymerase Beta. Chem Rev, 106(2), 361-82 (2006)
- [80] B. D. Freudenthal, W. A. Beard, D. D. Shock and S. H. Wilson: Observing a DNA polymerase choose right from wrong. Cell, 154(1), 157-68 (2013)
- [81] L. Perera, B. D. Freudenthal, W. A. Beard, D. D. Shock, L. G. Pedersen and S. H. Wilson: Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Proc Natl Acad Sci U S A, 112(38), E5228-36 (2015)
- [82] B. D. Freudenthal, W. A. Beard, L. Perera, D. D. Shock, T. Kim, T. Schlick and S. H. Wilson: Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature, 517(7536), 635-9 (2015)
- [83] V. K. Batra, D. D. Shock, W. A. Beard, C. E. McKenna and S. H. Wilson: Binary complex crystal structure of DNA polymerase beta reveals multiple conformations of the templating 8-oxoguanine lesion. Proc Natl Acad Sci U S A, 109(1), 113-8 (2012)
- [84] B. D. Freudenthal, W. A. Beard and S. H. Wilson: DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Nucleic Acids Res, 41(3), 1848-58 (2013)
- [85] E. Fouquerel, D. Parikh and P. Opresko: DNA damage processing at telomeres: The ends justify the means. DNA Repair, 44, 159-168 (2016)
- [86] T. Helleday, E. Petermann, C. Lundin, B. Hodgson and R. A. Sharma: DNA repair pathways as targets for cancer therapy. Nat Rev Cancer, 8(3), 193-204 (2008)
- [87] S. G. Rudd, N. C. Valerie and T. Helleday: Pathways controlling dNTP pools to maintain genome stability. DNA Repair (Amst), 44, 193-204 (2016)
- [88] M. Caglayan and S. H. Wilson: Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair. DNA Repair (Amst), 35, 85-9 (2015)
- [89] U. Rass, I. Ahel and S. C. West: Actions of aprataxin in multiple DNA repair pathways. J Biol Chem, 282(13), 9469-74 (2007)
- [90] J. J. Reynolds, S. F. El-Khamisy, S. Katyal, P. Clements, P. J. McKinnon and K. W. Caldecott: Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1. Mol Cell Biol, 29(5), 1354-62 (2009)
- [91] R. Scott Williams: 108 Aprataxin and the threat of RNA contamination in DNA. J Biomol Struct Dyn, 33 Suppl 1, 68 (2015)
- [92] M. Weinfeld, R. S. Mani, I. Abdou, R. D. Aceytuno and J. N. Glover: Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci, 36(5), 262-71 (2011)
- [93] A. J. Doherty and S. P. Jackson: DNA repair: how Ku makes ends meet. Curr Biol, 11(22), R920-4 (2001)
- [94] S. F. El-Khamisy and K. W. Caldecott: TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis, 21(4), 219-24 (2006)
- [95] D. D’Amours, S. Desnoyers, I. D’Silva and G. G. Poirier: Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J, 342 ( Pt 2), 249-68 (1999)
- [96] F. Dantzer, G. de la Rubia, J. M. D. Murcia, Z. Hostomsky, G. de Murcia and V. Schreiber: Base excision repair is impaired in mammalian cells lacking poly(ADP-ribose) polymerase-1. Biochemistry, 39(25), 7559-7569 (2000)
- [97] V. Schreiber, J. C. Ame, P. Dolle, I. Schultz, B. Rinaldi, V. Fraulob, J. Menissier-de Murcia and G. de Murcia: Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. Journal of Biological Chemistry, 277(25), 23028-23036 (2002)
- [98] O. I. Lavrik, R. Prasad, R. W. Sobol, J. K. Horton, E. J. Ackermann and S. H. Wilson: Photoaffinity labeling of mouse fibroblast enzymes by a base excision repair intermediate - Evidence for the role of poly(ADP-ribose) polymerase-1 in DNA repair. Journal of Biological Chemistry, 276(27), 25541-25548 (2001)
- [99] M. V. Sukhanova, S. N. Khodyreva, N. A. Lebedeva, R. Prasad, S. H. Wilson and O. I. Lavrik: Human base excision repair enzymes apurinic/apyrimidinic endonuclease1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity. Nucleic Acids Research, 33(4), 1222-1229 (2005)
- [100] M. M. Kutuzov, S. N. Khodyreva, J. C. Ame, E. S. Ilina, M. V. Sukhanova, V. Schreiber and O. I. Lavrik: Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie, 95(6), 1208-1215 (2013)
- [101] C. A. Realini and F. R. Althaus: Histone shuttling by poly(ADP-ribosylation). J Biol Chem, 267(26), 18858-65 (1992)
- [102] N. Ogata, K. Ueda, M. Kawaichi and O. Hayaishi: Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J Biol Chem, 256(9), 4135-7 (1981)
- [103] A. Huletsky, G. de Murcia, S. Muller, M. Hengartner, L. Menard, D. Lamarre and G. G. Poirier: The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin. A role of poly(ADP-ribosyl)ation on core nucleosome structure. J Biol Chem, 264(15), 8878-86 (1989)
- [104] R. Prasad, N. Dyrkheeva, J. Williams and S. H. Wilson: Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair. Plos One, 10(5) (2015)
- [105] P. Reynolds, S. Cooper, M. Lomax and P. O’Neill: Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res, 43(8), 4028-38 (2015)
- [106] K. W. Caldecott: Single-strand break repair and genetic disease. Nat Rev Genet, 9(8), 619-31 (2008)
- [107] P. T. Beernink, M. Hwang, M. Ramirez, M. B. Murphy, S. A. Doyle and M. P. Thelen: Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein. J Biol Chem, 280(34), 30206-13 (2005)
- [108] A. Hanssen-Bauer, K. Solvang-Garten, K. M. Gilljam, K. Torseth, D. M. Wilson, M. Akbari and M. Otterlei: The region of XRCC1 which harbours the three most common nonsynonymous polymorphic variants, is essential for the scaffolding function of XRCC1. DNA Repair, 11(4), 357-366 (2012)
- [109] A. Marintchev, M. A. Mullen, M. W. Maciejewski, B. Pan, M. R. Gryk and G. P. Mullen: Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat Struct Biol, 6(9), 884-93 (1999)
- [110] M. J. Cuneo and R. E. London: Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity. Proc Natl Acad Sci U S A, 107(15), 6805-10 (2010)
- [111] R. M. Taylor, B. Wickstead, S. Cronin and K. W. Caldecott: Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1. Curr Biol, 8(15), 877-80 (1998)
- [112] M. J. Cuneo, S. A. Gabel, J. M. Krahn, M. A. Ricker and R. E. London: The structural basis for partitioning of the XRCC1/DNA ligase III-alpha BRCT-mediated dimer complexes. Nucleic Acids Research, 39(17), 7816-7827 (2011)
- [113] S. H. Wilson: Mammalian base excision repair and DNA polymerase beta. Mutat Res, 407(3), 203-15 (1998)
- [114] S. H. Wilson and T. A. Kunkel: Passing the baton in base excision repair. Nat Struct Biol, 7(3), 176-8 (2000)
- [115] R. Prasad, W. A. Beard, V. K. Batra, Y. Liu, D. D. Shock and S. H. Wilson: A review of recent experiments on step-to-step “hand-off” of the DNA intermediates in mammalian base excision repair pathways. Mol Biol (Mosk), 45(4), 586-600 (2011)
- [116] R. Prasad, D. D. Shock, W. A. Beard and S. H. Wilson: Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem, 285(52), 40479-88 (2010)
- [117] H. Yang, W. M. Clendenin, D. Wong, B. Demple, M. M. Slupska, J. H. Chiang and J. H. Miller: Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res, 29(3), 743-52 (2001)
- [118] P. J. Luncsford, B. A. Manvilla, D. N. Patterson, S. S. Malik, J. Jin, B. J. Hwang, R. Gunther, S. Kalvakolanu, L. J. Lipinski, W. Yuan, W. Lu, A. C. Drohat, A. L. Lu and E. A. Toth: Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions. DNA Repair (Amst), 12(12), 1043-52 (2013)
- [119] A. A. Kuznetsova, N. A. Kuznetsov, A. A. Ishchenko, M. K. Saparbaev and O. S. Fedorova: Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Biochim Biophys Acta, 1840(10), 3042-51 (2014)
- [120] N. A. Moor, I. A. Vasil’eva, R. O. Anarbaev, A. A. Antson and O. I. Lavrik: Quantitative characterization of protein-protein complexes involved in base excision DNA repair. Nucleic Acids Res, 43(12), 6009-22 (2015)
- [121] B. M. Brenerman, J. L. Illuzzi and D. M. Wilson, 3rd: Base excision repair capacity in informing healthspan. Carcinogenesis, 35(12), 2643-52 (2014)
- [122] D. Cortazar, C. Kunz, J. Selfridge, T. Lettieri, Y. Saito, E. MacDougall, A. Wirz, D. Schuermann, A. L. Jacobs, F. Siegrist, R. Steinacher, J. Jiricny, A. Bird and P. Schar: Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature, 470(7334), 419-23 (2011)
- [123] Z. Li, T.-P. Gu, A. R. Weber, J.-Z. Shen, B.-Z. Li, Z.-G. Xie, R. Yin, F. Guo, X. Liu, F. Tang, H. Wang, P. Schär and G.-L. Xu: Gadd45a promotes DNA demethylation through TDG. Nucleic Acids Research, 43(8), 3986-3997 (2015)
- [124] L. B. Meira, J. M. Bugni, S. L. Green, C.-W. Lee, B. Pang, D. Borenshtein, B. H. Rickman, A. B. Rogers, C. A. Moroski-Erkul, J. L. McFaline, D. B. Schauer, P. C. Dedon, J. G. Fox and L. D. Samson: DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. The Journal of Clinical Investigation, 118(7), 2516-2525 (2008)
- [125] M. T. Russo, G. De Luca, P. Degan, E. Parlanti, E. Dogliotti, D. E. Barnes, T. Lindahl, H. Yang, J. H. Miller and M. Bignami: Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases. Cancer Res, 64(13), 4411-4 (2004)
- [126] L. B. Meira, S. Devaraj, G. E. Kisby, D. K. Burns, R. L. Daniel, R. E. Hammer, S. Grundy, I. Jialal and E. C. Friedberg: Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res, 61(14), 5552-7 (2001)
- [127] A. Unnikrishnan, J. J. Raffoul, H. V. Patel, T. M. Prychitko, N. Anyangwe, L. B. Meira, E. C. Friedberg, D. C. Cabelof and A. R. Heydari: Oxidative stress alters base excision repair pathway and increases apoptotic response in apurinic/apyrimidinic endonuclease 1/redox factor-1 haploinsufficient mice. Free Radic Biol Med, 46(11), 1488-99 (2009)
- [128] A. G. Senejani, S. Dalal, Y. Liu, T. P. Nottoli, J. M. McGrath, C. S. Clairmont and J. B. Sweasy: Y265C DNA polymerase beta knockin mice survive past birth and accumulate base excision repair intermediate substrates. Proc Natl Acad Sci U S A, 109(17), 6632-7 (2012)
- [129] A. A. Nemec, K. A. Donigan, D. L. Murphy, J. Jaeger and J. B. Sweasy: Colon cancer-associated DNA polymerase beta variant induces genomic instability and cellular transformation. J Biol Chem, 287(28), 23840-9 (2012)
- [130] R. S. Tebbs, M. L. Flannery, J. J. Meneses, A. Hartmann, J. D. Tucker, L. H. Thompson, J. E. Cleaver and R. A. Pedersen: Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol, 208(2), 513-29 (1999)
- [131] D. R. McNeill, P. C. Lin, M. G. Miller, P. J. Pistell, N. C. de Souza-Pinto, K. W. Fishbein, R. G. Spencer, Y. Liu, C. Pettan-Brewer, W. C. Ladiges and D. M. Wilson, 3rd: XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility. Nucleic Acids Res, 39(18), 7992-8004 (2011)
- [132] M. Belanger, I. Allaman and P. J. Magistretti: Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab, 14(6), 724-38 (2011)
- [133] A. Sliwinska, D. Kwiatkowski, P. Czarny, M. Toma, P. Wigner, J. Drzewoski, K. Fabianowska-Majewska, J. Szemraj, M. Maes, P. Galecki and T. Sliwinski: The levels of 7,8-dihydrodeoxyguanosine (8-oxoG) and 8-oxoguanine DNA glycosylase 1 (OGG1) - A potential diagnostic biomarkers of Alzheimer’s disease. J Neurol Sci, 368, 155-9 (2016)
- [134] C. Shao, S. Xiong, G. M. Li, L. Gu, G. Mao, W. R. Markesbery and M. A. Lovell: Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer’s disease brain. Free Radic Biol Med, 45(6), 813-9 (2008)
- [135] L. Weissman, D. G. Jo, M. M. Sorensen, N. C. de Souza-Pinto, W. R. Markesbery, M. P. Mattson and V. A. Bohr: Defective DNA base excision repair in brain from individuals with Alzheimer’s disease and amnestic mild cognitive impairment. Nucleic Acids Res, 35(16), 5545-55 (2007)
- [136] V. Davydov, L. A. Hansen and D. A. Shackelford: Is DNA repair compromised in Alzheimer’s disease? Neurobiol Aging, 24(7), 953-68 (2003)
- [137] P. Sykora, M. Misiak, Y. Wang, S. Ghosh, G. S. Leandro, D. Liu, J. Tian, B. A. Baptiste, W. N. Cong, B. M. Brenerman, E. Fang, K. G. Becker, R. J. Hamilton, S. Chigurupati, Y. Zhang, J. M. Egan, D. L. Croteau, D. M. Wilson, 3rd, M. P. Mattson and V. A. Bohr: DNA polymerase beta deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res, 43(2), 943-59 (2015)
- [138] S. Martire, L. Mosca and M. d’Erme: PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev, 146-148, 53-64 (2015)
- [139] R. Sharifi, R. Morra, C. D. Appel, M. Tallis, B. Chioza, G. Jankevicius, M. A. Simpson, I. Matic, E. Ozkan, B. Golia, M. J. Schellenberg, R. Weston, J. G. Williams, M. N. Rossi, H. Galehdari, J. Krahn, A. Wan, R. C. Trembath, A. H. Crosby, D. Ahel, R. Hay, A. G. Ladurner, G. Timinszky, R. S. Williams and I. Ahel: Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. Embo j, 32(9), 1225-37 (2013)
- [140] T. M. Kauppinen and R. A. Swanson: The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience, 145(4), 1267-72 (2007)
- [141] P. Pacher and C. Szabo: Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal, 7(11-12), 1568-80 (2005)
- [142] A. Peralta-Leal, J. M. Rodriguez-Vargas, R. Aguilar-Quesada, M. I. Rodriguez, J. L. Linares, M. R. de Almodovar and F. J. Oliver: PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med, 47(1), 13-26 (2009)
- [143] R. Strosznajder, R. Gadamski and M. Walski: Inhibition of poly(ADP-ribose) polymerase activity protects hippocampal cells against morphological and ultrastructural alteration evoked by ischemia-reperfusion injury. Folia Neuropathol, 43(3), 156-65 (2005)
- [144] I. Tempera, Z. Deng, C. Atanasiu, C. J. Chen, M. D’Erme and P. M. Lieberman: Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1. J Virol, 84(10), 4988-97 (2010)
- [145] M. Y. Kim, T. Zhang and W. L. Kraus: Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev, 19(17), 1951-67 (2005)
- [146] N. Noren Hooten, M. Fitzpatrick, K. Kompaniez, K. D. Jacob, B. R. Moore, J. Nagle, J. Barnes, A. Lohani and M. K. Evans: Coordination of DNA repair by NEIL1 and PARP-1: a possible link to aging. Aging (Albany NY), 4(10), 674-85 (2012)
- [147] S. Martire, A. Fuso, L. Mosca, E. Forte, V. Correani, M. Fontana, S. Scarpa, B. Maras and M. d’Erme: Bioenergetic Impairment in Animal and Cellular Models of Alzheimer’s Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions. J Alzheimers Dis, 54(1), 307-24 (2016)
- [148] T. Helleday: PARP inhibitor receives FDA breakthrough therapy designation in castration resistant prostate cancer: beyond germline BRCA mutations. Annals of Oncology, 27(5), 755-757 (2016)
- [149] I. V. Kovtun, Y. Liu, M. Bjoras, A. Klungland, S. H. Wilson and C. T. McMurray: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature, 447(7143), 447-52 (2007)
- [150] Y. Liu, R. Prasad, W. A. Beard, E. W. Hou, J. K. Horton, C. T. McMurray and S. H. Wilson: Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. J Biol Chem, 284(41), 28352-66 (2009)
- [151] X. N. Zhao and K. Usdin: The Repeat Expansion Diseases: The dark side of DNA repair. DNA Repair (Amst), 32, 96-105 (2015)
- [152] X. Ba, L. Aguilera-Aguirre, Q. T. Rashid, A. Bacsi, Z. Radak, S. Sur, K. Hosoki, M. L. Hegde and I. Boldogh: The role of 8-oxoguanine DNA glycosylase-1 in inflammation. Int J Mol Sci, 15(9), 16975-97 (2014)
- [153] K. K. Belanger, B. T. Ameredes, I. Boldogh and L. Aguilera-Aguirre: The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma. Mediators of Inflammation, 2016, 3762561 (2016)
- [154] K. Tsuruya, M. Furuichi, Y. Tominaga, M. Shinozaki, M. Tokumoto, T. Yoshimitsu, K. Fukuda, H. Kanai, H. Hirakata, M. Iida and Y. Nakabeppu: Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGG1 expression during ischemia-reperfusion injury in the rat kidney. DNA Repair (Amst), 2(2), 211-29 (2003)
- [155] M. Akbari, M. Morevati, D. Croteau and V. A. Bohr: The role of DNA base excision repair in brain homeostasis and disease. DNA Repair (Amst), 32, 172-9 (2015)
- [156] M. Poletto, A. J. Legrand, S. C. Fletcher and G. L. Dianov: p53 coordinates base excision repair to prevent genomic instability. Nucleic Acids Res, 44(7), 3165-75 (2016)
- [157] D. M. Wilson, 3rd, D. Kim, B. R. Berquist and A. J. Sigurdson: Variation in base excision repair capacity. Mutat Res, 711(1-2), 100-12 (2011)
- [158] H. A. Galick, S. Kathe, M. Liu, S. Robey-Bond, D. Kidane, S. S. Wallace and J. B. Sweasy: Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation. Proc Natl Acad Sci U S A, 110(35), 14314-9 (2013)
- [159] T. Ozaki and A. Nakagawara: Role of p53 in Cell Death and Human Cancers. Cancers, 3(1), 994-1013 (2011)
- [160] S. Sengupta, A. K. Mantha, H. Song, S. Roychoudhury, S. Nath, S. Ray and K. K. Bhakat: Elevated level of acetylation of APE1 in tumor cells modulates DNA damage repair. Oncotarget (2016)
- [161] M. Z. Hadi, M. A. Coleman, K. Fidelis, H. W. Mohrenweiser and D. M. Wilson, 3rd: Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res, 28(20), 3871-9 (2000)
- [162] L. Lirussi, G. Antoniali, C. D’Ambrosio, A. Scaloni, H. Nilsen and G. Tell: APE1 polymorphic variants cause persistent genomic stress and affect cancer cell proliferation. Oncotarget, 7(18), 26293-306 (2016)
- [163] D. Gu, M. Wang, M. Wang, Z. Zhang and J. Chen: The DNA repair gene APE1 T1349G polymorphism and cancer risk: a meta-analysis of 27 case-control studies. Mutagenesis, 24(6), 507-12 (2009)
- [164] J. L. Illuzzi, N. A. Harris, B. A. Manvilla, D. Kim, M. Li, A. C. Drohat and D. M. Wilson, 3rd: Functional assessment of population and tumor-associated APE1 protein variants. PLoS One, 8(6), e65922 (2013)
- [165] N. J. Curtin: DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer, 12(12), 801-17 (2012)
- [166] K. A. Donigan, K.-w. Sun, A. A. Nemec, D. L. Murphy, X. Cong, V. Northrup, D. Zelterman and J. B. Sweasy: Human POLB Gene Is Mutated in High Percentage of Colorectal Tumors. The Journal of Biological Chemistry, 287(28), 23830-23839 (2012)
- [167] T. Lang, M. Maitra, D. Starcevic, S. X. Li and J. B. Sweasy: A DNA polymerase beta mutant from colon cancer cells induces mutations. Proc Natl Acad Sci U S A, 101(16), 6074-9 (2004)
- [168] J. Yamtich, A. A. Nemec, A. Keh and J. B. Sweasy: A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation. PLoS Genet, 8(11), e1003052 (2012)
- [169] E. J. Duell, R. C. Millikan, G. S. Pittman, S. Winkel, R. M. Lunn, C. K. Tse, A. Eaton, H. W. Mohrenweiser, B. Newman and D. A. Bell: Polymorphisms in the DNA repair gene XRCC1 and breast cancer. Cancer Epidemiol Biomarkers Prev, 10(3), 217-22 (2001)
- [170] L. J. Wang, H. T. Wang and X. X. Wang: Association of XRCC1 gene polymorphisms and pancreatic cancer risk in a Chinese population. Genet Mol Res, 15(2) (2016)
- [171] A. Sanjari Moghaddam, M. Nazarzadeh, R. Noroozi, H. Darvish and A. Mosavi Jarrahi: XRCC1 and OGG1 Gene Polymorphisms and Breast Cancer: A Systematic Review of Literature. Iran J Cancer Prev, 9(1), e3467 (2016)
- [172] A. Campalans, E. Moritz, T. Kortulewski, D. Biard, B. Epe and J. P. Radicella: Interaction with OGG1 is required for efficient recruitment of XRCC1 to base excision repair and maintenance of genetic stability after exposure to oxidative stress. Mol Cell Biol, 35(9), 1648-58 (2015)
- [173] W.-X. Zong, D. Ditsworth, D. E. Bauer, Z.-Q. Wang and C. B. Thompson: Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes & Development, 18(11), 1272-1282 (2004)Cited within: 0Google Scholar
- [174] T. Xu, Y. Nie, J. Bai, L. Li, B. Yang, G. Zheng, J. Zhang, J. Yu, X. Cheng, J. Jiao and H. Jing: Suppression of human 8-oxoguanine DNA glycosylase (OGG1) augments ultrasound-induced apoptosis in cervical cancer cells. Ultrasonics, 72, 1-14 (2016)
- [175] G. E. Konecny and R. S. Kristeleit: PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Br J Cancer (2016)
- [176] N. J. Curtin: Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors. Drug Discovery Today: Disease Models, 9(2), e51-e58 (2012)
- [177] T. Helleday: DNA repair as treatment target. Eur J Cancer, 47 Suppl 3, S333-5 (2011)
- [178] J. S. Brown, S. B. Kaye and T. A. Yap: PARP inhibitors: the race is on. Br J Cancer, 114(7), 713-715 (2016)
- [179] A. Weaver and E. Yang: Beyond DNA Repair: Additional Functions of PARP-1 in Cancer. Frontiers in Oncology, 3(290) (2013)
- [180] H. Farmer, N. McCabe, C. J. Lord, A. N. J. Tutt, D. A. Johnson, T. B. Richardson, M. Santarosa, K. J. Dillon, I. Hickson, C. Knights, N. M. B. Martin, S. P. Jackson, G. C. M. Smith and A. Ashworth: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917-921 (2005)
- [181] V. A. Roberts, M. E. Pique, S. Hsu, S. Li, G. Slupphaug, R. P. Rambo, J. W. Jamison, T. Liu, J. H. Lee, J. A. Tainer, L. F. Ten Eyck and V. L. Woods, Jr.: Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Nucleic Acids Res, 40(13), 6070-81 (2012)
- [182] A. Darwanto, J. A. Theruvathu, J. L. Sowers, D. K. Rogstad, T. Pascal, W. Goddard, 3rd and L. C. Sowers: Mechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase. J Biol Chem, 284(23), 15835-46 (2009)
- [183] A. Maiti, M. T. Morgan and A. C. Drohat: Role of two strictly conserved residues in nucleotide flipping and N-glycosylic bond cleavage by human thymine DNA glycosylase. J Biol Chem, 284(52), 36680-8 (2009)
- [184] S. Moréra, I. Grin, A. Vigouroux, S. Couvé, V. Henriot, M. Saparbaev and A. A. Ishchenko: Biochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA. Nucleic Acids Research, 40(19), 9917-9926 (2012)
- [185] M. V. Lukina, A. V. Popov, V. V. Koval, Y. N. Vorobjev, O. S. Fedorova and D. O. Zharkov: DNA Damage Processing by Human 8-Oxoguanine-DNA Glycosylase Mutants with the Occluded Active Site. The Journal of Biological Chemistry, 288(40), 28936-28947 (2013)
- [186] S. D. Williams and S. S. David: Evidence that MutY is a monofunctional glycosylase capable of forming a covalent Schiff base intermediate with substrate DNA. Nucleic Acids Res, 26(22), 5123-33 (1998)
- [187] J. C. Fromme, A. Banerjee, S. J. Huang and G. L. Verdine: Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase. Nature, 427(6975), 652-6 (2004)
- [188] A. Prasad, S. S. Wallace and D. S. Pederson: Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol Cell Biol, 27(24), 8442-53 (2007)
- [189] J. C. Fromme and G. L. Verdine: Structure of a trapped endonuclease III-DNA covalent intermediate. Embo j, 22(13), 3461-71 (2003)
- [190] A. Y. Lau, M. D. Wyatt, B. J. Glassner, L. D. Samson and T. Ellenberger: Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13573-13578 (2000)
- [191] C. Y. Lee, J. C. Delaney, M. Kartalou, G. M. Lingaraju, A. Maor-Shoshani, J. M. Essigmann and L. D. Samson: Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG). Biochemistry, 48(9), 1850-61 (2009)
- [192] S. Z. Krokeide, J. K. Laerdahl, M. Salah, L. Luna, F. H. Cederkvist, A. M. Fleming, C. J. Burrows, B. Dalhus and M. Bjoras: Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. DNA Repair (Amst), 12(12), 1159-64 (2013)
- [193] S. Doublié, V. Bandaru, J. P. Bond and S. S. Wallace: The crystal structure of human endonuclease VIII-like 1 (NEIL1) reveals a zincless finger motif required for glycosylase activity. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10284-10289 (2004)
- [194] T. K. Hazra, T. Izumi, I. Boldogh, B. Imhoff, Y. W. Kow, P. Jaruga, M. Dizdaroglu and S. Mitra: Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3523-3528 (2002)
- [195] A. Prakash, B. E. Eckenroth, A. M. Averill, K. Imamura, S. S. Wallace and S. Doublié: Structural Investigation of a Viral Ortholog of Human NEIL2/3 DNA Glycosylases. DNA repair, 12(12) (2013)
- [196] M. Liu, K. Imamura, A. M. Averill, S. S. Wallace and S. Doublié: Structural characterization of a mouse ortholog of human NEIL3 with a marked preference for single-stranded DNA. Structure (London, England : 1993), 21(2), 10.1.0.1.6/j.str.2012.1.2.0.0.8. (2013)
- [197] S. Tagami, S. Sekine, L. Minakhin, D. Esyunina, R. Akasaka, M. Shirouzu, A. Kulbachinskiy, K. Severinov and S. Yokoyama: Structural basis for promoter specificity switching of RNA polymerase by a phage factor. Genes Dev, 28(5), 521-31 (2014)
