Information
References
Contents
Download
[1]R. V. Balaji and R. A. Colvin: A proton-dependent zinc uptake in PC12 cells. Neurochem Res, 30(2), 171-6 (2005)
[2]R. A. Colvin, N. Davis, R. W. Nipper and P. A. Carter: Zinc transport in the brain: routes of zinc influx and efflux in neurons. J Nutr, 130(5S Suppl), 1484S-7S (2000)
[3]K. H. Falchuk, M. Montorzi and B. L. Vallee: Zinc uptake and distribution in Xenopus laevis oocytes and embryos. Biochemistry, 34(50), 16524-31 (1995)
[4]S. L. Sensi, L. M. Canzoniero, S. P. Yu, H. S. Ying, J. Y. Koh, G. A. Kerchner and D. W. Choi: Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci, 17(24), 9554-64 (1997)
[5]M. P. Cuajungco, L. C. Basilio, J. Silva, T. Hart, J. Tringali, C. C. Chen, M. Biel and C. Grimm: Cellular Zinc Levels Are Modulated by TRPML1-TMEM163 Interaction. Traffic, 15(11), 1247-65 (2014)
[6]J. L. Eichelsdoerfer, J. A. Evans, S. A. Slaugenhaupt and M. P. Cuajungco: Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem, 285(45), 34304-8 (2010)
[7]S. L. Kelleher, N. H. McCormick, V. Velasquez and V. Lopez: Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr, 2(2), 101-11 (2011)
[8]I. Kukic, S. L. Kelleher and K. Kiselyov: Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J Cell Sci, 127(Pt 14), 3094-103 (2014)
[9]I. Kukic, J. K. Lee, J. Coblentz, S. L. Kelleher and K. Kiselyov: Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochem J, 451(2), 155-63 (2013)
[10]N. H. McCormick and S. L. Kelleher: ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol, 303(3), C291-7 (2012)
[11]Y. A. Seo, V. Lopez and S. L. Kelleher: A histidine-rich motif mediates mitochondrial localization of ZnT2 to modulate mitochondrial function. Am J Physiol Cell Physiol, 300(6), C1479-89 (2011)
[12]Z. Bostanci, S. Alam, D. I. Soybel and S. L. Kelleher: Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells. Exp Cell Res, 321(2), 190-200 (2014)
[13]C. Murgia, I. Vespignani, J. Cerase, F. Nobili and G. Perozzi: Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am J Physiol, 277(6 Pt 1), G1231-9 (1999)
[14]H. C. Roh, S. Collier, J. Guthrie, J. D. Robertson and K. Kornfeld: Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab, 15(1), 88-99 (2012)
[15]N. H. McCormick, S. R. Hennigar, K. Kiselyov and S. L. Kelleher: The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution. J Mammary Gland Biol Neoplasia, 19(1), 59-71 (2014)
[16]V. Lopez and S. L. Kelleher: Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Biochem J, 422(1), 43-52 (2009)
[17]J. A. Martina, H. I. Diab, H. Li and R. Puertollano: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci, 71(13), 2483-97 (2014)
[18]J. A. Martina, Y. Chen, M. Gucek and R. Puertollano: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 8(6), 903-14 (2012)
[19]C. Settembre, C. Di Malta, V. A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S. U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D. C. Rubinsztein and A. Ballabio: TFEB links autophagy to lysosomal biogenesis. Science, 332(6036), 1429-33 (2011)
[20]K. A. Peña and K. Kiselyov: Transition metals activate TFEB in overpexpressing cells. Biochem J, 470(1), 65-76 (2015)
[21]M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson and A. Bjorklund: TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proceedings of the National Academy of Sciences of the United States of America, 110(19), E1817-26 (2013)
[22]E. J. Feeney, C. Spampanato, R. Puertollano, A. Ballabio, G. Parenti and N. Raben: What else is in store for autophagy? Exocytosis of autolysosomes as a mechanism of TFEB-mediated cellular clearance in Pompe disease. Autophagy, 9(7), 1117-8 (2013)
[23]A. R. La Spada: PPARGC1A/PGC-1alpha, TFEB and enhanced proteostasis in Huntington disease: defining regulatory linkages between energy production and protein-organelle quality control. Autophagy, 8(12), 1845-7 (2012)
[24]V. A. Polito, H. Li, H. Martini-Stoica, B. Wang, L. Yang, Y. Xu, D. B. Swartzlander, M. Palmieri, A. di Ronza, V. M. Lee, M. Sardiello, A. Ballabio and H. Zheng: Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med, 6(9), 1142-60 (2014)
[25]C. Spampanato, E. Feeney, L. Li, M. Cardone, J. A. Lim, F. Annunziata, H. Zare, R. Polishchuk, R. Puertollano, G. Parenti, A. Ballabio and N. Raben: Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med, 5(5), 691-706 (2013)
[26]D. L. Medina, A. Fraldi, V. Bouche, F. Annunziata, G. Mansueto, C. Spampanato, C. Puri, A. Pignata, J. A. Martina, M. Sardiello, M. Palmieri, R. Polishchuk, R. Puertollano and A. Ballabio: Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell, 21(3), 421-30 (2011)
[27]K. A. Peña, J. Coblenz and K. Kiselyov: Brief exposure to copper activates lysosomal exocytosis. Cell Calcium, 57(4), 257-62 (2015)
[28]C. Settembre and D. L. Medina: TFEB and the CLEAR network. Methods Cell Biol, 126, 45-62 (2015)
[29]S. Seok, T. Fu, S. E. Choi, Y. Li, R. Zhu, S. Kumar, X. Sun, G. Yoon, Y. Kang, W. Zhong, J. Ma, B. Kemper and J. K. Kemper: Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 516(7529), 108-11 (2014)
[30]J. M. Lee, M. Wagner, R. Xiao, K. H. Kim, D. Feng, M. A. Lazar and D. D. Moore: Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 516(7529), 112-5 (2014)
[31]A. Ghosh, M. Jana, K. Modi, F. J. Gonzalez, K. B. Sims, E. Berry-Kravis and K. Pahan: Activation of peroxisome proliferator-activated receptor alpha induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem, 290(16), 10309-24 (2015)
[32]K. R. Gee, Z. L. Zhou, W. J. Qian and R. Kennedy: Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J Am Chem Soc, 124(5), 776-8 (2002)
[33]H. Chung, Y. H. Yoon, J. J. Hwang, K. S. Cho, J. Y. Koh and J. G. Kim: Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells. Toxicol Appl Pharmacol, 235(2), 163-70 (2009)
[34]S. J. Lee, K. S. Cho and J. Y. Koh: Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia, 57(12), 1351-61 (2009)
[35]J. J. Hwang, S. J. Lee, T. Y. Kim, J. H. Cho and J. Y. Koh: Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J Neurosci, 28(12), 3114-22 (2008)
[36]J. Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu and D. W. Choi: The role of zinc in selective neuronal death after transient global cerebral ischemia. Science, 272(5264), 1013-6 (1996)
[37]G. J. Lees, M. P. Cuajungco and W. Leong: Effect of metal chelating agents on the direct and seizure-related neuronal death induced by zinc and kainic acid. Brain Res, 799(1), 108-17 (1998)
[38]S. W. Suh, J. W. Chen, M. Motamedi, B. Bell, K. Listiak, N. F. Pons, G. Danscher and C. J. Frederickson: Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res, 852(2), 268-73 (2000)
[39]M. P. Cuajungco and G. J. Lees: Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res, 799(1), 118-29 (1998)
[40]C. J. Frederickson, M. P. Cuajungco, C. J. LaBuda and S. W. Suh: Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience, 115(2), 471-4 (2002)
[41]J. Y. Lee, J. H. Kim, R. D. Palmiter and J. Y. Koh: Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp Neurol, 184(1), 337-47 (2003)
[42]S. L. Sensi, D. Ton-That and J. H. Weiss: Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons. Neurobiol Dis, 10(2), 100-8 (2002)
[43]D. W. Choi and J. Y. Koh: Zinc and brain injury. Annu Rev Neurosci, 21, 347-75 (1998)
[44]M. P. Cuajungco and G. J. Lees: Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis, 4(3-4), 137-69 (1997)
[45]C. J. Frederickson, W. Maret and M. P. Cuajungco: Zinc and excitotoxic brain injury: a new model. Neuroscientist, 10(1), 18-25 (2004)
[46]R. Bargal, N. Avidan, E. Ben-Asher, Z. Olender, M. Zeigler, A. Frumkin, A. Raas-Rothschild, G. Glusman, D. Lancet and G. Bach: Identification of the gene causing mucolipidosis type IV. Nat Genet, 26(1), 118-23 (2000)
[47]M. T. Bassi, M. Manzoni, E. Monti, M. T. Pizzo, A. Ballabio and G. Borsani: Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet, 67(5), 1110-20 (2000)
[48]M. Sun, E. Goldin, S. Stahl, J. L. Falardeau, J. C. Kennedy, J. S. Acierno, Jr., C. Bove, C. R. Kaneski, J. Nagle, M. C. Bromley, M. Colman, R. Schiffmann and S. A. Slaugenhaupt: Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet, 9(17), 2471-8 (2000)
[49]X. P. Dong, X. Cheng, E. Mills, M. Delling, F. Wang, T. Kurz and H. Xu: The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 455(7215), 992-6 (2008)
[50]X. P. Dong, D. Shen, X. Wang, T. Dawson, X. Li, Q. Zhang, X. Cheng, Y. Zhang, L. S. Weisman, M. Delling and H. Xu: PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun, 1, 38 (2010)
[51]X. P. Dong, X. Wang, D. Shen, S. Chen, M. Liu, Y. Wang, E. Mills, X. Cheng, M. Delling and H. Xu: Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem, 284(46), 32040-52 (2009)
[52]C. Grimm, M. P. Cuajungco, A. F. van Aken, M. Schnee, S. Jors, C. J. Kros, A. J. Ricci and S. Heller: A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci U S A,
[53]G. A. Colletti, M. T. Miedel, J. Quinn, N. Andharia, O. A. Weisz and K. Kiselyov: Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. J Biol Chem, 287(11), 8082-91 (2012)
[54]G. Altarescu, M. Sun, D. F. Moore, J. A. Smith, E. A. Wiggs, B. I. Solomon, N. J. Patronas, K. P. Frei, S. Gupta, C. R. Kaneski, O. W. Quarrell, S. A. Slaugenhaupt, E. Goldin and R. Schiffmann: The neurogenetics of mucolipidosis type IV. Neurology, 59(3), 306-13 (2002)
[55]Y. Grishchuk, K. A. Peña, J. Coblentz, V. E. King, D. M. Humphrey, S. L. Wang, K. I. Kiselyov and S. A. Slaugenhaupt: Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV. Dis Model Mech (2015)
[56]G. A. Howell, M. G. Welch and C. J. Frederickson: Stimulation-induced uptake and release of zinc in hippocampal slices. Nature, 308(5961), 736-8 (1984)
[57]I. Lengyel, J. M. Flinn, T. Peto, D. H. Linkous, K. Cano, A. C. Bird, A. Lanzirotti, C. J. Frederickson and F. J. van Kuijk: High concentration of zinc in sub-retinal pigment epithelial deposits. Exp Eye Res, 84(4), 772-80 (2007)
[58]S. Redenti and R. L. Chappell: Neuroimaging of zinc released by depolarization of rat retinal cells. Vision Res, 45(28), 3520-5 (2005)
[59]S. Redenti, H. Ripps and R. L. Chappell: Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res, 85(4), 580-4 (2007)
[60]H. J. Hyun, J. Sohn, Y. H. Ahn, H. C. Shin, J. Y. Koh and Y. H. Yoon: Depletion of intracellular zinc induces macromolecule synthesis- and caspase-dependent apoptosis of cultured retinal cells. Brain Res, 869(1-2), 39-48 (2000)
[61]H. J. Hyun, J. H. Sohn, D. W. Ha, Y. H. Ahn, J. Y. Koh and Y. H. Yoon: Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 42(2), 460-5 (2001)
[62]M. H. Yoo, J. Y. Lee, S. E. Lee, J. Y. Koh and Y. H. Yoon: Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo. Invest Ophthalmol Vis Sci, 45(5), 1523-30 (2004)
[63]Y. H. Yoon, K. H. Jung, A. A. Sadun, H. C. Shin and J. Y. Koh: Ethambutol-induced vacuolar changes and neuronal loss in rat retinal cell culture: mediation by endogenous zinc. Toxicol Appl Pharmacol, 162(2), 107-14 (2000)
[64]A. Chapel, S. Kieffer-Jaquinod, C. Sagne, Q. Verdon, C. Ivaldi, M. Mellal, J. Thirion, M. Jadot, C. Bruley, J. Garin, B. Gasnier and A. Journet: An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics, 12(6), 1572-88 (2013)
[65]A. Reddy, E. V. Caler and N. W. Andrews: Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell, 106(2), 157-69 (2001)
[66]M. R. Logan, P. Lacy, S. O. Odemuyiwa, M. Steward, F. Davoine, H. Kita and R. Moqbel: A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy, 61(6), 777-84 (2006)
[67]K. K. Kiselyov, M. Ahuja, V. Rybalchenko, S. Patel and S. Muallem: The intracellular Ca(2)(+) channels of membrane traffic. Channels (Austin), 6(5), 344-51 (2012)
[68]Y. Miao, G. Li, X. Zhang, H. Xu and S. N. Abraham: A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger Their Expulsion. Cell, 161(6), 1306-19 (2015)
[69]M. Samie, X. Wang, X. Zhang, A. Goschka, X. Li, X. Cheng, E. Gregg, M. Azar, Y. Zhuo, A. G. Garrity, Q. Gao, S. Slaugenhaupt, J. Pickel, S. N. Zolov, L. S. Weisman, G. M. Lenk, S. Titus, M. Bryant-Genevier, N. Southall, M. Juan, M. Ferrer and H. Xu: A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell, 26(5), 511-24 (2013)
[70]J. P. Draye, P. J. Courtoy, J. Quintart and P. Baudhuin: A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation. J Cell Biol, 107(6 Pt 1), 2109-15 (1988)
[71]J. Burre, H. Zimmermann and W. Volknandt: Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter. J Neurochem, 103(1), 276-87 (2007)
[72]J. Barth, H. Zimmermann and W. Volknandt: SV31 is a Zn2+-binding synaptic vesicle protein. J Neurochem, 118(4), 558-70 (2011)
[73]C. J. Frederickson: Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol, 31, 145-238 (1989)
[74]J. Silva and M. P. Cuajungco: Intracellular Zinc Dyshomeostasis Caused by a Disrupted TRPML1-TMEM163 Protein Interaction. FASEB J, 29(1), Supplement (2015)
[75]C. Grimm, S. Jors, S. A. Saldanha, A. G. Obukhov, B. Pan, K. Oshima, M. P. Cuajungco, P. Chase, P. Hodder and S. Heller: Small molecule activators of TRPML3. Chem Biol, 17(2), 135-48 (2010)
[76]S. Vergarajauregui and R. Puertollano: Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic, 7(3), 337-53 (2006)
[77]P. Kozik, R. W. Francis, M. N. Seaman and M. S. Robinson: A screen for endocytic motifs. Traffic, 11(6), 843-55 (2010)
[78]J. Hirst, L. D. Barlow, G. C. Francisco, D. A. Sahlender, M. N. Seaman, J. B. Dacks and M. S. Robinson: The fifth adaptor protein complex. PLoS Biol, 9(10), e1001170 (2011)
[79]H. J. Bosomworth, J. K. Thornton, L. J. Coneyworth, D. Ford and R. A. Valentine: Efflux function, tissue-specific expression and intracellular trafficking of the Zn transporter ZnT10 indicate roles in adult Zn homeostasis. Metallomics, 4(8), 771-9 (2012)
[80]F. Chimienti, S. Devergnas, F. Pattou, F. Schuit, R. Garcia-Cuenca, B. Vandewalle, J. Kerr-Conte, L. Van Lommel, D. Grunwald, A. Favier and M. Seve: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci, 119(Pt 20), 4199-206 (2006)
[81]K. A. Jackson, R. M. Helston, J. A. McKay, E. D. O’Neill, J. C. Mathers and D. Ford: Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J Biol Chem, 282(14), 10423-31 (2007)
[82]T. Kambe, T. Tsuji, A. Hashimoto and N. Itsumura: The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev, 95(3), 749-84 (2015)
[83]E. Ohana, E. Hoch, C. Keasar, T. Kambe, O. Yifrach, M. Hershfinkel and I. Sekler: Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem, 284(26), 17677-86 (2009)
[84]W. Maret and B. L. Vallee: Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci U S A, 95(7), 3478-82 (1998)
[85]S. K. Krezoski, J. Villalobos, C. F. Shaw, 3rd and D. H. Petering: Kinetic lability of zinc bound to metallothionein in Ehrlich cells. Biochem J, 255(2), 483-91 (1988)
[86]D. J. Eide: Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta, 1763(7), 711-22 (2006)
[87]Q. W. Cantrell, J. Silva, C. Nguyen, L. D. Hildebrand, T. Rivas, R. Shoemaker, A. Rojas and M. P. Cuajungco: Transmembrane (TMEM)-163 protein is a novel zinc transporter. FASEB J, 30(1), Supplement (2016)
[88]A. Fukunaka, T. Suzuki, Y. Kurokawa, T. Yamazaki, N. Fujiwara, K. Ishihara, H. Migaki, K. Okumura, S. Masuda, Y. Yamaguchi-Iwai, M. Nagao and T. Kambe: Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J Biol Chem, 284(45), 30798-806 (2009)
[89]Y. Golan, B. Berman and Y. G. Assaraf: Heterodimerization, altered subcellular localization, and function of multiple zinc transporters in viable cells using bimolecular fluorescence complementation. J Biol Chem, 290(14), 9050-63 (2015)
[90]I. Lasry, Y. Golan, B. Berman, N. Amram, F. Glaser and Y. G. Assaraf: In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation. J Biol Chem, 289(11), 7275-92 (2014)
[91]Y. Zhao, R. G. Feresin, J. M. Falcon-Perez and G. Salazar: Differential Targeting of SLC30A10/ZnT10 Heterodimers to Endolysosomal Compartments Modulates EGF-Induced MEK/ERK1/2 Activity. Traffic, 17(3), 267-88 (2016)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling
1 Department of Biological Science, California State University Fullerton, Fullerton, CA, 92831, USA
2 Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
3 Department of Biological Sciences, University of Pittsburgh, PA, 15260, USA
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, e summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Keywords
- Mucolipidosis IV
- lysosomes
- zinc transport
- SV31
- Review
References
- [1] R. V. Balaji and R. A. Colvin: A proton-dependent zinc uptake in PC12 cells. Neurochem Res, 30(2), 171-6 (2005)
- [2] R. A. Colvin, N. Davis, R. W. Nipper and P. A. Carter: Zinc transport in the brain: routes of zinc influx and efflux in neurons. J Nutr, 130(5S Suppl), 1484S-7S (2000)
- [3] K. H. Falchuk, M. Montorzi and B. L. Vallee: Zinc uptake and distribution in Xenopus laevis oocytes and embryos. Biochemistry, 34(50), 16524-31 (1995)
- [4] S. L. Sensi, L. M. Canzoniero, S. P. Yu, H. S. Ying, J. Y. Koh, G. A. Kerchner and D. W. Choi: Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci, 17(24), 9554-64 (1997)
- [5] M. P. Cuajungco, L. C. Basilio, J. Silva, T. Hart, J. Tringali, C. C. Chen, M. Biel and C. Grimm: Cellular Zinc Levels Are Modulated by TRPML1-TMEM163 Interaction. Traffic, 15(11), 1247-65 (2014)
- [6] J. L. Eichelsdoerfer, J. A. Evans, S. A. Slaugenhaupt and M. P. Cuajungco: Zinc dyshomeostasis is linked with the loss of mucolipidosis IV-associated TRPML1 ion channel. J Biol Chem, 285(45), 34304-8 (2010)
- [7] S. L. Kelleher, N. H. McCormick, V. Velasquez and V. Lopez: Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr, 2(2), 101-11 (2011)
- [8] I. Kukic, S. L. Kelleher and K. Kiselyov: Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J Cell Sci, 127(Pt 14), 3094-103 (2014)
- [9] I. Kukic, J. K. Lee, J. Coblentz, S. L. Kelleher and K. Kiselyov: Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochem J, 451(2), 155-63 (2013)
- [10] N. H. McCormick and S. L. Kelleher: ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol, 303(3), C291-7 (2012)
- [11] Y. A. Seo, V. Lopez and S. L. Kelleher: A histidine-rich motif mediates mitochondrial localization of ZnT2 to modulate mitochondrial function. Am J Physiol Cell Physiol, 300(6), C1479-89 (2011)
- [12] Z. Bostanci, S. Alam, D. I. Soybel and S. L. Kelleher: Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells. Exp Cell Res, 321(2), 190-200 (2014)
- [13] C. Murgia, I. Vespignani, J. Cerase, F. Nobili and G. Perozzi: Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am J Physiol, 277(6 Pt 1), G1231-9 (1999)
- [14] H. C. Roh, S. Collier, J. Guthrie, J. D. Robertson and K. Kornfeld: Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab, 15(1), 88-99 (2012)
- [15] N. H. McCormick, S. R. Hennigar, K. Kiselyov and S. L. Kelleher: The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution. J Mammary Gland Biol Neoplasia, 19(1), 59-71 (2014)
- [16] V. Lopez and S. L. Kelleher: Zinc transporter-2 (ZnT2) variants are localized to distinct subcellular compartments and functionally transport zinc. Biochem J, 422(1), 43-52 (2009)
- [17] J. A. Martina, H. I. Diab, H. Li and R. Puertollano: Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci, 71(13), 2483-97 (2014)
- [18] J. A. Martina, Y. Chen, M. Gucek and R. Puertollano: MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 8(6), 903-14 (2012)
- [19] C. Settembre, C. Di Malta, V. A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S. U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D. C. Rubinsztein and A. Ballabio: TFEB links autophagy to lysosomal biogenesis. Science, 332(6036), 1429-33 (2011)
- [20] K. A. Peña and K. Kiselyov: Transition metals activate TFEB in overpexpressing cells. Biochem J, 470(1), 65-76 (2015)
- [21] M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson and A. Bjorklund: TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proceedings of the National Academy of Sciences of the United States of America, 110(19), E1817-26 (2013)
- [22] E. J. Feeney, C. Spampanato, R. Puertollano, A. Ballabio, G. Parenti and N. Raben: What else is in store for autophagy? Exocytosis of autolysosomes as a mechanism of TFEB-mediated cellular clearance in Pompe disease. Autophagy, 9(7), 1117-8 (2013)
- [23] A. R. La Spada: PPARGC1A/PGC-1alpha, TFEB and enhanced proteostasis in Huntington disease: defining regulatory linkages between energy production and protein-organelle quality control. Autophagy, 8(12), 1845-7 (2012)
- [24] V. A. Polito, H. Li, H. Martini-Stoica, B. Wang, L. Yang, Y. Xu, D. B. Swartzlander, M. Palmieri, A. di Ronza, V. M. Lee, M. Sardiello, A. Ballabio and H. Zheng: Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med, 6(9), 1142-60 (2014)
- [25] C. Spampanato, E. Feeney, L. Li, M. Cardone, J. A. Lim, F. Annunziata, H. Zare, R. Polishchuk, R. Puertollano, G. Parenti, A. Ballabio and N. Raben: Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med, 5(5), 691-706 (2013)
- [26] D. L. Medina, A. Fraldi, V. Bouche, F. Annunziata, G. Mansueto, C. Spampanato, C. Puri, A. Pignata, J. A. Martina, M. Sardiello, M. Palmieri, R. Polishchuk, R. Puertollano and A. Ballabio: Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell, 21(3), 421-30 (2011)
- [27] K. A. Peña, J. Coblenz and K. Kiselyov: Brief exposure to copper activates lysosomal exocytosis. Cell Calcium, 57(4), 257-62 (2015)
- [28] C. Settembre and D. L. Medina: TFEB and the CLEAR network. Methods Cell Biol, 126, 45-62 (2015)
- [29] S. Seok, T. Fu, S. E. Choi, Y. Li, R. Zhu, S. Kumar, X. Sun, G. Yoon, Y. Kang, W. Zhong, J. Ma, B. Kemper and J. K. Kemper: Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 516(7529), 108-11 (2014)
- [30] J. M. Lee, M. Wagner, R. Xiao, K. H. Kim, D. Feng, M. A. Lazar and D. D. Moore: Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 516(7529), 112-5 (2014)
- [31] A. Ghosh, M. Jana, K. Modi, F. J. Gonzalez, K. B. Sims, E. Berry-Kravis and K. Pahan: Activation of peroxisome proliferator-activated receptor alpha induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem, 290(16), 10309-24 (2015)
- [32] K. R. Gee, Z. L. Zhou, W. J. Qian and R. Kennedy: Detection and imaging of zinc secretion from pancreatic beta-cells using a new fluorescent zinc indicator. J Am Chem Soc, 124(5), 776-8 (2002)
- [33] H. Chung, Y. H. Yoon, J. J. Hwang, K. S. Cho, J. Y. Koh and J. G. Kim: Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells. Toxicol Appl Pharmacol, 235(2), 163-70 (2009)
- [34] S. J. Lee, K. S. Cho and J. Y. Koh: Oxidative injury triggers autophagy in astrocytes: the role of endogenous zinc. Glia, 57(12), 1351-61 (2009)
- [35] J. J. Hwang, S. J. Lee, T. Y. Kim, J. H. Cho and J. Y. Koh: Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J Neurosci, 28(12), 3114-22 (2008)
- [36] J. Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu and D. W. Choi: The role of zinc in selective neuronal death after transient global cerebral ischemia. Science, 272(5264), 1013-6 (1996)
- [37] G. J. Lees, M. P. Cuajungco and W. Leong: Effect of metal chelating agents on the direct and seizure-related neuronal death induced by zinc and kainic acid. Brain Res, 799(1), 108-17 (1998)
- [38] S. W. Suh, J. W. Chen, M. Motamedi, B. Bell, K. Listiak, N. F. Pons, G. Danscher and C. J. Frederickson: Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res, 852(2), 268-73 (2000)
- [39] M. P. Cuajungco and G. J. Lees: Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res, 799(1), 118-29 (1998)
- [40] C. J. Frederickson, M. P. Cuajungco, C. J. LaBuda and S. W. Suh: Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience, 115(2), 471-4 (2002)
- [41] J. Y. Lee, J. H. Kim, R. D. Palmiter and J. Y. Koh: Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Exp Neurol, 184(1), 337-47 (2003)
- [42] S. L. Sensi, D. Ton-That and J. H. Weiss: Mitochondrial sequestration and Ca(2+)-dependent release of cytosolic Zn(2+) loads in cortical neurons. Neurobiol Dis, 10(2), 100-8 (2002)
- [43] D. W. Choi and J. Y. Koh: Zinc and brain injury. Annu Rev Neurosci, 21, 347-75 (1998)
- [44] M. P. Cuajungco and G. J. Lees: Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol Dis, 4(3-4), 137-69 (1997)
- [45] C. J. Frederickson, W. Maret and M. P. Cuajungco: Zinc and excitotoxic brain injury: a new model. Neuroscientist, 10(1), 18-25 (2004)
- [46] R. Bargal, N. Avidan, E. Ben-Asher, Z. Olender, M. Zeigler, A. Frumkin, A. Raas-Rothschild, G. Glusman, D. Lancet and G. Bach: Identification of the gene causing mucolipidosis type IV. Nat Genet, 26(1), 118-23 (2000)
- [47] M. T. Bassi, M. Manzoni, E. Monti, M. T. Pizzo, A. Ballabio and G. Borsani: Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet, 67(5), 1110-20 (2000)
- [48] M. Sun, E. Goldin, S. Stahl, J. L. Falardeau, J. C. Kennedy, J. S. Acierno, Jr., C. Bove, C. R. Kaneski, J. Nagle, M. C. Bromley, M. Colman, R. Schiffmann and S. A. Slaugenhaupt: Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet, 9(17), 2471-8 (2000)
- [49] X. P. Dong, X. Cheng, E. Mills, M. Delling, F. Wang, T. Kurz and H. Xu: The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature, 455(7215), 992-6 (2008)
- [50] X. P. Dong, D. Shen, X. Wang, T. Dawson, X. Li, Q. Zhang, X. Cheng, Y. Zhang, L. S. Weisman, M. Delling and H. Xu: PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun, 1, 38 (2010)
- [51] X. P. Dong, X. Wang, D. Shen, S. Chen, M. Liu, Y. Wang, E. Mills, X. Cheng, M. Delling and H. Xu: Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem, 284(46), 32040-52 (2009)
- [52] C. Grimm, M. P. Cuajungco, A. F. van Aken, M. Schnee, S. Jors, C. J. Kros, A. J. Ricci and S. Heller: A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc Natl Acad Sci U S A,
- [53] G. A. Colletti, M. T. Miedel, J. Quinn, N. Andharia, O. A. Weisz and K. Kiselyov: Loss of lysosomal ion channel transient receptor potential channel mucolipin-1 (TRPML1) leads to cathepsin B-dependent apoptosis. J Biol Chem, 287(11), 8082-91 (2012)
- [54] G. Altarescu, M. Sun, D. F. Moore, J. A. Smith, E. A. Wiggs, B. I. Solomon, N. J. Patronas, K. P. Frei, S. Gupta, C. R. Kaneski, O. W. Quarrell, S. A. Slaugenhaupt, E. Goldin and R. Schiffmann: The neurogenetics of mucolipidosis type IV. Neurology, 59(3), 306-13 (2002)
- [55] Y. Grishchuk, K. A. Peña, J. Coblentz, V. E. King, D. M. Humphrey, S. L. Wang, K. I. Kiselyov and S. A. Slaugenhaupt: Impaired myelination and reduced brain ferric iron in the mouse model of mucolipidosis IV. Dis Model Mech (2015)
- [56] G. A. Howell, M. G. Welch and C. J. Frederickson: Stimulation-induced uptake and release of zinc in hippocampal slices. Nature, 308(5961), 736-8 (1984)
- [57] I. Lengyel, J. M. Flinn, T. Peto, D. H. Linkous, K. Cano, A. C. Bird, A. Lanzirotti, C. J. Frederickson and F. J. van Kuijk: High concentration of zinc in sub-retinal pigment epithelial deposits. Exp Eye Res, 84(4), 772-80 (2007)
- [58] S. Redenti and R. L. Chappell: Neuroimaging of zinc released by depolarization of rat retinal cells. Vision Res, 45(28), 3520-5 (2005)
- [59] S. Redenti, H. Ripps and R. L. Chappell: Zinc release at the synaptic terminals of rod photoreceptors. Exp Eye Res, 85(4), 580-4 (2007)
- [60] H. J. Hyun, J. Sohn, Y. H. Ahn, H. C. Shin, J. Y. Koh and Y. H. Yoon: Depletion of intracellular zinc induces macromolecule synthesis- and caspase-dependent apoptosis of cultured retinal cells. Brain Res, 869(1-2), 39-48 (2000)
- [61] H. J. Hyun, J. H. Sohn, D. W. Ha, Y. H. Ahn, J. Y. Koh and Y. H. Yoon: Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 42(2), 460-5 (2001)
- [62] M. H. Yoo, J. Y. Lee, S. E. Lee, J. Y. Koh and Y. H. Yoon: Protection by pyruvate of rat retinal cells against zinc toxicity in vitro, and pressure-induced ischemia in vivo. Invest Ophthalmol Vis Sci, 45(5), 1523-30 (2004)
- [63] Y. H. Yoon, K. H. Jung, A. A. Sadun, H. C. Shin and J. Y. Koh: Ethambutol-induced vacuolar changes and neuronal loss in rat retinal cell culture: mediation by endogenous zinc. Toxicol Appl Pharmacol, 162(2), 107-14 (2000)
- [64] A. Chapel, S. Kieffer-Jaquinod, C. Sagne, Q. Verdon, C. Ivaldi, M. Mellal, J. Thirion, M. Jadot, C. Bruley, J. Garin, B. Gasnier and A. Journet: An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol Cell Proteomics, 12(6), 1572-88 (2013)
- [65] A. Reddy, E. V. Caler and N. W. Andrews: Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell, 106(2), 157-69 (2001)
- [66] M. R. Logan, P. Lacy, S. O. Odemuyiwa, M. Steward, F. Davoine, H. Kita and R. Moqbel: A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy, 61(6), 777-84 (2006)
- [67] K. K. Kiselyov, M. Ahuja, V. Rybalchenko, S. Patel and S. Muallem: The intracellular Ca(2)(+) channels of membrane traffic. Channels (Austin), 6(5), 344-51 (2012)
- [68] Y. Miao, G. Li, X. Zhang, H. Xu and S. N. Abraham: A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger Their Expulsion. Cell, 161(6), 1306-19 (2015)
- [69] M. Samie, X. Wang, X. Zhang, A. Goschka, X. Li, X. Cheng, E. Gregg, M. Azar, Y. Zhuo, A. G. Garrity, Q. Gao, S. Slaugenhaupt, J. Pickel, S. N. Zolov, L. S. Weisman, G. M. Lenk, S. Titus, M. Bryant-Genevier, N. Southall, M. Juan, M. Ferrer and H. Xu: A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev Cell, 26(5), 511-24 (2013)
- [70] J. P. Draye, P. J. Courtoy, J. Quintart and P. Baudhuin: A quantitative model of traffic between plasma membrane and secondary lysosomes: evaluation of inflow, lateral diffusion, and degradation. J Cell Biol, 107(6 Pt 1), 2109-15 (1988)
- [71] J. Burre, H. Zimmermann and W. Volknandt: Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter. J Neurochem, 103(1), 276-87 (2007)
- [72] J. Barth, H. Zimmermann and W. Volknandt: SV31 is a Zn2+-binding synaptic vesicle protein. J Neurochem, 118(4), 558-70 (2011)
- [73] C. J. Frederickson: Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol, 31, 145-238 (1989)
- [74] J. Silva and M. P. Cuajungco: Intracellular Zinc Dyshomeostasis Caused by a Disrupted TRPML1-TMEM163 Protein Interaction. FASEB J, 29(1), Supplement (2015)
- [75] C. Grimm, S. Jors, S. A. Saldanha, A. G. Obukhov, B. Pan, K. Oshima, M. P. Cuajungco, P. Chase, P. Hodder and S. Heller: Small molecule activators of TRPML3. Chem Biol, 17(2), 135-48 (2010)
- [76] S. Vergarajauregui and R. Puertollano: Two di-leucine motifs regulate trafficking of mucolipin-1 to lysosomes. Traffic, 7(3), 337-53 (2006)
- [77] P. Kozik, R. W. Francis, M. N. Seaman and M. S. Robinson: A screen for endocytic motifs. Traffic, 11(6), 843-55 (2010)
- [78] J. Hirst, L. D. Barlow, G. C. Francisco, D. A. Sahlender, M. N. Seaman, J. B. Dacks and M. S. Robinson: The fifth adaptor protein complex. PLoS Biol, 9(10), e1001170 (2011)
- [79] H. J. Bosomworth, J. K. Thornton, L. J. Coneyworth, D. Ford and R. A. Valentine: Efflux function, tissue-specific expression and intracellular trafficking of the Zn transporter ZnT10 indicate roles in adult Zn homeostasis. Metallomics, 4(8), 771-9 (2012)
- [80] F. Chimienti, S. Devergnas, F. Pattou, F. Schuit, R. Garcia-Cuenca, B. Vandewalle, J. Kerr-Conte, L. Van Lommel, D. Grunwald, A. Favier and M. Seve: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci, 119(Pt 20), 4199-206 (2006)
- [81] K. A. Jackson, R. M. Helston, J. A. McKay, E. D. O’Neill, J. C. Mathers and D. Ford: Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J Biol Chem, 282(14), 10423-31 (2007)
- [82] T. Kambe, T. Tsuji, A. Hashimoto and N. Itsumura: The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev, 95(3), 749-84 (2015)
- [83] E. Ohana, E. Hoch, C. Keasar, T. Kambe, O. Yifrach, M. Hershfinkel and I. Sekler: Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter. J Biol Chem, 284(26), 17677-86 (2009)
- [84] W. Maret and B. L. Vallee: Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci U S A, 95(7), 3478-82 (1998)
- [85] S. K. Krezoski, J. Villalobos, C. F. Shaw, 3rd and D. H. Petering: Kinetic lability of zinc bound to metallothionein in Ehrlich cells. Biochem J, 255(2), 483-91 (1988)
- [86] D. J. Eide: Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta, 1763(7), 711-22 (2006)
- [87] Q. W. Cantrell, J. Silva, C. Nguyen, L. D. Hildebrand, T. Rivas, R. Shoemaker, A. Rojas and M. P. Cuajungco: Transmembrane (TMEM)-163 protein is a novel zinc transporter. FASEB J, 30(1), Supplement (2016)
- [88] A. Fukunaka, T. Suzuki, Y. Kurokawa, T. Yamazaki, N. Fujiwara, K. Ishihara, H. Migaki, K. Okumura, S. Masuda, Y. Yamaguchi-Iwai, M. Nagao and T. Kambe: Demonstration and characterization of the heterodimerization of ZnT5 and ZnT6 in the early secretory pathway. J Biol Chem, 284(45), 30798-806 (2009)
- [89] Y. Golan, B. Berman and Y. G. Assaraf: Heterodimerization, altered subcellular localization, and function of multiple zinc transporters in viable cells using bimolecular fluorescence complementation. J Biol Chem, 290(14), 9050-63 (2015)
- [90] I. Lasry, Y. Golan, B. Berman, N. Amram, F. Glaser and Y. G. Assaraf: In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation. J Biol Chem, 289(11), 7275-92 (2014)
- [91] Y. Zhao, R. G. Feresin, J. M. Falcon-Perez and G. Salazar: Differential Targeting of SLC30A10/ZnT10 Heterodimers to Endolysosomal Compartments Modulates EGF-Induced MEK/ERK1/2 Activity. Traffic, 17(3), 267-88 (2016)
