Information
References
Contents
Download
[1]N Roohani, R Hurrell, R Kelishadi, and R Schulin: Zinc and its importance for human health: An integrative review. J Res Med Sci. 18(2) 144-57 (2013)
[2]AS Prasad: Zinc: an overview. Nutrition. 11(1 Suppl) 93-9 (1995)
[3]AS Prasad: Zinc in human health: effect of zinc on immune cells. Mol Med. 14(5-6) 353-7 (2008)
[4]HH Sandstead, CJ Frederickson, and JG Penland: History of zinc as related to brain function. J Nutr. 130(2S Suppl) 496S-502S (2000)
[5]SL Kelleher, NH McCormick, V Velasquez, and V Lopez: Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr. 2(2) 101-11 (2011)
[6]T Kambe, BP Weaver, and GK Andrews: The genetics of essential metal homeostasis during development. Genesis. 46(4) 214-28 (2008)
[7]J Waters: On the Efficacy of Oxide of Zinc in Laryngismus Stridulus. Prov Med Surg J 2(33) 125-7 (1841)
[8]DG Barceloux: Zinc. J. Toxicol. Clin. Toxicol. 37(2) 279-92 (1999)
[9]BL Vallee: Zinc and carbonic anhydrase content of red cells in normals and in pernicious anemia. J Clin Invest. 27(4) 559 (1948)
[10]BL Vallee and MD Altschule: Zinc in the mammalian organism, with particular reference to carbonic anhydrase. Physiol Rev. 29(4) 370-88 (1949)
[11]W Maret: Zinc biochemistry, physiology, and homeostasis – recent insights and current trends. BioMetals. 14(3-4) 187-190 (2001)
[12]BL Vallee and KH Falchuk: The biochemical basis of zinc physiology. Physiol-Rev. 73(1) 79-118 (1993)
[13]W Maret: Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 4(1) 82-91 (2013)
[14]S Yamasaki, K Sakata-Sogawa, A Hasegawa, T Suzuki, K Kabu, E Sato, T Kurosaki, S Yamashita, M Tokunaga, K Nishida, and T Hirano: Zinc is a novel intracellular second messenger. J. Cell Biol. 177(4) 637-45 (2007)
[15]W Maret: Zinc in the biosciences. Metallomics. 6(7) 1174 (2014)
[16]T Fukada, S Yamasaki, K Nishida, M Murakami, and T Hirano: Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem. 16(7) 1123-34 (2011)
[17]M Hershfinkel. Zinc, a Dynamic Signaling Molecule, In: Molecular Biology of Metal Homeostasis and Detoxification, Eds: M Tamas and E Martinoia, Berlin Heidelberg (2006)
[18]Y Zhang, H Wang, J Li, DA Jimenez, ES Levitan, E Aizenman, and PA Rosenberg: Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 24(47) 10616-27 (2004)
[19]PD Zalewski, IJ Forbes, and WH Betts: Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem. J. 296(Pt 2) 403-8 (1993)
[20]I Sekler, SL Sensi, M Hershfinkel, and WF Silverman: Mechanism and regulation of cellular zinc transport. Mol. Med. 13(7-8) 337-43 (2007)
[21]A Krezel and W Maret: Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem. 11(8) 1049-62 (2006)
[22]M Vasak: Advances in metallothionein structure and functions. J Trace Elem Med Biol. 19(1) 13-7 (2005)
[23]JP Liuzzi and RJ Cousins: Mammalian zinc transporters. Annu Rev Nutr. 24 151-72 (2004)
[24]DJ Eide: Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 1763(7) 711-22 (2006)
[25]RA Colvin, WR Holmes, CP Fontaine, and W Maret: Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics. 2(5) 306-17 (2010)
[26]CJ Frederickson, BA Rampy, S Reamy Rampy, and GA Howell: Distribution of histochemically reactive zinc in the forebrain of the rat. J. Chem. Neuroanat. 5(6) 521-30 (1992)
[27]CJ Frederickson, J Perez-Clausell, and G Danscher: Zinc-containing 7S-NGF complex. Evidence from zinc histochemistry for localization in salivary secretory granules. J Histochem Cytochem. 35(5) 579-83 (1987)
[28]CJ Frederickson and G Danscher: Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res. 83 71-84 (1990)
[29]G Danscher and M Stoltenberg: Zinc-enriched neurons. J Neurochem. 85(Suppl 2) 10. (2003)
[30]K Ishii, M Sato, M Akita, and H Tomita: Localization of zinc in the rat submandibular gland and the effect of its deficiency on salivary secretion. Ann Otol Rhinol Laryngol. 108(3) 300-8 (1999)
[31]N McCormick, V Velasquez, L Finney, S Vogt, and SL Kelleher: X-ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland. PLoS One. 5(6) e11078 (2010)
[32]H Sharir, A Zinger, A Nevo, I Sekler, and M Hershfinkel: Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem. 285(34) 26097-106 (2010)
[33]W Maret: Zinc coordination environments in proteins determine zinc functions. J. Trace Elem. Med. Biol. 19(1) 7-12 (2005)
[34]W Maret: From the Cover: Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling. Proc Nat Acad Sci USA. 98(22) 12325-7 (2001)
[35]M Hershfinkel, A Moran, N Grossman, and I Sekler: A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Nat Acad Sci USA. 98(20) 11749-54 (2001)
[36]L Cohen, I Sekler, and M Hershfinkel: The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis. 5 e1307 (2014)
[37]T Perez-Rosello, CT Anderson, FJ Schopfer, Y Zhao, D Gilad, SR Salvatore, BA Freeman, M Hershfinkel, E Aizenman, and T Tzounopoulos: Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis. J Neurosci. 33(22) 9259-72 (2013)
[38]E Chorin, O Vinograd, I Fleidervish, D Gilad, S Herrmann, I Sekler, E Aizenman, and M Hershfinkel: Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci. 31(36) 12916-26 (2011)
[39]AM Hosie, EL Dunne, RJ Harvey, and TG Smart: Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci. 6(4) 362-9 (2003)
[40]Y Han and SM Wu: Modulation of glycine receptors in retinal ganglion cells by zinc. Proc. Natl. Acad. Sci. USA. 96(6) 3234-8 (1999)
[41]JW Lynch, P Jacques, KD Pierce, and PR Schofield: Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways. J Neurochem. 71(5) 2159-68 (1998)
[42]P Paoletti, P Ascher, and J Neyton: High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci. 17(15) 5711-25. (1997)
[43]GA Herin and E Aizenman: Amino terminal domain regulation of NMDA receptor function. Eur J Pharmacol. 500(1-3) 101-11 (2004)
[44]D Gilad, S Shorer, M Ketzef, A Friedman, I Sekler, E Aizenman, and M Hershfinkel: Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis, 81 4-13 (2015)
[45]A Gore, A Moran, M Hershfinkel, and I Sekler: Inhibitory mechanism of store-operated Ca2+ channels by zinc. J Biol Chem. 279(12) 11106-11 (2004)
[46]SS Wildman, BF King, and G Burnstock: Modulatory activity of extracellular H+ and Zn2+ on ATP-responses at rP2X1 and rP2X3 receptors. Br. J. Pharmacol. 128(2) 486-92 (1999)
[47]C Acuna-Castillo, B Morales, and JP Huidobro-Toro: Zinc and copper modulate differentially the P2X4 receptor. J Neurochem. 74(4) 1529-37 (2000)
[48]S Kim, Y Jung, D Kim, H Koh, and J Chung: Extracellular zinc activates p70 S6 kinase through the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem. 275(34) 25979-84 (2000)
[49]SY Oh, KS Park, JA Kim, and KY Choi: Differential modulation of zinc-stimulated p21(Cip/WAF1) and cyclin D1 induction by inhibition of PI3 kinase in HT-29 colorectal cancer cells. Exp Mol Med. 34(1) 27-31. (2002)
[50]Y Ho, R Samarasinghe, ME Knoch, M Lewis, E Aizenman, and DB DeFranco: Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol. Pharmacol. 74(4) 1141-51 (2008)
[51]Y Zhang, E Aizenman, DB DeFranco, and PA Rosenberg: Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med. 13(7-8) 350-5 (2007)
[52]H Azriel-Tamir, H Sharir, B Schwartz, and M Hershfinkel: Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem. 279(50) 51804-16 (2004)
[53]H Asraf, S Salomon, A Nevo, I Sekler, D Mayer, and M Hershfinkel: The ZnR/GPR39 Interacts with the CaSR to Enhance Signaling in Prostate and Salivary Epithelia. J Cell Physiol, 229(7) 868-77 (2013)
[54]W Maret: Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling. Proc Nat Acad Sci USA. 98(22) 12325-7 (2001)
[55]J Takasaki, T Saito, M Taniguchi, T Kawasaki, Y Moritani, K Hayashi, and M Kobori: A novel Galphaq/11-selective inhibitor. J. Biol. Chem. 279(46) 47438-45 (2004)
[56]M Taniguchi, K Suzumura, K Nagai, T Kawasaki, J Takasaki, M Sekiguchi, Y Moritani, T Saito, K Hayashi, S Fujita, S Tsukamoto, and K Suzuki: YM-254890 analogues, novel cyclic depsipeptides with Galpha(q/11) inhibitory activity from Chromobacterium sp. QS3666. Bioorg. Med. Chem. 12(12) 3125-33 (2004)
[57]H Sharir and M Hershfinkel: The extracellular zinc-sensing receptor mediates intercellular communication by inducing ATP release. Biochem Biophys Res Commun. 332(3) 845-52 (2005)
[58]N Dubi, L Gheber, D Fishman, I Sekler, and M Hershfinkel: Extracellular zinc and zinc-citrate, acting through a putative zinc-sensing receptor, regulate growth and survival of prostate cancer cells. Carcinogenesis. 29(9) 1692-700 (2008)
[59]B Holst, KL Egerod, C Jin, PS Petersen, MV Ostergaard, J Hald, AM Sprinkel, J Storling, T Mandrup-Poulsen, JJ Holst, P Thams, C Orskov, N Wierup, F Sundler, OD Madsen, and TW Schwartz: G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology. 150(6) 2577-85 (2009)
[60]T Kambe, K Fukue, R Ishida, and S Miyazaki: Overview of Inherited Zinc Deficiency in Infants and Children. J Nutr Sci Vitaminol (Tokyo). 61 Suppl S44-6 (2015)
[61]M Komai, T Goto, H Suzuki, T Takeda, and Y Furukawa: Zinc deficiency and taste dysfunction; contribution of carbonic anhydrase, a zinc-metalloenzyme, to normal taste sensation. Biofactors. 12(1-4) 65-70 (2000)
[62]WH Chappell, LS Steelman, JM Long, RC Kempf, SL Abrams, RA Franklin, J Basecke, F Stivala, M Donia, P Fagone, G Malaponte, MC Mazzarino, F Nicoletti, M Libra, D Maksimovic-Ivanic, S Mijatovic, G Montalto, M Cervello, P Laidler, M Milella, A Tafuri, A Bonati, C Evangelisti, L Cocco, AM Martelli, and JA McCubrey: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2(3) 135-64 (2011)
[63]RS MacDonald: The role of zinc in growth and cell proliferation. J. Nutr. 130(5S Suppl) 1500S-8S (2000)
[64]DW Choi and JY Koh: Zinc and brain injury. Annu. Rev. Neurosci. 21 347-75 (1998)
[65]JH Weiss, SL Sensi, and JY Koh: Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21(10) 395-401 (2000)
[66]SL Sensi, P Paoletti, JY Koh, E Aizenman, AI Bush, and M Hershfinkel: The neurophysiology and pathology of brain zinc. J Neurosci. 31(45) 16076-85 (2011)
[67]AI Bush: Copper, zinc, and the metallobiology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 17(3) 147-50. (2003).
[68]L Besser, E Chorin, I Sekler, WF Silverman, S Atkin, JT Russell, and M Hershfinkel: Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci. 29(9) 2890-901 (2009)
[69]SC Brennan, U Thiem, S Roth, A Aggarwal, IS Fetahu, S Tennakoon, AR Gomes, ML Brandi, F Bruggeman, R Mentaverri, D Riccardi, and E Kallay: Calcium sensing receptor signalling in physiology and cancer. Biochim Biophys Acta, (2012)
[70]EM Brown: The extracellular C2+ sensing receptor.: central mediator of systemic calcium homeostasis [In Process Citation]. Annu Rev Nutr. 20 507-33 (2000)
[71]I Gomes, A Gupta, J Filipovska, HH Szeto, JE Pintar, and LA Devi: A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA. 101(14) 5135-9 (2004)
[72]L Albizu, MN Balestre, C Breton, JP Pin, M Manning, B Mouillac, C Barberis, and T Durroux: Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol. Pharmacol. 70(5) 1783-91 (2006)
[73]MP Grant, A Stepanchick, A Cavanaugh, and GE Breitwieser: Agonist-driven maturation and plasma membrane insertion of calcium-sensing receptors dynamically control signal amplitude. Sci Signal. 4(200) ra78 (2011)
[74]PH McDonald and RJ Lefkowitz: Beta-Arrestins: new roles in regulating heptahelical receptors’ functions. Cell Signal. 13(10) 683-9 (2001)
[75]TA Kohout and RJ Lefkowitz: Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol. Pharmacol. 63(1) 9-18 (2003)
[76]ML Mohan, NT Vasudevan, MK Gupta, EE Martelli, and SV Naga Prasad: G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr Mol Pharmacol, May (2012)
[77]LC Costello, P Feng, B Milon, M Tan, and RB Franklin: Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis. 7(2) 111-7 (2004)
[78]LC Costello and RB Franklin: The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 5(1) 17 (2006)
[79]B Holst, ND Holliday, A Bach, CE Elling, HM Cox, and TW Schwartz: Common structural basis for constitutive activity of the ghrelin receptor family. J. Biol. Chem. 279(51) 53806-17 (2004)
[80]CE Elling, TM Frimurer, LO Gerlach, R Jorgensen, B Holst, and TW Schwartz: Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation. J Biol Chem. 281(25) 17337-46 (2006)
[81]JV Zhang, PG Ren, O Avsian-Kretchmer, CW Luo, R Rauch, C Klein, and AJ Hsueh: Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 310(5750) 996-9 (2005)
[82]B Holst, KL Egerod, E Schild, SP Vickers, S Cheetham, LO Gerlach, L Storjohann, CE Stidsen, R Jones, AG Beck-Sickinger, and TW Schwartz: GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology. 148(1) 13-20 (2007)
[83]E Lauwers, B Landuyt, L Arckens, L Schoofs, and W Luyten: Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochem Biophys Res Commun. 351(1) 21-5 (2006)
[84]S Yasuda, T Miyazaki, K Munechika, M Yamashita, Y Ikeda, and A Kamizono: Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J. Recept. Signal Transduct. Res. 27(4) 235-46 (2007)
[85]L Storjohann, B Holst, and TW Schwartz: Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39. FEBS Lett. 582(17) 2583-8 (2008)
[86]L Cohen, H Asraf, I Sekler, and M Hershfinkel: Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39). J Biol Chem. 287(40) 33339-50 (2012)
[87]T Ganay, H Asraf, E Aizenman, M Bogdanovic, I Sekler, and M Hershfinkel: Regulation of Neuronal pH by the Metabotropic Zinc Receptor mZnR/GPR39. J Neurochem, 135(5) 897-907 (2015)
[88]J Srivastava, DL Barber, and MP Jacobson: Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda). 22 30-9 (2007)
[89]SJ Quinn, M Bai, and EM Brown: pH Sensing by the calcium-sensing receptor. J Biol Chem. 279(36) 37241-9 (2004)
[90]C Levinthal, L Barkdull, P Jacobson, L Storjohann, BC Van Wagenen, TM Stormann, and LG Hammerland: Modulation of group III metabotropic glutamate receptors by hydrogen ions. Pharmacology. 83(2) 88-94 (2009)
[91]M Sharma, K Sahu, A Dube, and PK Gupta: Extracellular pH influences the mode of cell death in human colon adenocarcinoma cells subjected to photodynamic treatment with chlorin p6. J Photochem Photobiol B. 81(2) 107-13 (2005).
[92]M Sandoval, J Burgos, FV Sepulveda, and LP Cid: Extracellular pH in restricted domains as a gating signal for ion channels involved in transepithelial transport. Biol Pharm Bull. 34(6) 803-9 (2011)
[93]DA Perdikis, R Davies, A Zhuravkov, B Brenner, L Etter, and MD Basson: Differential effects of mucosal pH on human (Caco-2) intestinal epithelial cell motility, proliferation, and differentiation. Dig Dis Sci. 43(7) 1537-46 (1998)
[94]P Holzer: Acid sensing by visceral afferent neurones. Acta Physiol (Oxf). 201(1) 63-75 (2011)
[95]P Holzer: Acid-sensitive ion channels and receptors. Handb Exp Pharmacol, (194) 283-332 (2009)
[96]SG Nugent, D Kumar, DS Rampton, and DF Evans: Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 48(4) 571-7 (2001)
[97]J Orlowski and S Grinstein: Na+/H+ exchangers. Compr Physiol. 1(4) 2083-100 (2011)
[98]L Cohen, H Azriel-Tamir, N Arotsker, I Sekler, and M Hershfinkel: Zinc Sensing Receptor Signaling, Mediated by GPR39, Reduces Butyrate-Induced Cell Death in HT29 Colonocytes via Upregulation of Clusterin. PLoS One. 7(4) e35482 (2012)
[99]K Kaila, P Panula, T Karhunen, and E Heinonen: Fall in intracellular pH mediated by GABAA receptors in cultured rat astrocytes. Neurosci Lett. 126(1) 9-12 (1991)
[100]M Chesler: The regulation and modulation of pH in the nervous system. Prog Neurobiol. 34(5) 401-27 (1990)
[101]SF Traynelis and SG Cull-Candy: Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol. 433 727-63 (1991)
[102]J Church, KA Baxter, and JG McLarnon: pH modulation of Ca2+ responses and a Ca2+-dependent K+ channel in cultured rat hippocampal neurones. J Physiol. 511 ( Pt 1) 119-32 (1998)
[103]CJ Dietrich and M Morad: Synaptic acidification enhances GABAA signaling. J Neurosci. 30(47) 16044-52 (2010)
[104]GH Diering, F Mills, SX Bamji, and M Numata: Regulation of dendritic spine growth through activity-dependent recruitment of the brain-enriched Na(+)/H(+) exchanger NHE5. Mol Biol Cell. 22(13) 2246-57 (2011)
[105]N Manhas, Y Shi, J Taunton, and D Sun: p90 activation contributes to cerebral ischemic damage via phosphorylation of Na+/H+ exchanger isoform 1. J Neurochem. 114(5) 1476-86 (2010)
[106]Y Wang, J Luo, X Chen, H Chen, SW Cramer, and D Sun: Gene inactivation of Na+/H+ exchanger isoform 1 attenuates apoptosis and mitochondrial damage following transient focal cerebral ischemia. Eur J Neurosci. 28(1) 51-61 (2008)
[107]TI Lam, AM Brennan-Minnella, SJ Won, Y Shen, C Hefner, Y Shi, D Sun, and RA Swanson: Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase. Proc Natl Acad Sci U S A. 110(46) E4362-8 (2013)
[108]JP Hachem, M Behne, I Aronchik, M Demerjian, KR Feingold, PM Elias, and TM Mauro: Extracellular pH Controls NHE1 expression in epidermis and keratinocytes: implications for barrier repair. J. Invest. Dermatol. 125(4) 790-7 (2005)
[109]MJ Behne, JW Meyer, KM Hanson, NP Barry, S Murata, D Crumrine, RW Clegg, E Gratton, WM Holleran, PM Elias, and TM Mauro: NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem. 277(49) 47399-406 (2002)
[110]L Xue, E Aihara, TC Wang, and MH Montrose: Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J Biol Chem. 286(44) 38375-82 (2011)
[111]CJ Frederickson, SW Suh, D Silva, and RB Thompson: Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr. 130(5S Suppl) 1471S-83S (2000)
[112]NT Watt, IJ Whitehouse, and NM Hooper: The role of zinc in Alzheimer’s disease. Int J Alzheimers Dis. 2011 971021 (2010)
[113]S Ayton, P Lei, and AI Bush: Metallostasis in Alzheimer’s disease. Free Radic Biol Med. 62 76-89 (2013)
[114]JB Hilton, AR White, and PJ Crouch: Metal-deficient SOD1 in amyotrophic lateral sclerosis. J Mol Med (Berl). 93(5) 481-7 (2015)
[115]J Hennig, C Andresen, AK Museth, P Lundstrom, LA Tibell, and BH Jonsson: Local destabilization of the metal-binding region in human copper-zinc superoxide dismutase by remote mutations is a possible determinant for progression of ALS. Biochemistry. 54(2) 323-33 (2015)
[116]BK Bitanihirwe and MG Cunningham: Zinc: the brain’s dark horse. Synapse. 63(11) 1029-49 (2009)
[117]MA Aras, RA Saadi, and E Aizenman: Zn2+ regulates Kv2.1 voltage-dependent gating and localization following ischemia. Eur J Neurosci. 30(12) 2250-7 (2009)
[118]MA Aras and E Aizenman: Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal. 15(8) 2249-63 (2011)
[119]RE Carter, I Aiba, RM Dietz, CT Sheline, and CW Shuttleworth: Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation. J Cereb Blood Flow Metab. 31(4) 1073-84 (2011)
[120]RE Carter, I Aiba, RM Dietz, CT Sheline, and CW Shuttleworth: Spreading depression and related events are significant sources of neuronal Zn(2+) release and accumulation. J Cereb Blood Flow Metab. 31(4) 1073-84 (2010)
[121]RM Dietz, JH Weiss, and CW Shuttleworth: Zn2+ influx is critical for some forms of spreading depression in brain slices. J Neurosci. 28(32) 8014-24 (2008)
[122]AJ Russo and R Devito: Analysis of Copper and Zinc Plasma Concentration and the Efficacy of Zinc Therapy in Individuals with Asperger’s Syndrome, Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and Autism. Biomark Insights. 6 127-33 (2011)
[123]G Vela, P Stark, M Socha, AK Sauer, S Hagmeyer, and AM Grabrucker: Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast. 2015 972791 (2015)
[124]TB Cole, CA Robbins, HJ Wenzel, PA Schwartzkroin, and RD Palmiter: Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res. 39(2) 153-69 (2000)
[125]TB Cole, HJ Wenzel, KE Kafer, PA Schwartzkroin, and RD Palmiter: Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. USA. 96(4) 1716-21 (1999)
[126]K Saad, E Hammad, AF Hassan, and R Badry: Trace element, oxidant, and antioxidant enzyme values in blood of children with refractory epilepsy. Int J Neurosci. 124(3) 181-6 (2014)
[127]HN Farahani, AR Ashthiani, and MS Masihi: Study on serum zinc and selenium levels in epileptic patients. Neurosciences (Riyadh). 18(2) 138-42 (2013)
[128]RW Wojciak, E Mojs, M Stanislawska-Kubiak, and W Samborski: The serum zinc, copper, iron, and chromium concentrations in epileptic children. Epilepsy Res. 104(1-2) 40-4 (2013)
[129]M Seven, SY Basaran, M Cengiz, S Unal, and A Yuksel: Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res. 104(1-2) 35-9 (2013)
[130]JM Blasco-Ibanez, J Poza-Aznar, C Crespo, AI Marques-Mari, FJ Gracia-Llanes, and FJ Martinez-Guijarro: Chelation of synaptic zinc induces overexcitation in the hilar mossy cells of the rat hippocampus. Neurosci Lett. 355(1-2) 101-4. (2004)
[131]R Ganesh and L Janakiraman: Serum zinc levels in children with simple febrile seizure. Clin Pediatr (Phila). 47(2) 164-6 (2008)
[132]HJ Goldberg and EM Sheehy: Fifth day fits: an acute zinc deficiency syndrome? Arch Dis Child. 57(8) 633-5 (1982)
[133]Hildebrand MS, Phillips AM, Mullen SA, Adlard PA, Hardies K, Damiano JA, Wimmer V, Bellows ST, McMahon JM, Burgess R, Hendrickx R, Weckhuysen S, Suls A, De Jonghe P, Scheffer IE, Petrou S, Berkovic SF, and R CA: Loss of synaptic Zn(2+) transporter function increases risk of febrile seizures. Sci Rep. 5 17816 (2015)
[134]SM Elsas, S Hazany, WL Gregory, and I Mody: Hippocampal zinc infusion delays the development of afterdischarges and seizures in a kindling model of epilepsy. Epilepsia. 50(4) 870-9 (2009)
[135]AM Baraka, W Hassab El Nabi, and S El Ghotni: Investigating the role of zinc in a rat model of epilepsy. CNS Neurosci Ther. 18(4) 327-33 (2012)
[136]SL Sensi, P Paoletti, AI Bush, and I Sekler: Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 10(11) 780-91 (2009)
[137]S Pal, KA Hartnett, JM Nerbonne, ES Levitan, and E Aizenman: Mediation of Neuronal Apoptosis by Kv2.1-Encoded Potassium Channels. J. Neurosci. 23(12) 4798-4802 (2003)
[138]MC McCord and E Aizenman: The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci. 6 77 (2014)
[139]E Aizenman, AK Stout, KA Hartnett, KE Dineley, B McLaughlin, and IJ Reynolds: Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 75(5) 1878-88 (2000)
[140]SR Bareggi and U Cornelli: Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther. 18(1) 41-6 (2012)
[141]MH Park, SJ Lee, HR Byun, Y Kim, YJ Oh, JY Koh, and JJ Hwang: Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiol Dis. 42(3) 242-51 (2011)
[142]MC McCord and E Aizenman: Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci U S A. 110(34) 13988-93 (2013)
[143]MI Dominguez, JM Blasco-Ibanez, C Crespo, AI Marques-Mari, and FJ Martinez-Guijarro: Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus. Neuroscience. 116(3) 791-806 (2003)
[144]MA Greenough, J Camakaris, and AI Bush: Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int. 62(5) 540-55 (2013)
[145]G Danscher: Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry. 76(3) 281-93 (1982)
[146]G Danscher: The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Histochem J. 28(5) 361-73 (1996)
[147]DH Linkous, JM Flinn, JY Koh, A Lanzirotti, PM Bertsch, BF Jones, LJ Giblin, and CJ Frederickson: Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem. 56(1) 3-6 (2008)
[148]MH Yoo, TY Kim, YH Yoon, and JY Koh: Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation. Sci Rep. 6 28548 (2016)
[149]PA Adlard, JM Parncutt, DI Finkelstein, and AI Bush: Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci. 30(5) 1631-6 (2010)
[150]G Martel, C Hevi, O Friebely, T Baybutt, and GP Shumyatsky: Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear. Learn Mem. 17(11) 582-90 (2010)
[151]G Martel, C Hevi, N Kane-Goldsmith, and GP Shumyatsky: Zinc transporter ZnT3 is involved in memory dependent on the hippocampus and perirhinal cortex. Behav Brain Res. 223(1) 233-8 (2011)
[152]SA Kodirov, S Takizawa, J Joseph, ER Kandel, GP Shumyatsky, and VY Bolshakov: Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc Natl Acad Sci U S A. 103(41) 15218-23. (2006)
[153]PA Adlard, J Parncutt, V Lal, S James, D Hare, P Doble, DI Finkelstein, and AI Bush: Metal chaperones prevent zinc-mediated cognitive decline. Neurobiol Dis. 81 196-202 (2015)
[154]C Sindreu, RD Palmiter, and DR Storm: Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci U S A. 108(8) 3366-70 (2011)
[155]CJ Frederickson, JY Koh, and AI Bush: The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6) 449-62 (2005)
[156]CJ Frederickson, LJ Giblin, 3rd, RV Balaji, R Masalha, CJ Frederickson, Y Zeng, EV Lopez, JY Koh, U Chorin, L Besser, M Hershfinkel, Y Li, RB Thompson, and A Krezel: Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration. J. Neurosci. Methods. 154(1-2) 19-29 (2006)
[157]J Qian and JL Noebels: Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol. 566(Pt 3) 747-58. (2005)
[158]J Qian and JL Noebels: Exocytosis of vesicular zinc reveals persistent depression of neurotransmitter release during metabotropic glutamate receptor long-term depression at the hippocampal CA3-CA1 synapse. J Neurosci. 26(22) 6089-95 (2006)
[159]Y Li, CJ Hough, CJ Frederickson, and JM Sarvey: Induction of mossy fiber --> Ca3 long-term potentiation requires translocation of synaptically released Zn2+. J Neurosci. 21(20) 8015-25 (2001)
[160]M Gielen, B Siegler Retchless, L Mony, JW Johnson, and P Paoletti: Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 459(7247) 703-7 (2009)
[161]T Perez-Rosello, CT Anderson, C Ling, SJ Lippard, and T Tzounopoulos: Tonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission. Neurobiol Dis. 81 14-9 (2015)
[162]TG Smart, AM Hosie, and PS Miller: Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist. 10(5) 432-42. (2004)
[163]K Vogt, J Mellor, G Tong, and R Nicoll: The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 26(1) 187-96 (2000)
[164]BI Kalappa, CT Anderson, JM Goldberg, SJ Lippard, and T Tzounopoulos: AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci U S A. 112(51) 15749-54 (2015)
[165]CT Anderson, RJ Radford, ML Zastrow, DY Zhang, UP Apfel, SJ Lippard, and T Tzounopoulos: Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A. 112(20) E2705-14 (2015)
[166]RE Nicholls, XL Zhang, CP Bailey, BR Conklin, ER Kandel, and PK Stanton: mGluR2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc Natl Acad Sci U S A. 103(16) 6380-5 (2006)
[167]LJ Volk, CA Daly, and KM Huber: Differential roles for group 1 mGluR subtypes in induction and expression of chemically induced hippocampal long-term depression. J Neurophysiol. 95(4) 2427-38 (2006)
[168]JQ Wang, EE Fibuch, and L Mao: Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem. 100(1) 1-11 (2007)
[169]RA Saadi, K He, KA Hartnett, K Kandler, M Hershfinkel, and E Aizenman: SNARE-dependent upregulation of potassium chloride co-transporter 2 activity after metabotropic zinc receptor activation in rat cortical neurons in vitro. Neuroscience. 210 38-46 (2012)
[170]A Cichy, M Sowa-Kucma, B Legutko, L Pomierny-Chamiolo, A Siwek, A Piotrowska, B Szewczyk, E Poleszak, A Pilc, and G Nowak: Zinc-induced adaptive changes in NMDA/glutamatergic and serotonergic receptors. Pharmacol Rep. 61(6) 1184-91 (2009)
[171]K Mlyniec and G Nowak: Up-regulation of the GPR39 Zn(2+)-sensing receptor and CREB/BDNF/TrkB pathway after chronic but not acute antidepressant treatment in the frontal cortex of zinc-deficient mice. Pharmacol Rep. 67(6) 1135-40 (2015)
[172]H Lee, CX Chen, YJ Liu, E Aizenman, and K Kandler: KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses. Eur J Neurosci. 21(9) 2593-9 (2005)
[173]J Lu, M Karadsheh, and E Delpire: Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol. 39(4) 558-68 (1999)
[174]M Farrant and K Kaila: The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res. 160 59-87 (2007)
[175]T Viitanen, E Ruusuvuori, K Kaila, and J Voipio: The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol. 588(Pt 9) 1527-40 (2010)
[176]L Zhu, D Lovinger, and E Delpire: Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol. 93(3) 1557-68 (2005)
[177]L Zhu, N Polley, GC Mathews, and E Delpire: NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus. Epilepsy Res. 79(2-3) 201-12 (2008)
[178]G Huberfeld, L Wittner, S Clemenceau, M Baulac, K Kaila, R Miles, and C Rivera: Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci. 27(37) 9866-73 (2007)
[179]NS Woo, J Lu, R England, R McClellan, S Dufour, DB Mount, AY Deutch, DM Lovinger, and E Delpire: Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus. 12(2) 258-68 (2002)
[180]S Khirug, F Ahmad, M Puskarjov, R Afzalov, K Kaila, and P Blaesse: A single seizure episode leads to rapid functional activation of KCC2 in the neonatal rat hippocampus. J Neurosci. 30(36) 12028-35 (2010)
[181]K Mitsuya, N Nitta, and F Suzuki: Persistent zinc depletion in the mossy fiber terminals in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Epilepsia. 50(8) 1979-90 (2009)
[182]J Qian, K Xu, J Yoo, TT Chen, G Andrews, and JL Noebels: Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J Neurosci. 31(1) 97-104 (2011)
[183]A Takeda, H Itoh, H Tamano, and N Oku: Responsiveness to kainate in young rats after 2-week zinc deprivation. Biometals. 19(5) 565-72 (2006)
[184]A Takeda, H Itoh, M Hirate, and N Oku: Region-specific loss of zinc in the brain in pentylentetrazole-induced seizures and seizure susceptibility in zinc deficiency. Epilepsy Res. 70(1) 41-8 (2006)
[185]R Fallah, S Sabbaghzadegan, SA Karbasi, and F Binesh: Efficacy of zinc sulfate supplement on febrile seizure recurrence prevention in children with normal serum zinc level: A randomised clinical trial. Nutrition. 31(11-12) 1358-61 (2015)
[186]DS Alam, M Yunus, S El Arifeen, HR Chowdury, CP Larson, DA Sack, AH Baqui, and RE Black: Zinc treatment for 5 or 10 days is equally efficacious in preventing diarrhea in the subsequent 3 months among Bangladeshi children. J Nutr. 141(2) 312-5 (2011)
[187]CL Walker and RE Black: Zinc for the treatment of diarrhoea: effect on diarrhoea morbidity, mortality and incidence of future episodes. Int J Epidemiol. 39 Suppl 1 i63-9 (2010)
[188]S Sazawal, RE Black, MK Bhan, N Bhandari, A Sinha, and S Jalla: Zinc supplementation in young children with acute diarrhea in India. N Engl J Med. 333(13) 839-44 (1995)
[189]GW Lindenmayer, RJ Stoltzfus, and AJ Prendergast: Interactions between zinc deficiency and environmental enteropathy in developing countries. Adv Nutr. 5(1) 1-6 (2014)
[190]A Finamore, M Massimi, L Conti Devirgiliis, and E Mengheri: Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J Nutr. 138(9) 1664-70 (2008)
[191]J Geiser, KJ Venken, RC De Lisle, and GK Andrews: A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet. 8(6) e1002766 (2012)
[192]CN Glover, NR Bury, and C Hogstrand: Intestinal zinc uptake in freshwater rainbow trout: evidence for apical pathways associated with potassium efflux and modified by calcium. Biochim Biophys Acta. 1663(1-2) 214-21 (2004)
[193]CN Glover, NR Bury, and C Hogstrand: Zinc uptake across the apical membrane of freshwater rainbow trout intestine is mediated by high affinity, low affinity, and histidine-facilitated pathways. Biochim Biophys Acta. 1614(2) 211-9 (2003)
[194]D Moechars, I Depoortere, B Moreaux, B de Smet, I Goris, L Hoskens, G Daneels, S Kass, L Ver Donck, T Peeters, and B Coulie: Altered gastrointestinal and metabolic function in the GPR39-obestatin receptor-knockout mouse. Gastroenterology. 131(4) 1131-41 (2006)
[195]I Depoortere: GI functions of GPR39: novel biology. Curr Opin Pharmacol. 12(6) 647-52 (2012)
[196]GL Gopalsamy, DH Alpers, HJ Binder, CD Tran, BS Ramakrishna, I Brown, M Manary, E Mortimer, and GP Young: The relevance of the colon to zinc nutrition. Nutrients. 7(1) 572-83 (2015)
[197]YY Yu, CP Kirschke, and L Huang: Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem. 55(3) 223-34 (2007)
[198]X Dong, S Tang, W Zhang, W Gao, and Y Chen: GPR39 activates proliferation and differentiation of porcine intramuscular preadipocytes through targeting the PI3K/AKT cell signaling pathway. J Recept Signal Transduct Res, 1-9 (2015)
[199]D Scharlau, A Borowicki, N Habermann, T Hofmann, S Klenow, C Miene, U Munjal, K Stein, and M Glei: Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res. 682(1) 39-53 (2009)
[200]Y Zhang, L Zhou, YL Bao, Y Wu, CL Yu, YX Huang, Y Sun, LH Zheng, and YX Li: Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem Biol Interact. 185(3) 174-81 (2010)
[201]DC Yu, JS Waby, H Chirakkal, CA Staton, and BM Corfe: Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation. Mol Cancer. 9(276) 276 (2010)
[202]M Bordonaro, DL Lazarova, and AC Sartorelli: Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle. 7(9) 1178-83 (2008)
[203]C Stock, RA Cardone, G Busco, H Krahling, A Schwab, and SJ Reshkin: Protons extruded by NHE1: digestive or glue? Eur. J. Cell. Biol. 87(8-9) 591-9 (2008)
[204]B Pajak and A Orzechowski: Clusterin: the missing link in the calcium-dependent resistance of cancer cells to apoptogenic stimuli. Postepy Hig Med Dosw (Online). 60 45-51 (2006)
[205]P Mazzarelli, S Pucci, and LG Spagnoli: CLU and colon cancer. The dual face of CLU: from normal to malignant phenotype. Adv Cancer Res. 105 45-61 (2009)
[206]W Opoka, D Adamek, M Plonka, W Reczynski, B Bas, D Drozdowicz, P Jagielski, Z Sliwowski, P Adamski, and T Brzozowski: Importance of luminal and mucosal zinc in the mechanism of experimental gastric ulcer healing. J Physiol Pharmacol. 61(5) 581-91 (2010)
[207]M Krasovec and E Frenk: Acrodermatitis enteropathica secondary to Crohn’s disease. Dermatology. 193(4) 361-3 (1996).
[208]GC Sturniolo, W Fries, E Mazzon, V Di Leo, M Barollo, and R D’Inca: Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med. 139(5) 311-5 (2002)
[209]HH Luk, JK Ko, HS Fung, and CH Cho: Delineation of the protective action of zinc sulfate on ulcerative colitis in rats. Eur J Pharmacol. 443(1-3) 197-204. (2002)
[210]A Nusrat, JR Turner, and JL Madara: Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol. 279(5) G851-7 (2000)
[211]KL Edelblum and JR Turner: The Tight Junction in Inflammatory Disease: Communication Breakdown. Curr Opin Pharmacol 9715-720 (2009)
[212]KM Hoque and HJ Binder: Zinc in the treatment of acute diarrhea: current status and assessment. Gastroenterology. 130(7) 2201-5 (2006)
[213]J Geiser, RC De Lisle, D Finkelstein, PA Adlard, AI Bush, and GK Andrews: Clioquinol synergistically augments rescue by zinc supplementation in a mouse model of acrodermatitis enteropathica. PLoS One. 8(8) e72543 (2013)
[214]M Furuse, M Itoh, T Hirase, A Nagafuchi, S Yonemura, and S Tsukita: Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 127(6 Pt 1) 1617-26 (1994)
[215]H Chiba, M Osanai, M Murata, T Kojima, and N Sawada: Transmembrane proteins of tight junctions. Biochim Biophys Acta. 1778(3) 588-600 (2008)
[216]Y Guan, AJ Watson, AM Marchiando, E Bradford, L Shen, JR Turner, and MH Montrose: Redistribution of the tight junction protein ZO-1 during physiological shedding of mouse intestinal epithelial cells. Am J Physiol Cell Physiol. 300(6) C1404-14 (2011)
[217]V Singh, J Yang, TE Chen, NC Zachos, O Kovbasnjuk, AS Verkman, and M Donowitz: Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin Gastroenterol Hepatol. 12(1) 27-31 (2014)
[218]M Medani, VA Bzik, A Rogers, D Collins, R Kennelly, DC Winter, DJ Brayden, and AW Baird: Zinc sulphate attenuates chloride secretion in human colonic mucosae in vitro. Eur J Pharmacol. 696(1-3) 166-71 (2012)
[219]RB Canani, P Cirillo, V Buccigrossi, S Ruotolo, A Passariello, P De Luca, F Porcaro, G De Marco, and A Guarino: Zinc inhibits cholera toxin-induced, but not Escherichia coli heat-stable enterotoxin-induced, ion secretion in human enterocytes. J Infect Dis. 191(7) 1072-7 (2005)
[220]AC Girardi and F Di Sole: Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction. Am J Physiol Cell Physiol. 302(11) C1569-87 (2012)
[221]JR Thiagarajah, EA Ko, L Tradtrantip, M Donowitz, and AS Verkman: Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin Gastroenterol Hepatol. 12(2) 204-9 (2014)
[222]M Andrews and C Gallagher-Allred: The role of zinc in wound healing. Adv. Wound Care. 12(3) 137-8 (1999)
[223]AB Lansdown, U Mirastschijski, N Stubbs, E Scanlon, and MS Agren: Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 15(1) 2-16 (2007)
[224]AB Lansdown: Zinc in the healing wound. Lancet. 347(9003) 706-7 (1996)
[225]JR Schwartz, RG Marsh, and ZD Draelos: Zinc and skin health: overview of physiology and pharmacology. Dermatol. Surg. 31(7 Pt 2) 837-47; discussion 847 (2005)
[226]SL Jensen, C McCuaig, A Zembowicz, and MA Hurt: Bullous lesions in acrodermatitis enteropathica delaying diagnosis of zinc deficiency: a report of two cases and review of the literature. J. Cutan. Pathol. 35 Suppl 1 1-13 (2008)
[227]H Takahashi, M Nakazawa, K Takahashi, M Aihara, M Minami, T Hirasawa, and Z Ikezawa: Effects of zinc deficient diet on development of atopic dermatitis-like eruptions in DS-Nh mice. J. Dermatol. Sci. 50(1) 31-9 (2008)
[228]GK Andrews: Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem. Soc. Trans. 36(Pt 6) 1242-6 (2008)
[229]I Lasry, YA Seo, H Ityel, N Shalva, B Pode-Shakked, F Glaser, B Berman, I Berezovsky, A Goncearenco, A Klar, J Levy, Y Anikster, SL Kelleher, and YG Assaraf: A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency. J Biol Chem. 287(35) 29348-61 (2012)
[230]W Chowanadisai, B Lonnerdal, and SL Kelleher: Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 281(51) 39699-707 (2006)
[231]YB Nitzan, I Sekler, and WF Silverman: Histochemical and histofluorescence tracing of chelatable zinc in the developing mouse. J Histochem Cytochem. 52(4) 529-39 (2004)
[232]L Stuwe, M Muller, A Fabian, J Waning, S Mally, J Noel, A Schwab, and C Stock: pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J. Physiol. 585(Pt 2) 351-60 (2007)
[233]JS Huang, JJ Mukherjee, T Chung, KS Crilly, and Z Kiss: Extracellular calcium stimulates DNA synthesis in synergism with zinc, insulin and insulin-like growth factor I in fibroblasts. Eur. J. Biochem. 266(3) 943-51 (1999)
[234]B Schmidt-Hansen, J Klingelhofer, B Grum-Schwensen, A Christensen, S Andresen, C Kruse, T Hansen, N Ambartsumian, E Lukanidin, and M Grigorian: Functional significance of metastasis-inducing S100A4(Mts1) in tumor-stroma interplay. J Biol Chem. 279(23) 24498-504 (2004)
[235]C Hogstrand, P Kille, RI Nicholson, and KM Taylor: Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol. Med. 15(3) 101-11 (2009)
[236]V Lopez and SL Kelleher: Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. Exp Cell Res. 316(3) 366-75 (2010)
[237]S Alam and SL Kelleher: Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients. 4(8) 875-903 (2012)
[238]A Hermani, B De Servi, S Medunjanin, PA Tessier, and D Mayer: S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res. 312(2) 184-97 (2006)
[239]A Hermani, J Hess, B De Servi, S Medunjanin, R Grobholz, L Trojan, P Angel, and D Mayer: Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res. 11(14) 5146-52 (2005)
[240]S Grebhardt, K Muller-Decker, F Bestvater, M Hershfinkel, and D Mayer: Impact of S100A8/A9 expression on prostate cancer progression in vitro and in vivo. J Cell Physiol. 229(5) 661-71 (2014)
[241]K Boye and GM Maelandsmo: S100A4 and metastasis: a small actor playing many roles. Am J Pathol. 176(2) 528-35 (2010)
[242]ML Joiner, OM Koval, J Li, BJ He, C Allamargot, Z Gao, ED Luczak, DD Hall, BD Fink, B Chen, J Yang, SA Moore, TD Scholz, S Strack, PJ Mohler, WI Sivitz, LS Song, and ME Anderson: CaMKII determines mitochondrial stress responses in heart. Nature. 491(7423) 269-73 (2012)
[243]L Huang, CP Kirschke, and Y Zhang: Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 6 10 (2006)
[244]LC Costello, Y Liu, J Zou, and RB Franklin: Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem. 274(25) 17499-504 (1999)
[245]M Fassnacht, D Weismann, S Ebert, P Adam, M Zink, F Beuschlein, S Hahner, and B Allolio: AKT is highly phosphorylated in pheochromocytomas but not in benign adrenocortical tumors. J Clin Endocrinol Metab. 90(7) 4366-70 (2005)
[246]A Arcaro and AS Guerreiro: The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr Genomics. 8(5) 271-306 (2007)
[247]J Zou, BC Milon, MM Desouki, LC Costello, and RB Franklin: hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate. 71(14) 1518-24 (2011)
[248]RB Franklin and LC Costello: Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys. 463(2) 211-7 (2007)
[249]RB Franklin, B Milon, P Feng, and LC Costello: Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer. Front Biosci. 10 2230-9 (2005)
[250]S Tepaamorndech, L Huang, and CP Kirschke: A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett. 308(1) 33-42 (2011)
[251]F Xie, H Liu, YH Zhu, YR Qin, Y Dai, T Zeng, L Chen, C Nie, H Tang, Y Li, L Fu, and XY Guan: Overexpression of GPR39 contributes to malignant development of human esophageal squamous cell carcinoma. BMC Cancer. 11 86 (2011)
[252]BO Alen, S Leal-Lopez, MO Alen, P Viano, V Garcia-Castro, CS Mosteiro, A Beiras, FF Casanueva, R Gallego, T Garcia-Caballero, JP Camina, and Y Pazos: The role of the obestatin/GPR39 system in human gastric adenocarcinomas. Oncotarget, 7(5) 5957-71 (2015)
[253]D Wootten, A Christopoulos, and PM Sexton: Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 12(8) 630-44 (2013)
[254]C Custodi, R Nuti, TI Oprea, and A Macchiarulo: Fitting the complexity of GPCRs modulation into simple hypotheses of ligand design. J Mol Graph Model. 38 70-81 (2012).
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
The zinc sensing receptor, ZnR/GPR39, in health and disease
1 Department of Physiology and Cell Biology and The Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion university of the Negev, Beer Sheva, Israel
Abstract
While zinc has had a well-established structural role for many years, it is only during the last two decades that its role as a signaling molecule has been recognized. Ionic zinc, Zn2+, that is endogenously released during physiological activity acts as a first messenger, triggering the activity of a distinct Zn2+-sensing-receptor, ZnR. The ZnR is a member of the Gq-coupled receptor family, and the molecular moiety mediating its activity is GPR39. In this review, we will discuss the role of the ZnR/GPR39 in mediating Zn2+-dependent signaling in epithelial tissues and in neurons, where Zn2+ homeostasis plays physiological as well as pathological roles. Importantly, ZnR/GPR39 activates signaling that regulates a remarkably wide range of cell functions, including proliferation, differentiation and survival, as well as modulation of ion transport, and thereby, regulation of Na+, H+ and Cl- homeostasis. Moreover, signaling activated by ZnR/GPR39 plays a key role in mediating effects of Zn2+ in health and disease. Thus, ZnR/GPR39 provides a unique target for therapeutically modifying the actions of zinc in a specific and selective manner.
Keywords
- Zinc
- GPR39
- Zinc Signaling
- Neuron
- Keratinocyte
- Epithelium
- Intestine
- Colon
- Review
References
- [1] N Roohani, R Hurrell, R Kelishadi, and R Schulin: Zinc and its importance for human health: An integrative review. J Res Med Sci. 18(2) 144-57 (2013)
- [2] AS Prasad: Zinc: an overview. Nutrition. 11(1 Suppl) 93-9 (1995)
- [3] AS Prasad: Zinc in human health: effect of zinc on immune cells. Mol Med. 14(5-6) 353-7 (2008)
- [4] HH Sandstead, CJ Frederickson, and JG Penland: History of zinc as related to brain function. J Nutr. 130(2S Suppl) 496S-502S (2000)
- [5] SL Kelleher, NH McCormick, V Velasquez, and V Lopez: Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr. 2(2) 101-11 (2011)
- [6] T Kambe, BP Weaver, and GK Andrews: The genetics of essential metal homeostasis during development. Genesis. 46(4) 214-28 (2008)
- [7] J Waters: On the Efficacy of Oxide of Zinc in Laryngismus Stridulus. Prov Med Surg J 2(33) 125-7 (1841)
- [8] DG Barceloux: Zinc. J. Toxicol. Clin. Toxicol. 37(2) 279-92 (1999)
- [9] BL Vallee: Zinc and carbonic anhydrase content of red cells in normals and in pernicious anemia. J Clin Invest. 27(4) 559 (1948)
- [10] BL Vallee and MD Altschule: Zinc in the mammalian organism, with particular reference to carbonic anhydrase. Physiol Rev. 29(4) 370-88 (1949)
- [11] W Maret: Zinc biochemistry, physiology, and homeostasis – recent insights and current trends. BioMetals. 14(3-4) 187-190 (2001)
- [12] BL Vallee and KH Falchuk: The biochemical basis of zinc physiology. Physiol-Rev. 73(1) 79-118 (1993)
- [13] W Maret: Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr. 4(1) 82-91 (2013)
- [14] S Yamasaki, K Sakata-Sogawa, A Hasegawa, T Suzuki, K Kabu, E Sato, T Kurosaki, S Yamashita, M Tokunaga, K Nishida, and T Hirano: Zinc is a novel intracellular second messenger. J. Cell Biol. 177(4) 637-45 (2007)
- [15] W Maret: Zinc in the biosciences. Metallomics. 6(7) 1174 (2014)
- [16] T Fukada, S Yamasaki, K Nishida, M Murakami, and T Hirano: Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem. 16(7) 1123-34 (2011)
- [17] M Hershfinkel. Zinc, a Dynamic Signaling Molecule, In: Molecular Biology of Metal Homeostasis and Detoxification, Eds: M Tamas and E Martinoia, Berlin Heidelberg (2006)
- [18] Y Zhang, H Wang, J Li, DA Jimenez, ES Levitan, E Aizenman, and PA Rosenberg: Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci. 24(47) 10616-27 (2004)
- [19] PD Zalewski, IJ Forbes, and WH Betts: Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem. J. 296(Pt 2) 403-8 (1993)
- [20] I Sekler, SL Sensi, M Hershfinkel, and WF Silverman: Mechanism and regulation of cellular zinc transport. Mol. Med. 13(7-8) 337-43 (2007)
- [21] A Krezel and W Maret: Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem. 11(8) 1049-62 (2006)
- [22] M Vasak: Advances in metallothionein structure and functions. J Trace Elem Med Biol. 19(1) 13-7 (2005)
- [23] JP Liuzzi and RJ Cousins: Mammalian zinc transporters. Annu Rev Nutr. 24 151-72 (2004)
- [24] DJ Eide: Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta. 1763(7) 711-22 (2006)
- [25] RA Colvin, WR Holmes, CP Fontaine, and W Maret: Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics. 2(5) 306-17 (2010)
- [26] CJ Frederickson, BA Rampy, S Reamy Rampy, and GA Howell: Distribution of histochemically reactive zinc in the forebrain of the rat. J. Chem. Neuroanat. 5(6) 521-30 (1992)
- [27] CJ Frederickson, J Perez-Clausell, and G Danscher: Zinc-containing 7S-NGF complex. Evidence from zinc histochemistry for localization in salivary secretory granules. J Histochem Cytochem. 35(5) 579-83 (1987)
- [28] CJ Frederickson and G Danscher: Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res. 83 71-84 (1990)
- [29] G Danscher and M Stoltenberg: Zinc-enriched neurons. J Neurochem. 85(Suppl 2) 10. (2003)
- [30] K Ishii, M Sato, M Akita, and H Tomita: Localization of zinc in the rat submandibular gland and the effect of its deficiency on salivary secretion. Ann Otol Rhinol Laryngol. 108(3) 300-8 (1999)
- [31] N McCormick, V Velasquez, L Finney, S Vogt, and SL Kelleher: X-ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland. PLoS One. 5(6) e11078 (2010)
- [32] H Sharir, A Zinger, A Nevo, I Sekler, and M Hershfinkel: Zinc released from injured cells is acting via the Zn2+-sensing receptor, ZnR, to trigger signaling leading to epithelial repair. J Biol Chem. 285(34) 26097-106 (2010)
- [33] W Maret: Zinc coordination environments in proteins determine zinc functions. J. Trace Elem. Med. Biol. 19(1) 7-12 (2005)
- [34] W Maret: From the Cover: Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling. Proc Nat Acad Sci USA. 98(22) 12325-7 (2001)
- [35] M Hershfinkel, A Moran, N Grossman, and I Sekler: A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Nat Acad Sci USA. 98(20) 11749-54 (2001)
- [36] L Cohen, I Sekler, and M Hershfinkel: The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis. 5 e1307 (2014)
- [37] T Perez-Rosello, CT Anderson, FJ Schopfer, Y Zhao, D Gilad, SR Salvatore, BA Freeman, M Hershfinkel, E Aizenman, and T Tzounopoulos: Synaptic Zn2+ inhibits neurotransmitter release by promoting endocannabinoid synthesis. J Neurosci. 33(22) 9259-72 (2013)
- [38] E Chorin, O Vinograd, I Fleidervish, D Gilad, S Herrmann, I Sekler, E Aizenman, and M Hershfinkel: Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci. 31(36) 12916-26 (2011)
- [39] AM Hosie, EL Dunne, RJ Harvey, and TG Smart: Zinc-mediated inhibition of GABA(A) receptors: discrete binding sites underlie subtype specificity. Nat Neurosci. 6(4) 362-9 (2003)
- [40] Y Han and SM Wu: Modulation of glycine receptors in retinal ganglion cells by zinc. Proc. Natl. Acad. Sci. USA. 96(6) 3234-8 (1999)
- [41] JW Lynch, P Jacques, KD Pierce, and PR Schofield: Zinc potentiation of the glycine receptor chloride channel is mediated by allosteric pathways. J Neurochem. 71(5) 2159-68 (1998)
- [42] P Paoletti, P Ascher, and J Neyton: High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci. 17(15) 5711-25. (1997)
- [43] GA Herin and E Aizenman: Amino terminal domain regulation of NMDA receptor function. Eur J Pharmacol. 500(1-3) 101-11 (2004)
- [44] D Gilad, S Shorer, M Ketzef, A Friedman, I Sekler, E Aizenman, and M Hershfinkel: Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis, 81 4-13 (2015)
- [45] A Gore, A Moran, M Hershfinkel, and I Sekler: Inhibitory mechanism of store-operated Ca2+ channels by zinc. J Biol Chem. 279(12) 11106-11 (2004)
- [46] SS Wildman, BF King, and G Burnstock: Modulatory activity of extracellular H+ and Zn2+ on ATP-responses at rP2X1 and rP2X3 receptors. Br. J. Pharmacol. 128(2) 486-92 (1999)
- [47] C Acuna-Castillo, B Morales, and JP Huidobro-Toro: Zinc and copper modulate differentially the P2X4 receptor. J Neurochem. 74(4) 1529-37 (2000)
- [48] S Kim, Y Jung, D Kim, H Koh, and J Chung: Extracellular zinc activates p70 S6 kinase through the phosphatidylinositol 3-kinase signaling pathway. J Biol Chem. 275(34) 25979-84 (2000)
- [49] SY Oh, KS Park, JA Kim, and KY Choi: Differential modulation of zinc-stimulated p21(Cip/WAF1) and cyclin D1 induction by inhibition of PI3 kinase in HT-29 colorectal cancer cells. Exp Mol Med. 34(1) 27-31. (2002)
- [50] Y Ho, R Samarasinghe, ME Knoch, M Lewis, E Aizenman, and DB DeFranco: Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol. Pharmacol. 74(4) 1141-51 (2008)
- [51] Y Zhang, E Aizenman, DB DeFranco, and PA Rosenberg: Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med. 13(7-8) 350-5 (2007)
- [52] H Azriel-Tamir, H Sharir, B Schwartz, and M Hershfinkel: Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J Biol Chem. 279(50) 51804-16 (2004)
- [53] H Asraf, S Salomon, A Nevo, I Sekler, D Mayer, and M Hershfinkel: The ZnR/GPR39 Interacts with the CaSR to Enhance Signaling in Prostate and Salivary Epithelia. J Cell Physiol, 229(7) 868-77 (2013)
- [54] W Maret: Crosstalk of the group IIa and IIb metals calcium and zinc in cellular signaling. Proc Nat Acad Sci USA. 98(22) 12325-7 (2001)
- [55] J Takasaki, T Saito, M Taniguchi, T Kawasaki, Y Moritani, K Hayashi, and M Kobori: A novel Galphaq/11-selective inhibitor. J. Biol. Chem. 279(46) 47438-45 (2004)
- [56] M Taniguchi, K Suzumura, K Nagai, T Kawasaki, J Takasaki, M Sekiguchi, Y Moritani, T Saito, K Hayashi, S Fujita, S Tsukamoto, and K Suzuki: YM-254890 analogues, novel cyclic depsipeptides with Galpha(q/11) inhibitory activity from Chromobacterium sp. QS3666. Bioorg. Med. Chem. 12(12) 3125-33 (2004)
- [57] H Sharir and M Hershfinkel: The extracellular zinc-sensing receptor mediates intercellular communication by inducing ATP release. Biochem Biophys Res Commun. 332(3) 845-52 (2005)
- [58] N Dubi, L Gheber, D Fishman, I Sekler, and M Hershfinkel: Extracellular zinc and zinc-citrate, acting through a putative zinc-sensing receptor, regulate growth and survival of prostate cancer cells. Carcinogenesis. 29(9) 1692-700 (2008)
- [59] B Holst, KL Egerod, C Jin, PS Petersen, MV Ostergaard, J Hald, AM Sprinkel, J Storling, T Mandrup-Poulsen, JJ Holst, P Thams, C Orskov, N Wierup, F Sundler, OD Madsen, and TW Schwartz: G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology. 150(6) 2577-85 (2009)
- [60] T Kambe, K Fukue, R Ishida, and S Miyazaki: Overview of Inherited Zinc Deficiency in Infants and Children. J Nutr Sci Vitaminol (Tokyo). 61 Suppl S44-6 (2015)
- [61] M Komai, T Goto, H Suzuki, T Takeda, and Y Furukawa: Zinc deficiency and taste dysfunction; contribution of carbonic anhydrase, a zinc-metalloenzyme, to normal taste sensation. Biofactors. 12(1-4) 65-70 (2000)
- [62] WH Chappell, LS Steelman, JM Long, RC Kempf, SL Abrams, RA Franklin, J Basecke, F Stivala, M Donia, P Fagone, G Malaponte, MC Mazzarino, F Nicoletti, M Libra, D Maksimovic-Ivanic, S Mijatovic, G Montalto, M Cervello, P Laidler, M Milella, A Tafuri, A Bonati, C Evangelisti, L Cocco, AM Martelli, and JA McCubrey: Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget. 2(3) 135-64 (2011)
- [63] RS MacDonald: The role of zinc in growth and cell proliferation. J. Nutr. 130(5S Suppl) 1500S-8S (2000)
- [64] DW Choi and JY Koh: Zinc and brain injury. Annu. Rev. Neurosci. 21 347-75 (1998)
- [65] JH Weiss, SL Sensi, and JY Koh: Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 21(10) 395-401 (2000)
- [66] SL Sensi, P Paoletti, JY Koh, E Aizenman, AI Bush, and M Hershfinkel: The neurophysiology and pathology of brain zinc. J Neurosci. 31(45) 16076-85 (2011)
- [67] AI Bush: Copper, zinc, and the metallobiology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 17(3) 147-50. (2003).
- [68] L Besser, E Chorin, I Sekler, WF Silverman, S Atkin, JT Russell, and M Hershfinkel: Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci. 29(9) 2890-901 (2009)
- [69] SC Brennan, U Thiem, S Roth, A Aggarwal, IS Fetahu, S Tennakoon, AR Gomes, ML Brandi, F Bruggeman, R Mentaverri, D Riccardi, and E Kallay: Calcium sensing receptor signalling in physiology and cancer. Biochim Biophys Acta, (2012)
- [70] EM Brown: The extracellular C2+ sensing receptor.: central mediator of systemic calcium homeostasis [In Process Citation]. Annu Rev Nutr. 20 507-33 (2000)
- [71] I Gomes, A Gupta, J Filipovska, HH Szeto, JE Pintar, and LA Devi: A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. USA. 101(14) 5135-9 (2004)
- [72] L Albizu, MN Balestre, C Breton, JP Pin, M Manning, B Mouillac, C Barberis, and T Durroux: Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol. Pharmacol. 70(5) 1783-91 (2006)
- [73] MP Grant, A Stepanchick, A Cavanaugh, and GE Breitwieser: Agonist-driven maturation and plasma membrane insertion of calcium-sensing receptors dynamically control signal amplitude. Sci Signal. 4(200) ra78 (2011)
- [74] PH McDonald and RJ Lefkowitz: Beta-Arrestins: new roles in regulating heptahelical receptors’ functions. Cell Signal. 13(10) 683-9 (2001)
- [75] TA Kohout and RJ Lefkowitz: Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol. Pharmacol. 63(1) 9-18 (2003)
- [76] ML Mohan, NT Vasudevan, MK Gupta, EE Martelli, and SV Naga Prasad: G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr Mol Pharmacol, May (2012)
- [77] LC Costello, P Feng, B Milon, M Tan, and RB Franklin: Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis. 7(2) 111-7 (2004)
- [78] LC Costello and RB Franklin: The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 5(1) 17 (2006)
- [79] B Holst, ND Holliday, A Bach, CE Elling, HM Cox, and TW Schwartz: Common structural basis for constitutive activity of the ghrelin receptor family. J. Biol. Chem. 279(51) 53806-17 (2004)
- [80] CE Elling, TM Frimurer, LO Gerlach, R Jorgensen, B Holst, and TW Schwartz: Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation. J Biol Chem. 281(25) 17337-46 (2006)
- [81] JV Zhang, PG Ren, O Avsian-Kretchmer, CW Luo, R Rauch, C Klein, and AJ Hsueh: Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 310(5750) 996-9 (2005)
- [82] B Holst, KL Egerod, E Schild, SP Vickers, S Cheetham, LO Gerlach, L Storjohann, CE Stidsen, R Jones, AG Beck-Sickinger, and TW Schwartz: GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology. 148(1) 13-20 (2007)
- [83] E Lauwers, B Landuyt, L Arckens, L Schoofs, and W Luyten: Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochem Biophys Res Commun. 351(1) 21-5 (2006)
- [84] S Yasuda, T Miyazaki, K Munechika, M Yamashita, Y Ikeda, and A Kamizono: Isolation of Zn2+ as an endogenous agonist of GPR39 from fetal bovine serum. J. Recept. Signal Transduct. Res. 27(4) 235-46 (2007)
- [85] L Storjohann, B Holst, and TW Schwartz: Molecular mechanism of Zn2+ agonism in the extracellular domain of GPR39. FEBS Lett. 582(17) 2583-8 (2008)
- [86] L Cohen, H Asraf, I Sekler, and M Hershfinkel: Extracellular pH regulates zinc signaling via an Asp residue of the zinc-sensing receptor (ZnR/GPR39). J Biol Chem. 287(40) 33339-50 (2012)
- [87] T Ganay, H Asraf, E Aizenman, M Bogdanovic, I Sekler, and M Hershfinkel: Regulation of Neuronal pH by the Metabotropic Zinc Receptor mZnR/GPR39. J Neurochem, 135(5) 897-907 (2015)
- [88] J Srivastava, DL Barber, and MP Jacobson: Intracellular pH sensors: design principles and functional significance. Physiology (Bethesda). 22 30-9 (2007)
- [89] SJ Quinn, M Bai, and EM Brown: pH Sensing by the calcium-sensing receptor. J Biol Chem. 279(36) 37241-9 (2004)
- [90] C Levinthal, L Barkdull, P Jacobson, L Storjohann, BC Van Wagenen, TM Stormann, and LG Hammerland: Modulation of group III metabotropic glutamate receptors by hydrogen ions. Pharmacology. 83(2) 88-94 (2009)
- [91] M Sharma, K Sahu, A Dube, and PK Gupta: Extracellular pH influences the mode of cell death in human colon adenocarcinoma cells subjected to photodynamic treatment with chlorin p6. J Photochem Photobiol B. 81(2) 107-13 (2005).
- [92] M Sandoval, J Burgos, FV Sepulveda, and LP Cid: Extracellular pH in restricted domains as a gating signal for ion channels involved in transepithelial transport. Biol Pharm Bull. 34(6) 803-9 (2011)
- [93] DA Perdikis, R Davies, A Zhuravkov, B Brenner, L Etter, and MD Basson: Differential effects of mucosal pH on human (Caco-2) intestinal epithelial cell motility, proliferation, and differentiation. Dig Dis Sci. 43(7) 1537-46 (1998)
- [94] P Holzer: Acid sensing by visceral afferent neurones. Acta Physiol (Oxf). 201(1) 63-75 (2011)
- [95] P Holzer: Acid-sensitive ion channels and receptors. Handb Exp Pharmacol, (194) 283-332 (2009)
- [96] SG Nugent, D Kumar, DS Rampton, and DF Evans: Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. Gut. 48(4) 571-7 (2001)
- [97] J Orlowski and S Grinstein: Na+/H+ exchangers. Compr Physiol. 1(4) 2083-100 (2011)
- [98] L Cohen, H Azriel-Tamir, N Arotsker, I Sekler, and M Hershfinkel: Zinc Sensing Receptor Signaling, Mediated by GPR39, Reduces Butyrate-Induced Cell Death in HT29 Colonocytes via Upregulation of Clusterin. PLoS One. 7(4) e35482 (2012)
- [99] K Kaila, P Panula, T Karhunen, and E Heinonen: Fall in intracellular pH mediated by GABAA receptors in cultured rat astrocytes. Neurosci Lett. 126(1) 9-12 (1991)
- [100] M Chesler: The regulation and modulation of pH in the nervous system. Prog Neurobiol. 34(5) 401-27 (1990)
- [101] SF Traynelis and SG Cull-Candy: Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol. 433 727-63 (1991)
- [102] J Church, KA Baxter, and JG McLarnon: pH modulation of Ca2+ responses and a Ca2+-dependent K+ channel in cultured rat hippocampal neurones. J Physiol. 511 ( Pt 1) 119-32 (1998)
- [103] CJ Dietrich and M Morad: Synaptic acidification enhances GABAA signaling. J Neurosci. 30(47) 16044-52 (2010)
- [104] GH Diering, F Mills, SX Bamji, and M Numata: Regulation of dendritic spine growth through activity-dependent recruitment of the brain-enriched Na(+)/H(+) exchanger NHE5. Mol Biol Cell. 22(13) 2246-57 (2011)
- [105] N Manhas, Y Shi, J Taunton, and D Sun: p90 activation contributes to cerebral ischemic damage via phosphorylation of Na+/H+ exchanger isoform 1. J Neurochem. 114(5) 1476-86 (2010)
- [106] Y Wang, J Luo, X Chen, H Chen, SW Cramer, and D Sun: Gene inactivation of Na+/H+ exchanger isoform 1 attenuates apoptosis and mitochondrial damage following transient focal cerebral ischemia. Eur J Neurosci. 28(1) 51-61 (2008)
- [107] TI Lam, AM Brennan-Minnella, SJ Won, Y Shen, C Hefner, Y Shi, D Sun, and RA Swanson: Intracellular pH reduction prevents excitotoxic and ischemic neuronal death by inhibiting NADPH oxidase. Proc Natl Acad Sci U S A. 110(46) E4362-8 (2013)
- [108] JP Hachem, M Behne, I Aronchik, M Demerjian, KR Feingold, PM Elias, and TM Mauro: Extracellular pH Controls NHE1 expression in epidermis and keratinocytes: implications for barrier repair. J. Invest. Dermatol. 125(4) 790-7 (2005)
- [109] MJ Behne, JW Meyer, KM Hanson, NP Barry, S Murata, D Crumrine, RW Clegg, E Gratton, WM Holleran, PM Elias, and TM Mauro: NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem. 277(49) 47399-406 (2002)
- [110] L Xue, E Aihara, TC Wang, and MH Montrose: Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J Biol Chem. 286(44) 38375-82 (2011)
- [111] CJ Frederickson, SW Suh, D Silva, and RB Thompson: Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr. 130(5S Suppl) 1471S-83S (2000)
- [112] NT Watt, IJ Whitehouse, and NM Hooper: The role of zinc in Alzheimer’s disease. Int J Alzheimers Dis. 2011 971021 (2010)
- [113] S Ayton, P Lei, and AI Bush: Metallostasis in Alzheimer’s disease. Free Radic Biol Med. 62 76-89 (2013)
- [114] JB Hilton, AR White, and PJ Crouch: Metal-deficient SOD1 in amyotrophic lateral sclerosis. J Mol Med (Berl). 93(5) 481-7 (2015)
- [115] J Hennig, C Andresen, AK Museth, P Lundstrom, LA Tibell, and BH Jonsson: Local destabilization of the metal-binding region in human copper-zinc superoxide dismutase by remote mutations is a possible determinant for progression of ALS. Biochemistry. 54(2) 323-33 (2015)
- [116] BK Bitanihirwe and MG Cunningham: Zinc: the brain’s dark horse. Synapse. 63(11) 1029-49 (2009)
- [117] MA Aras, RA Saadi, and E Aizenman: Zn2+ regulates Kv2.1 voltage-dependent gating and localization following ischemia. Eur J Neurosci. 30(12) 2250-7 (2009)
- [118] MA Aras and E Aizenman: Redox regulation of intracellular zinc: molecular signaling in the life and death of neurons. Antioxid Redox Signal. 15(8) 2249-63 (2011)
- [119] RE Carter, I Aiba, RM Dietz, CT Sheline, and CW Shuttleworth: Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation. J Cereb Blood Flow Metab. 31(4) 1073-84 (2011)
- [120] RE Carter, I Aiba, RM Dietz, CT Sheline, and CW Shuttleworth: Spreading depression and related events are significant sources of neuronal Zn(2+) release and accumulation. J Cereb Blood Flow Metab. 31(4) 1073-84 (2010)
- [121] RM Dietz, JH Weiss, and CW Shuttleworth: Zn2+ influx is critical for some forms of spreading depression in brain slices. J Neurosci. 28(32) 8014-24 (2008)
- [122] AJ Russo and R Devito: Analysis of Copper and Zinc Plasma Concentration and the Efficacy of Zinc Therapy in Individuals with Asperger’s Syndrome, Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and Autism. Biomark Insights. 6 127-33 (2011)
- [123] G Vela, P Stark, M Socha, AK Sauer, S Hagmeyer, and AM Grabrucker: Zinc in gut-brain interaction in autism and neurological disorders. Neural Plast. 2015 972791 (2015)
- [124] TB Cole, CA Robbins, HJ Wenzel, PA Schwartzkroin, and RD Palmiter: Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res. 39(2) 153-69 (2000)
- [125] TB Cole, HJ Wenzel, KE Kafer, PA Schwartzkroin, and RD Palmiter: Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc. Natl. Acad. Sci. USA. 96(4) 1716-21 (1999)
- [126] K Saad, E Hammad, AF Hassan, and R Badry: Trace element, oxidant, and antioxidant enzyme values in blood of children with refractory epilepsy. Int J Neurosci. 124(3) 181-6 (2014)
- [127] HN Farahani, AR Ashthiani, and MS Masihi: Study on serum zinc and selenium levels in epileptic patients. Neurosciences (Riyadh). 18(2) 138-42 (2013)
- [128] RW Wojciak, E Mojs, M Stanislawska-Kubiak, and W Samborski: The serum zinc, copper, iron, and chromium concentrations in epileptic children. Epilepsy Res. 104(1-2) 40-4 (2013)
- [129] M Seven, SY Basaran, M Cengiz, S Unal, and A Yuksel: Deficiency of selenium and zinc as a causative factor for idiopathic intractable epilepsy. Epilepsy Res. 104(1-2) 35-9 (2013)
- [130] JM Blasco-Ibanez, J Poza-Aznar, C Crespo, AI Marques-Mari, FJ Gracia-Llanes, and FJ Martinez-Guijarro: Chelation of synaptic zinc induces overexcitation in the hilar mossy cells of the rat hippocampus. Neurosci Lett. 355(1-2) 101-4. (2004)
- [131] R Ganesh and L Janakiraman: Serum zinc levels in children with simple febrile seizure. Clin Pediatr (Phila). 47(2) 164-6 (2008)
- [132] HJ Goldberg and EM Sheehy: Fifth day fits: an acute zinc deficiency syndrome? Arch Dis Child. 57(8) 633-5 (1982)
- [133] Hildebrand MS, Phillips AM, Mullen SA, Adlard PA, Hardies K, Damiano JA, Wimmer V, Bellows ST, McMahon JM, Burgess R, Hendrickx R, Weckhuysen S, Suls A, De Jonghe P, Scheffer IE, Petrou S, Berkovic SF, and R CA: Loss of synaptic Zn(2+) transporter function increases risk of febrile seizures. Sci Rep. 5 17816 (2015)
- [134] SM Elsas, S Hazany, WL Gregory, and I Mody: Hippocampal zinc infusion delays the development of afterdischarges and seizures in a kindling model of epilepsy. Epilepsia. 50(4) 870-9 (2009)
- [135] AM Baraka, W Hassab El Nabi, and S El Ghotni: Investigating the role of zinc in a rat model of epilepsy. CNS Neurosci Ther. 18(4) 327-33 (2012)
- [136] SL Sensi, P Paoletti, AI Bush, and I Sekler: Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 10(11) 780-91 (2009)
- [137] S Pal, KA Hartnett, JM Nerbonne, ES Levitan, and E Aizenman: Mediation of Neuronal Apoptosis by Kv2.1-Encoded Potassium Channels. J. Neurosci. 23(12) 4798-4802 (2003)
- [138] MC McCord and E Aizenman: The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci. 6 77 (2014)
- [139] E Aizenman, AK Stout, KA Hartnett, KE Dineley, B McLaughlin, and IJ Reynolds: Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J. Neurochem. 75(5) 1878-88 (2000)
- [140] SR Bareggi and U Cornelli: Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther. 18(1) 41-6 (2012)
- [141] MH Park, SJ Lee, HR Byun, Y Kim, YJ Oh, JY Koh, and JJ Hwang: Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiol Dis. 42(3) 242-51 (2011)
- [142] MC McCord and E Aizenman: Convergent Ca2+ and Zn2+ signaling regulates apoptotic Kv2.1 K+ currents. Proc Natl Acad Sci U S A. 110(34) 13988-93 (2013)
- [143] MI Dominguez, JM Blasco-Ibanez, C Crespo, AI Marques-Mari, and FJ Martinez-Guijarro: Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus. Neuroscience. 116(3) 791-806 (2003)
- [144] MA Greenough, J Camakaris, and AI Bush: Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int. 62(5) 540-55 (2013)
- [145] G Danscher: Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry. 76(3) 281-93 (1982)
- [146] G Danscher: The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Histochem J. 28(5) 361-73 (1996)
- [147] DH Linkous, JM Flinn, JY Koh, A Lanzirotti, PM Bertsch, BF Jones, LJ Giblin, and CJ Frederickson: Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem. 56(1) 3-6 (2008)
- [148] MH Yoo, TY Kim, YH Yoon, and JY Koh: Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation. Sci Rep. 6 28548 (2016)
- [149] PA Adlard, JM Parncutt, DI Finkelstein, and AI Bush: Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci. 30(5) 1631-6 (2010)
- [150] G Martel, C Hevi, O Friebely, T Baybutt, and GP Shumyatsky: Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear. Learn Mem. 17(11) 582-90 (2010)
- [151] G Martel, C Hevi, N Kane-Goldsmith, and GP Shumyatsky: Zinc transporter ZnT3 is involved in memory dependent on the hippocampus and perirhinal cortex. Behav Brain Res. 223(1) 233-8 (2011)
- [152] SA Kodirov, S Takizawa, J Joseph, ER Kandel, GP Shumyatsky, and VY Bolshakov: Synaptically released zinc gates long-term potentiation in fear conditioning pathways. Proc Natl Acad Sci U S A. 103(41) 15218-23. (2006)
- [153] PA Adlard, J Parncutt, V Lal, S James, D Hare, P Doble, DI Finkelstein, and AI Bush: Metal chaperones prevent zinc-mediated cognitive decline. Neurobiol Dis. 81 196-202 (2015)
- [154] C Sindreu, RD Palmiter, and DR Storm: Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory. Proc Natl Acad Sci U S A. 108(8) 3366-70 (2011)
- [155] CJ Frederickson, JY Koh, and AI Bush: The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6) 449-62 (2005)
- [156] CJ Frederickson, LJ Giblin, 3rd, RV Balaji, R Masalha, CJ Frederickson, Y Zeng, EV Lopez, JY Koh, U Chorin, L Besser, M Hershfinkel, Y Li, RB Thompson, and A Krezel: Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration. J. Neurosci. Methods. 154(1-2) 19-29 (2006)
- [157] J Qian and JL Noebels: Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse. J Physiol. 566(Pt 3) 747-58. (2005)
- [158] J Qian and JL Noebels: Exocytosis of vesicular zinc reveals persistent depression of neurotransmitter release during metabotropic glutamate receptor long-term depression at the hippocampal CA3-CA1 synapse. J Neurosci. 26(22) 6089-95 (2006)
- [159] Y Li, CJ Hough, CJ Frederickson, and JM Sarvey: Induction of mossy fiber --> Ca3 long-term potentiation requires translocation of synaptically released Zn2+. J Neurosci. 21(20) 8015-25 (2001)
- [160] M Gielen, B Siegler Retchless, L Mony, JW Johnson, and P Paoletti: Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 459(7247) 703-7 (2009)
- [161] T Perez-Rosello, CT Anderson, C Ling, SJ Lippard, and T Tzounopoulos: Tonic zinc inhibits spontaneous firing in dorsal cochlear nucleus principal neurons by enhancing glycinergic neurotransmission. Neurobiol Dis. 81 14-9 (2015)
- [162] TG Smart, AM Hosie, and PS Miller: Zn2+ ions: modulators of excitatory and inhibitory synaptic activity. Neuroscientist. 10(5) 432-42. (2004)
- [163] K Vogt, J Mellor, G Tong, and R Nicoll: The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 26(1) 187-96 (2000)
- [164] BI Kalappa, CT Anderson, JM Goldberg, SJ Lippard, and T Tzounopoulos: AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci U S A. 112(51) 15749-54 (2015)
- [165] CT Anderson, RJ Radford, ML Zastrow, DY Zhang, UP Apfel, SJ Lippard, and T Tzounopoulos: Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc Natl Acad Sci U S A. 112(20) E2705-14 (2015)
- [166] RE Nicholls, XL Zhang, CP Bailey, BR Conklin, ER Kandel, and PK Stanton: mGluR2 acts through inhibitory Galpha subunits to regulate transmission and long-term plasticity at hippocampal mossy fiber-CA3 synapses. Proc Natl Acad Sci U S A. 103(16) 6380-5 (2006)
- [167] LJ Volk, CA Daly, and KM Huber: Differential roles for group 1 mGluR subtypes in induction and expression of chemically induced hippocampal long-term depression. J Neurophysiol. 95(4) 2427-38 (2006)
- [168] JQ Wang, EE Fibuch, and L Mao: Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem. 100(1) 1-11 (2007)
- [169] RA Saadi, K He, KA Hartnett, K Kandler, M Hershfinkel, and E Aizenman: SNARE-dependent upregulation of potassium chloride co-transporter 2 activity after metabotropic zinc receptor activation in rat cortical neurons in vitro. Neuroscience. 210 38-46 (2012)
- [170] A Cichy, M Sowa-Kucma, B Legutko, L Pomierny-Chamiolo, A Siwek, A Piotrowska, B Szewczyk, E Poleszak, A Pilc, and G Nowak: Zinc-induced adaptive changes in NMDA/glutamatergic and serotonergic receptors. Pharmacol Rep. 61(6) 1184-91 (2009)
- [171] K Mlyniec and G Nowak: Up-regulation of the GPR39 Zn(2+)-sensing receptor and CREB/BDNF/TrkB pathway after chronic but not acute antidepressant treatment in the frontal cortex of zinc-deficient mice. Pharmacol Rep. 67(6) 1135-40 (2015)
- [172] H Lee, CX Chen, YJ Liu, E Aizenman, and K Kandler: KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses. Eur J Neurosci. 21(9) 2593-9 (2005)
- [173] J Lu, M Karadsheh, and E Delpire: Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol. 39(4) 558-68 (1999)
- [174] M Farrant and K Kaila: The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res. 160 59-87 (2007)
- [175] T Viitanen, E Ruusuvuori, K Kaila, and J Voipio: The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J Physiol. 588(Pt 9) 1527-40 (2010)
- [176] L Zhu, D Lovinger, and E Delpire: Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol. 93(3) 1557-68 (2005)
- [177] L Zhu, N Polley, GC Mathews, and E Delpire: NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus. Epilepsy Res. 79(2-3) 201-12 (2008)
- [178] G Huberfeld, L Wittner, S Clemenceau, M Baulac, K Kaila, R Miles, and C Rivera: Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci. 27(37) 9866-73 (2007)
- [179] NS Woo, J Lu, R England, R McClellan, S Dufour, DB Mount, AY Deutch, DM Lovinger, and E Delpire: Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus. 12(2) 258-68 (2002)
- [180] S Khirug, F Ahmad, M Puskarjov, R Afzalov, K Kaila, and P Blaesse: A single seizure episode leads to rapid functional activation of KCC2 in the neonatal rat hippocampus. J Neurosci. 30(36) 12028-35 (2010)
- [181] K Mitsuya, N Nitta, and F Suzuki: Persistent zinc depletion in the mossy fiber terminals in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy. Epilepsia. 50(8) 1979-90 (2009)
- [182] J Qian, K Xu, J Yoo, TT Chen, G Andrews, and JL Noebels: Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J Neurosci. 31(1) 97-104 (2011)
- [183] A Takeda, H Itoh, H Tamano, and N Oku: Responsiveness to kainate in young rats after 2-week zinc deprivation. Biometals. 19(5) 565-72 (2006)
- [184] A Takeda, H Itoh, M Hirate, and N Oku: Region-specific loss of zinc in the brain in pentylentetrazole-induced seizures and seizure susceptibility in zinc deficiency. Epilepsy Res. 70(1) 41-8 (2006)
- [185] R Fallah, S Sabbaghzadegan, SA Karbasi, and F Binesh: Efficacy of zinc sulfate supplement on febrile seizure recurrence prevention in children with normal serum zinc level: A randomised clinical trial. Nutrition. 31(11-12) 1358-61 (2015)
- [186] DS Alam, M Yunus, S El Arifeen, HR Chowdury, CP Larson, DA Sack, AH Baqui, and RE Black: Zinc treatment for 5 or 10 days is equally efficacious in preventing diarrhea in the subsequent 3 months among Bangladeshi children. J Nutr. 141(2) 312-5 (2011)
- [187] CL Walker and RE Black: Zinc for the treatment of diarrhoea: effect on diarrhoea morbidity, mortality and incidence of future episodes. Int J Epidemiol. 39 Suppl 1 i63-9 (2010)
- [188] S Sazawal, RE Black, MK Bhan, N Bhandari, A Sinha, and S Jalla: Zinc supplementation in young children with acute diarrhea in India. N Engl J Med. 333(13) 839-44 (1995)
- [189] GW Lindenmayer, RJ Stoltzfus, and AJ Prendergast: Interactions between zinc deficiency and environmental enteropathy in developing countries. Adv Nutr. 5(1) 1-6 (2014)
- [190] A Finamore, M Massimi, L Conti Devirgiliis, and E Mengheri: Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J Nutr. 138(9) 1664-70 (2008)
- [191] J Geiser, KJ Venken, RC De Lisle, and GK Andrews: A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet. 8(6) e1002766 (2012)
- [192] CN Glover, NR Bury, and C Hogstrand: Intestinal zinc uptake in freshwater rainbow trout: evidence for apical pathways associated with potassium efflux and modified by calcium. Biochim Biophys Acta. 1663(1-2) 214-21 (2004)
- [193] CN Glover, NR Bury, and C Hogstrand: Zinc uptake across the apical membrane of freshwater rainbow trout intestine is mediated by high affinity, low affinity, and histidine-facilitated pathways. Biochim Biophys Acta. 1614(2) 211-9 (2003)
- [194] D Moechars, I Depoortere, B Moreaux, B de Smet, I Goris, L Hoskens, G Daneels, S Kass, L Ver Donck, T Peeters, and B Coulie: Altered gastrointestinal and metabolic function in the GPR39-obestatin receptor-knockout mouse. Gastroenterology. 131(4) 1131-41 (2006)
- [195] I Depoortere: GI functions of GPR39: novel biology. Curr Opin Pharmacol. 12(6) 647-52 (2012)
- [196] GL Gopalsamy, DH Alpers, HJ Binder, CD Tran, BS Ramakrishna, I Brown, M Manary, E Mortimer, and GP Young: The relevance of the colon to zinc nutrition. Nutrients. 7(1) 572-83 (2015)
- [197] YY Yu, CP Kirschke, and L Huang: Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem. 55(3) 223-34 (2007)
- [198] X Dong, S Tang, W Zhang, W Gao, and Y Chen: GPR39 activates proliferation and differentiation of porcine intramuscular preadipocytes through targeting the PI3K/AKT cell signaling pathway. J Recept Signal Transduct Res, 1-9 (2015)
- [199] D Scharlau, A Borowicki, N Habermann, T Hofmann, S Klenow, C Miene, U Munjal, K Stein, and M Glei: Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res. 682(1) 39-53 (2009)
- [200] Y Zhang, L Zhou, YL Bao, Y Wu, CL Yu, YX Huang, Y Sun, LH Zheng, and YX Li: Butyrate induces cell apoptosis through activation of JNK MAP kinase pathway in human colon cancer RKO cells. Chem Biol Interact. 185(3) 174-81 (2010)
- [201] DC Yu, JS Waby, H Chirakkal, CA Staton, and BM Corfe: Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation. Mol Cancer. 9(276) 276 (2010)
- [202] M Bordonaro, DL Lazarova, and AC Sartorelli: Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk? Cell Cycle. 7(9) 1178-83 (2008)
- [203] C Stock, RA Cardone, G Busco, H Krahling, A Schwab, and SJ Reshkin: Protons extruded by NHE1: digestive or glue? Eur. J. Cell. Biol. 87(8-9) 591-9 (2008)
- [204] B Pajak and A Orzechowski: Clusterin: the missing link in the calcium-dependent resistance of cancer cells to apoptogenic stimuli. Postepy Hig Med Dosw (Online). 60 45-51 (2006)
- [205] P Mazzarelli, S Pucci, and LG Spagnoli: CLU and colon cancer. The dual face of CLU: from normal to malignant phenotype. Adv Cancer Res. 105 45-61 (2009)
- [206] W Opoka, D Adamek, M Plonka, W Reczynski, B Bas, D Drozdowicz, P Jagielski, Z Sliwowski, P Adamski, and T Brzozowski: Importance of luminal and mucosal zinc in the mechanism of experimental gastric ulcer healing. J Physiol Pharmacol. 61(5) 581-91 (2010)
- [207] M Krasovec and E Frenk: Acrodermatitis enteropathica secondary to Crohn’s disease. Dermatology. 193(4) 361-3 (1996).
- [208] GC Sturniolo, W Fries, E Mazzon, V Di Leo, M Barollo, and R D’Inca: Effect of zinc supplementation on intestinal permeability in experimental colitis. J Lab Clin Med. 139(5) 311-5 (2002)
- [209] HH Luk, JK Ko, HS Fung, and CH Cho: Delineation of the protective action of zinc sulfate on ulcerative colitis in rats. Eur J Pharmacol. 443(1-3) 197-204. (2002)
- [210] A Nusrat, JR Turner, and JL Madara: Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol. 279(5) G851-7 (2000)
- [211] KL Edelblum and JR Turner: The Tight Junction in Inflammatory Disease: Communication Breakdown. Curr Opin Pharmacol 9715-720 (2009)
- [212] KM Hoque and HJ Binder: Zinc in the treatment of acute diarrhea: current status and assessment. Gastroenterology. 130(7) 2201-5 (2006)
- [213] J Geiser, RC De Lisle, D Finkelstein, PA Adlard, AI Bush, and GK Andrews: Clioquinol synergistically augments rescue by zinc supplementation in a mouse model of acrodermatitis enteropathica. PLoS One. 8(8) e72543 (2013)
- [214] M Furuse, M Itoh, T Hirase, A Nagafuchi, S Yonemura, and S Tsukita: Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 127(6 Pt 1) 1617-26 (1994)
- [215] H Chiba, M Osanai, M Murata, T Kojima, and N Sawada: Transmembrane proteins of tight junctions. Biochim Biophys Acta. 1778(3) 588-600 (2008)
- [216] Y Guan, AJ Watson, AM Marchiando, E Bradford, L Shen, JR Turner, and MH Montrose: Redistribution of the tight junction protein ZO-1 during physiological shedding of mouse intestinal epithelial cells. Am J Physiol Cell Physiol. 300(6) C1404-14 (2011)
- [217] V Singh, J Yang, TE Chen, NC Zachos, O Kovbasnjuk, AS Verkman, and M Donowitz: Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin Gastroenterol Hepatol. 12(1) 27-31 (2014)
- [218] M Medani, VA Bzik, A Rogers, D Collins, R Kennelly, DC Winter, DJ Brayden, and AW Baird: Zinc sulphate attenuates chloride secretion in human colonic mucosae in vitro. Eur J Pharmacol. 696(1-3) 166-71 (2012)
- [219] RB Canani, P Cirillo, V Buccigrossi, S Ruotolo, A Passariello, P De Luca, F Porcaro, G De Marco, and A Guarino: Zinc inhibits cholera toxin-induced, but not Escherichia coli heat-stable enterotoxin-induced, ion secretion in human enterocytes. J Infect Dis. 191(7) 1072-7 (2005)
- [220] AC Girardi and F Di Sole: Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction. Am J Physiol Cell Physiol. 302(11) C1569-87 (2012)
- [221] JR Thiagarajah, EA Ko, L Tradtrantip, M Donowitz, and AS Verkman: Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin Gastroenterol Hepatol. 12(2) 204-9 (2014)
- [222] M Andrews and C Gallagher-Allred: The role of zinc in wound healing. Adv. Wound Care. 12(3) 137-8 (1999)
- [223] AB Lansdown, U Mirastschijski, N Stubbs, E Scanlon, and MS Agren: Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 15(1) 2-16 (2007)
- [224] AB Lansdown: Zinc in the healing wound. Lancet. 347(9003) 706-7 (1996)
- [225] JR Schwartz, RG Marsh, and ZD Draelos: Zinc and skin health: overview of physiology and pharmacology. Dermatol. Surg. 31(7 Pt 2) 837-47; discussion 847 (2005)
- [226] SL Jensen, C McCuaig, A Zembowicz, and MA Hurt: Bullous lesions in acrodermatitis enteropathica delaying diagnosis of zinc deficiency: a report of two cases and review of the literature. J. Cutan. Pathol. 35 Suppl 1 1-13 (2008)
- [227] H Takahashi, M Nakazawa, K Takahashi, M Aihara, M Minami, T Hirasawa, and Z Ikezawa: Effects of zinc deficient diet on development of atopic dermatitis-like eruptions in DS-Nh mice. J. Dermatol. Sci. 50(1) 31-9 (2008)
- [228] GK Andrews: Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem. Soc. Trans. 36(Pt 6) 1242-6 (2008)
- [229] I Lasry, YA Seo, H Ityel, N Shalva, B Pode-Shakked, F Glaser, B Berman, I Berezovsky, A Goncearenco, A Klar, J Levy, Y Anikster, SL Kelleher, and YG Assaraf: A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency. J Biol Chem. 287(35) 29348-61 (2012)
- [230] W Chowanadisai, B Lonnerdal, and SL Kelleher: Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 281(51) 39699-707 (2006)
- [231] YB Nitzan, I Sekler, and WF Silverman: Histochemical and histofluorescence tracing of chelatable zinc in the developing mouse. J Histochem Cytochem. 52(4) 529-39 (2004)
- [232] L Stuwe, M Muller, A Fabian, J Waning, S Mally, J Noel, A Schwab, and C Stock: pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J. Physiol. 585(Pt 2) 351-60 (2007)
- [233] JS Huang, JJ Mukherjee, T Chung, KS Crilly, and Z Kiss: Extracellular calcium stimulates DNA synthesis in synergism with zinc, insulin and insulin-like growth factor I in fibroblasts. Eur. J. Biochem. 266(3) 943-51 (1999)
- [234] B Schmidt-Hansen, J Klingelhofer, B Grum-Schwensen, A Christensen, S Andresen, C Kruse, T Hansen, N Ambartsumian, E Lukanidin, and M Grigorian: Functional significance of metastasis-inducing S100A4(Mts1) in tumor-stroma interplay. J Biol Chem. 279(23) 24498-504 (2004)
- [235] C Hogstrand, P Kille, RI Nicholson, and KM Taylor: Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol. Med. 15(3) 101-11 (2009)
- [236] V Lopez and SL Kelleher: Zip6-attenuation promotes epithelial-to-mesenchymal transition in ductal breast tumor (T47D) cells. Exp Cell Res. 316(3) 366-75 (2010)
- [237] S Alam and SL Kelleher: Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients. 4(8) 875-903 (2012)
- [238] A Hermani, B De Servi, S Medunjanin, PA Tessier, and D Mayer: S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res. 312(2) 184-97 (2006)
- [239] A Hermani, J Hess, B De Servi, S Medunjanin, R Grobholz, L Trojan, P Angel, and D Mayer: Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res. 11(14) 5146-52 (2005)
- [240] S Grebhardt, K Muller-Decker, F Bestvater, M Hershfinkel, and D Mayer: Impact of S100A8/A9 expression on prostate cancer progression in vitro and in vivo. J Cell Physiol. 229(5) 661-71 (2014)
- [241] K Boye and GM Maelandsmo: S100A4 and metastasis: a small actor playing many roles. Am J Pathol. 176(2) 528-35 (2010)
- [242] ML Joiner, OM Koval, J Li, BJ He, C Allamargot, Z Gao, ED Luczak, DD Hall, BD Fink, B Chen, J Yang, SA Moore, TD Scholz, S Strack, PJ Mohler, WI Sivitz, LS Song, and ME Anderson: CaMKII determines mitochondrial stress responses in heart. Nature. 491(7423) 269-73 (2012)
- [243] L Huang, CP Kirschke, and Y Zhang: Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int. 6 10 (2006)
- [244] LC Costello, Y Liu, J Zou, and RB Franklin: Evidence for a zinc uptake transporter in human prostate cancer cells which is regulated by prolactin and testosterone. J Biol Chem. 274(25) 17499-504 (1999)
- [245] M Fassnacht, D Weismann, S Ebert, P Adam, M Zink, F Beuschlein, S Hahner, and B Allolio: AKT is highly phosphorylated in pheochromocytomas but not in benign adrenocortical tumors. J Clin Endocrinol Metab. 90(7) 4366-70 (2005)
- [246] A Arcaro and AS Guerreiro: The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr Genomics. 8(5) 271-306 (2007)
- [247] J Zou, BC Milon, MM Desouki, LC Costello, and RB Franklin: hZIP1 zinc transporter down-regulation in prostate cancer involves the overexpression of ras responsive element binding protein-1 (RREB-1). Prostate. 71(14) 1518-24 (2011)
- [248] RB Franklin and LC Costello: Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys. 463(2) 211-7 (2007)
- [249] RB Franklin, B Milon, P Feng, and LC Costello: Zinc and zinc transporters in normal prostate and the pathogenesis of prostate cancer. Front Biosci. 10 2230-9 (2005)
- [250] S Tepaamorndech, L Huang, and CP Kirschke: A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Cancer Lett. 308(1) 33-42 (2011)
- [251] F Xie, H Liu, YH Zhu, YR Qin, Y Dai, T Zeng, L Chen, C Nie, H Tang, Y Li, L Fu, and XY Guan: Overexpression of GPR39 contributes to malignant development of human esophageal squamous cell carcinoma. BMC Cancer. 11 86 (2011)
- [252] BO Alen, S Leal-Lopez, MO Alen, P Viano, V Garcia-Castro, CS Mosteiro, A Beiras, FF Casanueva, R Gallego, T Garcia-Caballero, JP Camina, and Y Pazos: The role of the obestatin/GPR39 system in human gastric adenocarcinomas. Oncotarget, 7(5) 5957-71 (2015)
- [253] D Wootten, A Christopoulos, and PM Sexton: Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov. 12(8) 630-44 (2013)
- [254] C Custodi, R Nuti, TI Oprea, and A Macchiarulo: Fitting the complexity of GPCRs modulation into simple hypotheses of ligand design. J Mol Graph Model. 38 70-81 (2012).
