Information
References
Contents
Download
[1]C. Andreini, L. Banci, I. Bertini and A. Rosato. Counting the zinc-proteins encoded in the human genome. J Proteome Res, 5(1), 196-201 (2006)
[2]B. L. Vallee and K. H. Falchuk. The biochemical basis of zinc physiology. Physiol Rev, 73(1), 79-118 (1993)
[3]J. E. Coleman: Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem, 61, 897-946 (1992)
[4]K. A. McCall, C. Huang and C. A. Fierke. Function and mechanism of zinc metalloenzymes. J Nutr, 130(5S Suppl), 1437S-46S (2000)
[5]C. Andreini and I. Bertini. A bioinformatics view of zinc enzymes. J Inorg Biochem, 111, 150-6 (2012)
[6]J. A. Tainer, E D Getzoff, J S Richardson and D. C. Richardson. Structure and mechanism of copper, zinc superoxide dismutase. Nature, 306(5940), 284-7 (1983)
[7]E. Ho and B. N. Ames. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci U S A, 99(26), 16770-5 (2002)
[8]L. Huang and S. Tepaamorndech. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med, 34(2-3), 548-60 (2013)
[9]J. Jeong and D. J. Eide. The SLC39 family of zinc transporters. Mol Aspects Med, 34(2-3), 612-9 (2013)
[10]M. Schweigel-Rontgen: The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Curr Top Membr, 73, 321-55 (2014)
[11]T. Kambe, A. Hashimoto and S. Fujimoto. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci, 71(17), 3281-95 (2014)
[12]Y. Golan, B. Berman and Y. G. Assaraf. Heterodimerization, altered subcellular localization, and function of multiple zinc transporters in viable cells using bimolecular fluorescence complementation. J Biol Chem, 290(14), 9050-63 (2015)
[13]T. Kambe, T. Tsuji, A. Hashimoto and N. Itsumura. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev, 95(3), 749-84 (2015)
[14]E. P. Sorgjerd, F. Skorpen, K. Kvaloy, K. Midthjell and V. Grill. Prevalence of ZnT8 antibody in relation to phenotype and SLC30A8 polymorphism in adult autoimmune diabetes: results from the HUNT study, Norway. Autoimmunity, 46(1), 74-9 (2013)
[15]J. Xu, J. Wang and B. Chen. SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res, 11(2), 1592-8 (2012)
[16]J. M. Howson, S. Krause, H. Stevens, D J Smyth, J M Wenzlau, E. Bonifacio, J. Hutton, A G Ziegler, J A Todd and P. Achenbach. Genetic association of zinc transporter 8 (ZnT8) autoantibodies in type 1 diabetes cases. Diabetologia, 55(7), 1978-84 (2012)
[17]E. Kawasaki: ZnT8 and type 1 diabetes. Endocr J, 59(7), 531-7 (2012)
[18]T. J. Nicolson, E A Bellomo, N. Wijesekara, M K Loder, J M Baldwin, A V Gyulkhandanyan, V. Koshkin, A I Tarasov, R. Carzaniga, K. Kronenberger, T K Taneja, G. da Silva Xavier, S. Libert, P. Froguel, R. Scharfmann, V. Stetsyuk, P. Ravassard, H. Parker, F M Gribble, F. Reimann, R. Sladek, S J Hughes, P R Johnson, M. Masseboeuf, R. Burcelin, S A Baldwin, M. Liu, R. Lara-Lemus, P. Arvan, F C Schuit, M B Wheeler, F. Chimienti and G. A. Rutter. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes, 58(9), 2070-83 (2009)
[19]J. M. Wenzlau, Y. Liu, L. Yu, O. Moua, K T Fowler, S. Rangasamy, J. Walters, G S Eisenbarth, H W Davidson and J. C. Hutton. A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes, 57(10), 2693-7 (2008)
[20]J. Geiser, K J Venken, R C De Lisle and G. K. Andrews. A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet, 8(6), e1002766 (2012)
[21]G. K. Andrews: Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem Soc Trans, 36(Pt 6), 1242-6 (2008)
[22]T. Kambe and G. K. Andrews. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol Cell Biol, 29(1), 129-39 (2009)
[23]J. Dufner-Beattie, B P Weaver, J. Geiser, M. Bilgen, M. Larson, W. Xu and G. K. Andrews. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet, 16(12), 1391-9 (2007)
[24]J. Dufner-Beattie, F. Wang, Y M Kuo, J. Gitschier, D. Eide and G. K. Andrews. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem, 278(35), 33474-81 (2003)
[25]A. S. Prasad, J A Halsted and M. Nadimi. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med, 31, 532-46 (1961)
[26]E. A. Platz and K. J. Helzlsouer. Selenium, zinc, and prostate cancer. Epidemiol Rev, 23(1), 93-101 (2001)
[27]A. S. Prasad and O. Kucuk. Zinc in cancer prevention. Cancer Metastasis Rev, 21(3-4), 291-5 (2002)
[28]P. Stocks and R. I. Davies. Zinc and Copper Content of Soils Associated with the Incidence of Cancer of the Stomach and Other Organs. Br J Cancer, 18, 14-24 (1964)
[29]C. Devirgiliis, P D Zalewski, G. Perozzi and C. Murgia. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res, 622(1-2), 84-93 (2007)
[30]B. Szewczyk: Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci, 5, 33 (2013)
[31]J. Jansen, W. Karges and L. Rink. Zinc and diabetes--clinical links and molecular mechanisms. J Nutr Biochem, 20(6), 399-417 (2009)
[32]G. Huang, Y. Xiang, L. Pan, X. Li, S. Luo and Z. Zhou. Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus. Diabetes Metab Res Rev, 29(5), 363-8 (2013)
[33]B. Haglund, K. Ryckenberg, O. Selinus and G. Dahlquist. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care, 19(8), 873-5 (1996)
[34]A. S. Prasad: Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr, 1, 14 (2014)
[35]J. C. King, D M Shames and L. R. Woodhouse. Zinc homeostasis in humans. J Nutr, 130(5S Suppl), 1360S-6S (2000)
[36]M. J. Jackson: Physiology of Zinc: General Aspects. In: Zinc in Human Biology. Ed C. F. Mills. Springer London, London (1989)
[37]N. Meunier, C. Feillet-Coudray, M. Rambeau, M. Andriollo-Sanchez, M. Brandolini-Bunlon, S J Coulter, K D Cashman, A. Mazur and C. Coudray. Impact of micronutrient dietary intake and status on intestinal zinc absorption in late middle-aged men: the ZENITH study. Eur J Clin Nutr, 59 Suppl 2, S48-52 (2005)
[38]M. Rukgauer, J. Klein and J. D. Kruse-Jarres. Reference values for the trace elements copper, manganese, selenium, and zinc in the serum/plasma of children, adolescents, and adults. J Trace Elem Med Biol, 11(2), 92-8 (1997)
[39]S. C. Burdette, G K Walkup, B. Spingler, R Y Tsien and S. J. Lippard. Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc, 123(32), 7831-41 (2001)
[40]C. E. Outten and T. V. O'Halloran. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science, 292(5526), 2488-92 (2001)
[41]C. J. Frederickson, E J Kasarskis, D. Ringo and R. E. Frederickson. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods, 20(2), 91-103 (1987)
[42]G. Karagulova, Y. Yue, A. Moreyra, M. Boutjdir and I. Korichneva. Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther, 321(2), 517-25 (2007)
[43]J. Gibon, P. Tu, V. Frazzini, S L Sensi and A. Bouron. The thiol-modifying agent N-ethylmaleimide elevates the cytosolic concentration of free Zn(2+) but not of Ca(2+) in murine cortical neurons. Cell Calcium, 48(1), 37-43 (2010)
[44]M. Chevallet, L. Jarvis, A. Harel, S. Luche, S. Degot, V. Chapuis, G. Boulay, T. Rabilloud and A. Bouron. Functional consequences of the over-expression of TRPC6 channels in HEK cells: impact on the homeostasis of zinc. Metallomics, 6(7), 1269-76 (2014)
[45]J. L. Vinkenborg, T J Nicolson, E A Bellomo, M S Koay, G A Rutter and M. Merkx. Genetically encoded FRET sensors to monitor intracellular Zn2+homeostasis. Nat Methods, 6(10), 737-40 (2009)
[46]P. J. Dittmer, J G Miranda, J A Gorski and A. E. Palmer. Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem, 284(24), 16289-97 (2009)
[47]A. Fukunaka and T. Kambe. [Mechanism of zinc transport by zinc transporters, ZnT and ZIP]. Seikagaku, 82(1), 30-4 (2010)
[48]T. Kambe: An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem, 75(6), 1036-43 (2011)
[49]L. A. Lichten and R. J. Cousins. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr, 29, 153-76 (2009)
[50]R. J. Cousins, J P Liuzzi and L. A. Lichten. Mammalian zinc transport, trafficking, and signals. J Biol Chem, 281(34), 24085-9 (2006)
[51]L. A. Gaither and D. J. Eide. Eukaryotic zinc transporters and their regulation. Biometals, 14(3-4), 251-270 (2001)
[52]R. D. Palmiter and S. D. Findley. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J, 14(4), 639-49 (1995)
[53]K. Inoue, Z. O'Bryant and Z. G. Xiong. Zinc-permeable ion channels: effects on intracellular zinc dynamics and potential physiological/pathophysiological significance. Curr Med Chem, 22(10), 1248-57 (2015)
[54]K. Kawa: Zinc-dependent action potentials in giant neurons of the snail, Euhadra quaestia. J Membr Biol, 49(4), 325-44 (1979)
[55]S. L. Sensi, L M Canzoniero, S P Yu, H S Ying, J Y Koh, G A Kerchner and D. W. Choi. Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci, 17(24), 9554-64 (1997)
[56]A. V. Gyulkhandanyan, S C Lee, G. Bikopoulos, F. Dai and M. B. Wheeler. The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+channel. J Biol Chem, 281(14), 9361-72 (2006)
[57]S. Yamasaki, A. Hasegawa, S. Hojyo, W. Ohashi, T. Fukada, K. Nishida and T. Hirano. A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS One, 7(6), e39654 (2012)
[58]A. Bouron and J. Oberwinkler. Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch, 466(3), 381-7 (2014)
[59]S. J. Park, S H Min, H W Kang and J. H. Lee. Differential zinc permeation and blockade of L-type Ca2+channel isoforms Cav1.2 and Cav1.3. Biochim Biophys Acta, 1848(10 Pt A), 2092-100 (2015)
[60]Y. Jia, J M Jeng, S L Sensi and J. H. Weiss. Zn2+currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones. J Physiol, 543(Pt 1), 35-48 (2002)
[61]X. Zhu, M. Jiang, M. Peyton, G. Boulay, R. Hurst, E. Stefani and L. Birnbaumer. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+entry. Cell, 85(5), 661-71 (1996)
[62]M. Gautier, I. Dhennin-Duthille, A S Ay, P. Rybarczyk, I. Korichneva and H. Ouadid-Ahidouch. New insights into pharmacological tools to TR(i)P cancer up. Br J Pharmacol, 171(10), 2582-92 (2014)
[63]L. W. Runnels, L. Yue and D. E. Clapham. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science, 291(5506), 1043-7 (2001)
[64]M. K. Monteilh-Zoller, M C Hermosura, M J Nadler, A M Scharenberg, R. Penner and A. Fleig. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol, 121(1), 49-60 (2003)
[65]K. Inoue, D. Branigan and Z. G. Xiong. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem, 285(10), 7430-9 (2010)
[66]T. F. Wagner, A. Drews, S. Loch, F. Mohr, S E Philipp, S. Lambert and J. Oberwinkler. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch, 460(4), 755-65 (2010)
[67]K. Kiselyov, G A Colletti, A. Terwilliger, K. Ketchum, C W Lyons, J. Quinn and S. Muallem. TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium, 50(3), 288-94 (2011)
[68]C. T. Walsh, H H Sandstead, A S Prasad, P M Newberne and P. J. Fraker. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect, 102 Suppl 2, 5-46 (1994)
[69]M. Brnic, R. Wegmuller, A. Melse-Boonstra, T. Stomph, C. Zeder, F M Tay and R. F. Hurrell. Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate. J Nutr, 146(1), 76-80 (2016)
[70]J. H. Beattie and I. S. Kwun. Is zinc deficiency a risk factor for atherosclerosis? Br J Nutr, 91(2), 177-81 (2004)
[71]J. H. Beattie, M J Gordon, S J Duthie, C J McNeil, G W Horgan, G F Nixon, J. Feldmann and I. S. Kwun. Suboptimal dietary zinc intake promotes vascular inflammation and atherogenesis in a mouse model of atherosclerosis. Mol Nutr Food Res, 56(7), 1097-105 (2012)
[72]L. M. Jampol and F. L. Ferris, 3rd. Antioxidants and zinc to prevent progression of age-related macular degeneration. JAMA, 286(19), 2466-8 (2001)
[73]A. S. Prasad: Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol, 28(4), 357-63 (2014)
[74]A. S. Prasad: Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr, 4(2), 176-90 (2013)
[75]C. S. Yang: Research on esophageal cancer in China: a review. Cancer Res, 40(8 Pt 1), 2633-44 (1980)
[76]K. Jaskiewicz, W F Marasas, J E Rossouw, F E Van Niekerk and E. W. Heine Tech. Selenium and other mineral elements in populations at risk for esophageal cancer. Cancer, 62(12), 2635-9 (1988)
[77]D. H. Barch: Esophageal cancer and microelements. J Am Coll Nutr, 8(2), 99-107 (1989)
[78]C. C. Abnet, B. Lai, Y L Qiao, S. Vogt, X M Luo, P R Taylor, Z W Dong, S D Mark and S. M. Dawsey. Zinc concentration in esophageal biopsy specimens measured by x-ray fluorescence and esophageal cancer risk. J Natl Cancer Inst, 97(4), 301-6 (2005)
[79]J. Gumulec, M. Masarik, S. Krizkova, V. Adam, J. Hubalek, J. Hrabeta, T. Eckschlager, M. Stiborova and R. Kizek. Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr Med Chem, 18(33), 5041-51 (2011)
[80]P. Christudoss, R. Selvakumar, J J Fleming and G. Gopalakrishnan. Zinc status of patients with benign prostatic hyperplasia and prostate carcinoma. Indian J Urol, 27(1), 14-8 (2011)
[81]B. F. Issell, B V MacFadyen, E T Gum, M. Valdivieso, S J Dudrick and G. P. Bodey. Serum zinc levels in lung cancer patients. Cancer, 47(7), 1845-8 (1981)
[82]J. Buntzel, F. Bruns, M. Glatzel, A. Garayev, R. Mucke, K. Kisters, U. Schafer, K. Schonekaes and O. Micke. Zinc concentrations in serum during head and neck cancer progression. Anticancer Res, 27(4A), 1941-3 (2007)
[83]S. Alam and S. L. Kelleher. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients, 4(8), 875-903 (2012)
[84]V. Zaichick, T V Sviridova and S. V. Zaichick. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol, 29(5), 565-74 (1997)
[85]C. T. Han, N W Schoene and K. Y. Lei. Influence of zinc deficiency on Akt-Mdm2-p53 and Akt-p21 signaling axes in normal and malignant human prostate cells. Am J Physiol Cell Physiol, 297(5), C1188-99 (2009)
[86]M. Yan, Y. Song, C P Wong, K. Hardin and E. Ho. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr, 138(4), 667-73 (2008)
[87]K. Golovine, R G Uzzo, P. Makhov, P L Crispen, D. Kunkle and V. M. Kolenko. Depletion of intracellular zinc increases expression of tumorigenic cytokines VEGF, IL-6 and IL-8 in prostate cancer cells via NF-kappaB-dependent pathway. Prostate, 68(13), 1443-9 (2008)
[88]L. Y. Fong, V T Nguyen and J. L. Farber. Esophageal cancer prevention in zinc-deficient rats: rapid induction of apoptosis by replenishing zinc. J Natl Cancer Inst, 93(20), 1525-33 (2001)
[89]T. O. Lipman, A. Diamond, M H Mellow and K. Y. Patterson. Esophageal zinc content in human squamous esophageal cancer. J Am Coll Nutr, 6(1), 41-6 (1987)
[90]L. Y. Fong, A. Sivak and P. M. Newberne. Zinc deficiency and methylbenzylnitrosamine-induced esophageal cancer in rats. J Natl Cancer Inst, 61(1), 145-50 (1978)
[91]D. H. Barch, S C Kuemmerle, P F Hollenberg and P. M. Iannaccone. Esophageal microsomal metabolism of N-nitrosomethylbenzylamine in the zinc-deficient rat. Cancer Res, 44(12 Pt 1), 5629-33 (1984)
[92]L. Y. Fong, J L Farber and P. N. Magee. Zinc replenishment reduces esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in zinc-deficient rats. Carcinogenesis, 19(9), 1591-6 (1998)
[93]L. Y. Fong, D J Feith and A. E. Pegg. Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. Cancer Res, 63(14), 3945-54 (2003)
[94]L. Y. Fong, H. Ishii, V T Nguyen, A. Vecchione, J L Farber, C M Croce and K. Huebner. p53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice. Cancer Res, 63(1), 186-95 (2003)
[95]L. Y. Fong, K M Lau, K. Huebner and P. N. Magee. Induction of esophageal tumors in zinc-deficient rats by single low doses of N-nitrosomethylbenzylamine (NMBA): analysis of cell proliferation, and mutations in H-ras and p53 genes. Carcinogenesis, 18(8), 1477-84 (1997)
[96]L. Y. Fong, J X Li, J L Farber and P. N. Magee. Cell proliferation and esophageal carcinogenesis in the zinc-deficient rat. Carcinogenesis, 17(9), 1841-8 (1996)
[97]L. Y. Fong and P. N. Magee. Dietary zinc deficiency enhances esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in C57BL/6 mouse. Cancer Lett, 143(1), 63-9 (1999)
[98]L. Y. Fong, R. Mancini, H. Nakagawa, A K Rustgi and K. Huebner. Combined cyclin D1 overexpression and zinc deficiency disrupts cell cycle and accelerates mouse forestomach carcinogenesis. Cancer Res, 63(14), 4244-52 (2003)
[99]L. Y. Fong, V T Nguyen, J L Farber, K. Huebner and P. N. Magee. Early deregulation of the the p16ink4a-cyclin D1/cyclin-dependent kinase 4-retinoblastoma pathway in cell proliferation-driven esophageal tumorigenesis in zinc-deficient rats. Cancer Res, 60(16), 4589-95 (2000)
[100]L. Y. Fong, A E Pegg and P. N. Magee. Alpha-difluoromethylornithine inhibits N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in zinc-deficient rats: effects on esophageal cell proliferation and apoptosis. Cancer Res, 58(23), 5380-8 (1998)
[101]C. Taccioli, H. Chen, Y. Jiang, X P Liu, K. Huang, K J Smalley, J L Farber, C M Croce and L. Y. Fong. Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature. Oncogene, 31(42), 4550-8 (2012)
[102]A. Kumar, T. Chatopadhyay, M. Raziuddin and R. Ralhan. Discovery of deregulation of zinc homeostasis and its associated genes in esophageal squamous cell carcinoma using cDNA microarray. Int J Cancer, 120(2), 230-42 (2007)
[103]X. Wu, J. Tang and M. Xie. Serum and hair zinc levels in breast cancer: a meta-analysis. Sci Rep, 5, 12249 (2015)
[104]Z. Bostanci, R P Mack, Jr., S. Lee, D I Soybel and S. L. Kelleher. Paradoxical zinc toxicity and oxidative stress in the mammary gland during marginal dietary zinc deficiency. Reprod Toxicol, 54, 84-92 (2015)
[105]E. J. Margalioth, J G Schenker and M. Chevion. Copper and zinc levels in normal and malignant tissues. Cancer, 52(5), 868-72 (1983)
[106]Y. Cui, S. Vogt, N. Olson, A G Glass and T. E. Rohan. Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomarkers Prev, 16(8), 1682-5 (2007)
[107]P. Chandler, B S Kochupurakkal, S. Alam, A L Richardson, D I Soybel and S. L. Kelleher. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer. Mol Cancer, 15(1), 2 (2016)
[108]M. Hasumi, K. Suzuki, H. Matsui, H. Koike, K. Ito and H. Yamanaka. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett, 200(2), 187-95 (2003)
[109]N. H. McCormick and S. L. Kelleher. ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol, 303(3), C291-7 (2012)
[110]S. M. Henshall, D E Afar, K K Rasiah, L G Horvath, K. Gish, I. Caras, V. Ramakrishnan, M. Wong, U. Jeffry, J G Kench, D I Quinn, J J Turner, W. Delprado, C S Lee, D. Golovsky, P C Brenner, G F O'Neill, R. Kooner, P D Stricker, J J Grygiel, D H Mack and R. L. Sutherland. Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene, 22(38), 6005-12 (2003)
[111]L. A. Johnson, M A Kanak, A. Kajdacsy-Balla, J P Pestaner and O. Bagasra. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods, 52(4), 316-21 (2010)
[112]R. B. Franklin, P. Feng, B. Milon, M M Desouki, K K Singh, A. Kajdacsy-Balla, O. Bagasra and L. C. Costello. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer, 4, 32 (2005)
[113]M. M. Desouki, J. Geradts, B. Milon, R B Franklin and L. C. Costello. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol Cancer, 6, 37 (2007)
[114]Q. G. Chen, Z. Zhang, Q. Yang, G Y Shan, X Y Yu and C. Z. Kong. The role of zinc transporter ZIP4 in prostate carcinoma. Urol Oncol, 30(6), 906-11 (2012)
[115]L. C. Costello, B A Levy, M M Desouki, J. Zou, O. Bagasra, L A Johnson, N. Hanna and R. B. Franklin. Decreased zinc and downregulation of ZIP3 zinc uptake transporter in the development of pancreatic adenocarcinoma. Cancer Biol Ther, 12(4), 297-303 (2011)
[116]M. Li, Y. Zhang, Z. Liu, U. Bharadwaj, H. Wang, X. Wang, S. Zhang, J P Liuzzi, S M Chang, R J Cousins, W E Fisher, F C Brunicardi, C D Logsdon, C. Chen and Q. Yao. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A, 104(47), 1↼-41 (2007)
[117]R. B. Franklin, J. Zou and L. C. Costello. The cytotoxic role of RREB1, ZIP3 zinc transporter, and zinc in human pancreatic adenocarcinoma. Cancer Biol Ther, 15(10), 1431-7 (2014)
[118]L. C. Costello and R. B. Franklin. A Review of the Current Status and Concept of the Emerging Implications of Zinc and Zinc Transporters in the Development of Pancreatic Cancer. Pancreat Disord Ther, Suppl 4 (2013)
[119]M. Li, Y. Zhang, U. Bharadwaj, Q J Zhai, C H Ahern, W E Fisher, F C Brunicardi, C D Logsdon, C. Chen and Q. Yao. Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts. Clin Cancer Res, 15(19), 5993-6001 (2009)
[120]X. Cui, Y. Zhang, J. Yang, X. Sun, J P Hagan, S. Guha and M. Li. ZIP4 confers resistance to zinc deficiency-induced apoptosis in pancreatic cancer. Cell Cycle, 13(7), 1180-6 (2014)
[121]K. M. Taylor, P. Vichova, N. Jordan, S. Hiscox, R. Hendley and R. I. Nicholson. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells. Endocrinology, 149(10), 4912-20 (2008)
[122]W. Maret: Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals, 24(3), 411-8 (2011)
[123]P. J. Little, R. Bhattacharya, A E Moreyra and I. L. Korichneva. Zinc and cardiovascular disease. Nutrition, 26(11-12), 1050-7 (2010)
[124]I. Korichneva: Zinc dynamics in the myocardial redox signaling network. Antioxid Redox Signal, 8(9-10), 1707-21 (2006)
[125]A. Hartwig: Metal interaction with redox regulation: an integrating concept in metal carcinogenesis? Free Radic Biol Med, 55, 63-72 (2013)
[126]L. Marger, C R Schubert and D. Bertrand. Zinc: an underappreciated modulatory factor of brain function. Biochem Pharmacol, 91(4), 426-35 (2014)
[127]S. Punthambaker, J A Blum and R. I. Hume. High potency zinc modulation of human P2X2 receptors and low potency zinc modulation of rat P2X2 receptors share a common molecular mechanism. J Biol Chem, 287(26), 22099-111 (2012)
[128]K. Xiong, R W Peoples, J P Montgomery, Y. Chiang, R R Stewart, F F Weight and C. Li. Differential modulation by copper and zinc of P2X2 and P2X4 receptor function. J Neurophysiol, 81(5), 2088-94 (1999)
[129]Q. Jiang, C J Papasian, J Q Wang, Z G Xiong and X. P. Chu. Inhibitory regulation of acid-sensing ion channel 3 by zinc. Neuroscience, 169(2), 574-83 (2010)
[130]S. Hou, L E Vigeland, G. Zhang, R. Xu, M. Li, S H Heinemann and T. Hoshi. Zn2+activates large conductance Ca2+-activated K+channel via an intracellular domain. J Biol Chem, 285(9), 6434-42 (2010)
[131]A. Traboulsie, J. Chemin, M. Chevalier, J F Quignard, J. Nargeot and P. Lory. Subunit-specific modulation of T-type calcium channels by zinc. J Physiol, 578(Pt 1), 159-71 (2007)
[132]K. Uchida and M. Tominaga. Extracellular zinc ion regulates transient receptor potential melastatin 5 (TRPM5) channel activation through its interaction with a pore loop domain. J Biol Chem, 288(36), 25950-5 (2013)
[133]T. G. Banke and A. D. Wickenden. Intracellular zinc irritates TRPA1. Nat Chem Biol, 5(3), 141-2 (2009)
[134]H. Hu, M. Bandell, M J Petrus, M X Zhu and A. Patapoutian. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol, 5(3), 183-90 (2009)
[135]H. Ouadid-Ahidouch and A. Ahidouch. K(+) channels and cell cycle progression in tumor cells. Front Physiol, 4, 220 (2013)
[136]V. Lehen'kyi, G. Shapovalov, R. Skryma and N. Prevarskaya. Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am J Physiol Cell Physiol, 301(6), C1281-9 (2011)
[137]A. Becchetti and A. Arcangeli. Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Adv Exp Med Biol, 674, 107-23 (2010)
[138]A. Fiorio Pla, D. Avanzato, L. Munaron and I. S. Ambudkar. Ion channels and transporters in cancer. 6. Vascularizing the tumor: TRP channels as molecular targets. Am J Physiol Cell Physiol, 302(1), C9-15 (2012)
[139]L. A. Pardo, C. Contreras-Jurado, M. Zientkowska, F. Alves and W. Stuhmer. Role of voltage-gated potassium channels in cancer. J Membr Biol, 205(3), 115-24 (2005)
[140]N. Comes, A. Serrano-Albarras, J. Capera, C. Serrano-Novillo, E. Condom, Y C S. Ramon, J C Ferreres and A. Felipe. Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta, 1848(10 Pt B), 2477-92 (2015)
[141]M. Gueguinou, A. Chantome, G. Fromont, P. Bougnoux, C. Vandier and M. Potier-Cartereau. KCa and Ca(2+) channels: the complex thought. Biochim Biophys Acta, 1843(10), 2322-33 (2014)
[142]L. Catacuzzeno, B. Fioretti and F. Franciolini. Expression and Role of the Intermediate-Conductance Calcium-Activated Potassium Channel KCa3.1 in Glioblastoma. J Signal Transduct, 2012, 421564 (2012)
[143]J. A. Rodriguez-Rasgado, I. Acuna-Macias and J. Camacho. Eag1 channels as potential cancer biomarkers. Sensors (Basel), 12(5), 5986-95 (2012)
[144]H. Ouadid-Ahidouch, A. Ahidouch and L. A. Pardo. Kv10.1 K channel: from physiology to cancer. Pflugers Arch (2016)
[145]E. Bulk, A S Ay, M. Hammadi, H. Ouadid-Ahidouch, S. Schelhaas, A. Hascher, C. Rohde, N H Thoennissen, R. Wiewrodt, E. Schmidt, A. Marra, L. Hillejan, A H Jacobs, H U Klein, M. Dugas, W E Berdel, C. Muller-Tidow and A. Schwab. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer, 137(6), 1306-17 (2015)
[146]N. Haren, H. Khorsi, M. Faouzi, A. Ahidouch, H. Sevestre and H. Ouadid-Ahidouch. Intermediate conductance Ca2+activated K+channels are expressed and functional in breast adenocarcinomas: correlation with tumour grade and metastasis status. Histol Histopathol, 25(10), 1247-55 (2010)
[147]L. A. Pardo and W. Stuhmer. The roles of K(+) channels in cancer. Nat Rev Cancer, 14(1), 39-48 (2014)
[148]H. Ouadid-Ahidouch and A. Ahidouch. K+channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. Journal of Membrane Biology, 221(1), 1-6 (2008)
[149]H. Ouadid-Ahidouch, X. Le Bourhis, M. Roudbaraki, R A Toillon, P. Delcourt and N. Prevarskaya. Changes in the K+current-density of MCF-7 cells during progression through the cell cycle: Possible involvement of a h-ether.a-gogo K+channel. Recept. Channels, 7(5), 345-356 (2001)
[150]M. Hammadi, V. Chopin, F. Matifat, I. Dhennin-Duthille, M. Chasseraud, H. Sevestre and H. Ouadid-Ahidouch. Human ether a-gogo K+channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol, 227(12), 3837-3846 (2012)
[151]I. Restrepo-Angulo, C. Sanchez-Torres and J. Camacho. Human EAG1 potassium channels in the epithelial-to-mesenchymal transition in lung cancer cells. Anticancer Res, 31(4), 1265-70 (2011)
[152]M. Faouzi, V. Chopin, A. Ahidouch and H. Ouadid-Ahidouch. Intermediate Ca2+-sensitive K+channels are necessary for prolactin-induced proliferation in breast cancer cells. J Membr Biol, 234(1), 47-56 (2010)
[153]H. Ouadid-Ahidouch, M. Roudbaraki, P. Delcourt, A. Ahidouch, N. Joury and N. Prevarskaya. Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol, 287(1), C125-34 (2004)
[154]N. Prevarskaya, L. Zhang and G. Barritt. TRP channels in cancer. Biochim Biophys Acta, 1772(8), 937-46 (2007)
[155]H. Ouadid-Ahidouch, I. Dhennin-Duthille, M. Gautier, H. Sevestre and A. Ahidouch. TRP channels: diagnostic markers and therapeutic targets for breast cancer? Trends Mol Med, 19(2), 117-24 (2013)
[156]B. Nilius: TRP channels in disease. Biochim Biophys Acta, 1772(8), 805-12 (2007)
[157]D. Gkika and N. Prevarskaya. TRP channels in prostate cancer: the good, the bad and the ugly? Asian J Androl, 13(5), 673-6 (2011)
[158]X. Ding, Z. He, Y. Shi, Q. Wang and Y. Wang. Targeting TRPC6 channels in oesophageal carcinoma growth. Expert Opin Ther Targets, 14(5), 513-27 (2010)
[159]I. Dhennin-Duthille, M. Gautier, M. Faouzi, A. Guilbert, M. Brevet, D. Vaudry, A. Ahidouch, H. Sevestre and H. Ouadid-Ahidouch. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem, 28(5), 813-22 (2011)
[160]A. Guilbert, M. Gautier, I. Dhennin-Duthille, N. Haren, H. Sevestre and H. Ouadid-Ahidouch. Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol, 297(3), C493-502 (2009)
[161]X. Cai: Molecular evolution and structural analysis of the Ca(2+) release-activated Ca(2+) channel subunit, Orai. J Mol Biol, 368(5), 1284-91 (2007)
[162]A. Amcheslavsky, M L Wood, A V Yeromin, I. Parker, J A Freites, D J Tobias and M. D. Cahalan. Molecular biophysics of Orai store-operated Ca2+channels. Biophys J, 108(2), 237-46 (2015)
[163]M. Prakriya and R. S. Lewis. Store-Operated Calcium Channels. Physiol Rev, 95(4), 1383-436 (2015)
[164]S. Yang, J J Zhang and X. Y. Huang. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell, 15(2), 124-34 (2009)
[165]H. Zhu, H. Zhang, F. Jin, M. Fang, M. Huang, C S Yang, T. Chen, L. Fu and Z. Pan. Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+oscillations in human esophageal squamous cell carcinoma. Oncotarget, 5(11), 3455-71 (2014)
[166]L. Clarysse, M. Gueguinou, M. Potier-Cartereau, G. Vandecasteele, P. Bougnoux, S. Chevalier, A. Chantome and C. Vandier. cAMP-PKA inhibition of SK3 channel reduced both Ca2+entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Arch, 466(10), 1921-32 (2014)
[167]M. Faouzi, F. Hague, M. Potier, A. Ahidouch, H. Sevestre and H. Ouadid-Ahidouch. Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol, 226(2), 542-51 (2011)
[168]M. Faouzi, P. Kischel, F. Hague, A. Ahidouch, N. Benzerdjeb, H. Sevestre, R. Penner and H. Ouadid-Ahidouch. ORAI3 silencing alters cell proliferation and cell cycle progression via c-myc pathway in breast cancer cells. Biochim Biophys Acta, 1833(3), 752-60 (2013)
[169]R. K. Motiani, X. Zhang, K E Harmon, R S Keller, K. Matrougui, J A Bennett and M. Trebak. Orai3 is an estrogen receptor alpha-regulated Ca(2)(+) channel that promotes tumorigenesis. Faseb j, 27(1), 63-75 (2013)
[170]M. Yang, S H Kroft and C. R. Chitambar. Gene expression analysis of gallium-resistant and gallium-sensitive lymphoma cells reveals a role for metal-responsive transcription factor-1, metallothionein-2A, and zinc transporter-1 in modulating the antineoplastic activity of gallium nitrate. Mol Cancer Ther, 6(2), 633-43 (2007)
[171]K. Iguchi, K. Ishii, T. Nakano, T. Otsuka, S. Usui, Y. Sugimura and K. Hirano. Isolation and characterization of LNCaP sublines differing in hormone sensitivity. J Androl, 28(5), 670-8 (2007)
[172]L. C. Costello, J. Zou, M M Desouki and R. B. Franklin. Evidence for changes in RREB-1, ZIP3, and Zinc in the early development of pancreatic adenocarcinoma. J Gastrointest Cancer, 43(4), 570-8 (2012)
[173]X. Xu, H J Guo, H Y Xie, J. Li, R Z Zhuang, Q. Ling, L. Zhou, X Y Wei, Z K Liu, S M Ding, K J Chen, Z Y Xu and S. S. Zheng. ZIP4, a novel determinant of tumor invasion in hepatocellular carcinoma, contributes to tumor recurrence after liver transplantation. Int J Biol Sci, 10(3), 245-56 (2014)
[174]Y. Lin, Y. Chen, Y. Wang, J. Yang, V F Zhu, Y. Liu, X. Cui, L. Chen, W. Yan, T. Jiang, G W Hergenroeder, S A Fletcher, J M Levine, D H Kim, N. Tandon, J J Zhu and M. Li. ZIP4 is a novel molecular marker for glioma. Neuro Oncol, 15(8), 1008-16 (2013)
[175]X. Kang, R. Chen, J. Zhang, G. Li, P G Dai, C. Chen and H. J. Wang. Expression Profile Analysis of Zinc Transporters (ZIP4, ZIP9, ZIP11, ZnT9) in Gliomas and their Correlation with IDH1 Mutation Status. Asian Pac J Cancer Prev, 16(8), 3355-60 (2015)
[176]C. Xu, M B Wallace, J. Yang, L. Jiang, Q. Zhai, Y. Zhang, C. Hong, Y. Chen, T S Frank, J A Stauffer, H J Asbun, M. Raimondo, T A Woodward, Z. Li, S. Guha, L. Zheng and M. Li. ZIP4 is a novel diagnostic and prognostic marker in human pancreatic cancer: a systemic comparison between EUS-FNA and surgical specimens. Curr Mol Med, 14(3), 309-15 (2014)
[177]N. Yang, Y. Tang, F. Wang, H. Zhang, D. Xu, Y. Shen, S. Sun and G. Yang. Blockade of store-operated Ca(2+) entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett, 330(2), 163-9 (2013)
[178]J. Jin, Z. Li, J. Liu, Y. Wu, X. Gao and Y. He. Knockdown of zinc transporter ZIP5 (SLC39A5) expression significantly inhibits human esophageal cancer progression. Oncol Rep, 34(3), 1431-9 (2015)
[179]J. Schneider, M. Ruschhaupt, A. Buness, M. Asslaber, P. Regitnig, K. Zatloukal, W. Schippinger, F. Ploner, A. Poustka and H. Sultmann. Identification and meta-analysis of a small gene expression signature for the diagnosis of estrogen receptor status in invasive ductal breast cancer. Int J Cancer, 119(12), 2974-9 (2006)
[180]S. Tozlu, I. Girault, S. Vacher, J. Vendrell, C. Andrieu, F. Spyratos, P. Cohen, R. Lidereau and I. Bieche. Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-PCR approach. Endocr Relat Cancer, 13(4), 1109-20 (2006)
[181]G. Kasper, A A Weiser, A. Rump, K. Sparbier, E. Dahl, A. Hartmann, P. Wild, U. Schwidetzky, E. Castanos-Velez and K. Lehmann. Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer, 117(6), 961-73 (2005)
[182]H. W. Lue, X. Yang, R. Wang, W. Qian, R Z Xu, R. Lyles, A O Osunkoya, B P Zhou, R L Vessella, M. Zayzafoon, Z R Liu, H E Zhau and L. W. Chung. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One, 6(11), e27720 (2011)
[183]J. Unno, K. Satoh, M. Hirota, A. Kanno, S. Hamada, H. Ito, A. Masamune, N. Tsukamoto, F. Motoi, S. Egawa, M. Unno, A. Horii and T. Shimosegawa. LIV-1 enhances the aggressive phenotype through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. Int J Oncol, 35(4), 813-21 (2009)
[184]L. Zhao, W. Chen, K M Taylor, B. Cai and X. Li. LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway. Biochem Biophys Res Commun, 363(1), 82-8 (2007)
[185]R. Shen, F. Xie, H. Shen, Q. liu, T. Zheng, X. Kou, D. Wang and J. Yang. Negative correlation of LIV-1 and E-cadherin expression in hepatocellular carcinoma cells. PLoS One, 8(2), e56542 (2013)
[186]C. Wu, D. Li, W. Jia, Z. Hu, Y. Zhou, D. Yu, T. Tong, M. Wang, D. Lin, Y. Qiao, J. Chang, K. Zhai, L. Wei, W. Tan, H. Shen and Y. Zeng. Genome-wide association study identifies common variants in SLC39A6 associated with length of survival in esophageal squamous-cell carcinoma. Nat Genet, 45(6), 632-8 (2013)
[187]K. M. Taylor: A distinct role in breast cancer for two LIV-1 family zinc transporters. Biochem Soc Trans, 36(Pt 6), 1247-51 (2008)
[188]K. M. Taylor, H E Morgan, K. Smart, N M Zahari, S. Pumford, I O Ellis, J F Robertson and R. I. Nicholson. The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med, 13(7-8), 396-406 (2007)
[189]P. Thomas, Y. Pang, J. Dong and A. H. Berg. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. Endocrinology, 155(11), 4250-65 (2014)
[190]D. Pal, U. Sharma, S K Singh and R. Prasad. Association between ZIP10 gene expression and tumor aggressiveness in renal cell carcinoma. Gene, 552(1), 195-8 (2014)
[191]N. Kagara, N. Tanaka, S. Noguchi and T. Hirano. Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci, 98(5), 692-7 (2007)
[192]L. Wu, K G Chaffee, A S Parker, H. Sicotte and G. M. Petersen. Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer. Tumour Biol, 36(10), 7431-7 (2015)
[193]R. B. Franklin, B A Levy, J. Zou, N. Hanna, M M Desouki, O. Bagasra, L A Johnson and L. C. Costello. ZIP14 zinc transporter downregulation and zinc depletion in the development and progression of hepatocellular cancer. J Gastrointest Cancer, 43(2), 249-57 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Zinc transporters and dysregulated channels in cancers
1 Department of Surgery, Division of Thoracic Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
2 Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
3 Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
4 University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
5 Department of Pharmacology, College of Medicine, Penn State University, 500 University Drive Hershey, PA 17033, USA
6 Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Bucksburn, Aberdeen AB25 2ZD, Scotland, UK
Abstract
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field.
Keywords
- Zn Homeostasis
- ZnT
- ZIP
- TRP Channels
- Store-operated Ca2+ Entry
- Orai Channels
- STIM
- Prostate Cancer
- Breast Cancer
- Esophageal Cancer
- Review
References
- [1] C. Andreini, L. Banci, I. Bertini and A. Rosato. Counting the zinc-proteins encoded in the human genome. J Proteome Res, 5(1), 196-201 (2006)
- [2] B. L. Vallee and K. H. Falchuk. The biochemical basis of zinc physiology. Physiol Rev, 73(1), 79-118 (1993)
- [3] J. E. Coleman: Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem, 61, 897-946 (1992)
- [4] K. A. McCall, C. Huang and C. A. Fierke. Function and mechanism of zinc metalloenzymes. J Nutr, 130(5S Suppl), 1437S-46S (2000)
- [5] C. Andreini and I. Bertini. A bioinformatics view of zinc enzymes. J Inorg Biochem, 111, 150-6 (2012)
- [6] J. A. Tainer, E D Getzoff, J S Richardson and D. C. Richardson. Structure and mechanism of copper, zinc superoxide dismutase. Nature, 306(5940), 284-7 (1983)
- [7] E. Ho and B. N. Ames. Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci U S A, 99(26), 16770-5 (2002)
- [8] L. Huang and S. Tepaamorndech. The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med, 34(2-3), 548-60 (2013)
- [9] J. Jeong and D. J. Eide. The SLC39 family of zinc transporters. Mol Aspects Med, 34(2-3), 612-9 (2013)
- [10] M. Schweigel-Rontgen: The families of zinc (SLC30 and SLC39) and copper (SLC31) transporters. Curr Top Membr, 73, 321-55 (2014)
- [11] T. Kambe, A. Hashimoto and S. Fujimoto. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci, 71(17), 3281-95 (2014)
- [12] Y. Golan, B. Berman and Y. G. Assaraf. Heterodimerization, altered subcellular localization, and function of multiple zinc transporters in viable cells using bimolecular fluorescence complementation. J Biol Chem, 290(14), 9050-63 (2015)
- [13] T. Kambe, T. Tsuji, A. Hashimoto and N. Itsumura. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev, 95(3), 749-84 (2015)
- [14] E. P. Sorgjerd, F. Skorpen, K. Kvaloy, K. Midthjell and V. Grill. Prevalence of ZnT8 antibody in relation to phenotype and SLC30A8 polymorphism in adult autoimmune diabetes: results from the HUNT study, Norway. Autoimmunity, 46(1), 74-9 (2013)
- [15] J. Xu, J. Wang and B. Chen. SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population. Genet Mol Res, 11(2), 1592-8 (2012)
- [16] J. M. Howson, S. Krause, H. Stevens, D J Smyth, J M Wenzlau, E. Bonifacio, J. Hutton, A G Ziegler, J A Todd and P. Achenbach. Genetic association of zinc transporter 8 (ZnT8) autoantibodies in type 1 diabetes cases. Diabetologia, 55(7), 1978-84 (2012)
- [17] E. Kawasaki: ZnT8 and type 1 diabetes. Endocr J, 59(7), 531-7 (2012)
- [18] T. J. Nicolson, E A Bellomo, N. Wijesekara, M K Loder, J M Baldwin, A V Gyulkhandanyan, V. Koshkin, A I Tarasov, R. Carzaniga, K. Kronenberger, T K Taneja, G. da Silva Xavier, S. Libert, P. Froguel, R. Scharfmann, V. Stetsyuk, P. Ravassard, H. Parker, F M Gribble, F. Reimann, R. Sladek, S J Hughes, P R Johnson, M. Masseboeuf, R. Burcelin, S A Baldwin, M. Liu, R. Lara-Lemus, P. Arvan, F C Schuit, M B Wheeler, F. Chimienti and G. A. Rutter. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes, 58(9), 2070-83 (2009)
- [19] J. M. Wenzlau, Y. Liu, L. Yu, O. Moua, K T Fowler, S. Rangasamy, J. Walters, G S Eisenbarth, H W Davidson and J. C. Hutton. A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes, 57(10), 2693-7 (2008)
- [20] J. Geiser, K J Venken, R C De Lisle and G. K. Andrews. A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet, 8(6), e1002766 (2012)
- [21] G. K. Andrews: Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem Soc Trans, 36(Pt 6), 1242-6 (2008)
- [22] T. Kambe and G. K. Andrews. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol Cell Biol, 29(1), 129-39 (2009)
- [23] J. Dufner-Beattie, B P Weaver, J. Geiser, M. Bilgen, M. Larson, W. Xu and G. K. Andrews. The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet, 16(12), 1391-9 (2007)
- [24] J. Dufner-Beattie, F. Wang, Y M Kuo, J. Gitschier, D. Eide and G. K. Andrews. The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem, 278(35), 33474-81 (2003)
- [25] A. S. Prasad, J A Halsted and M. Nadimi. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med, 31, 532-46 (1961)
- [26] E. A. Platz and K. J. Helzlsouer. Selenium, zinc, and prostate cancer. Epidemiol Rev, 23(1), 93-101 (2001)
- [27] A. S. Prasad and O. Kucuk. Zinc in cancer prevention. Cancer Metastasis Rev, 21(3-4), 291-5 (2002)
- [28] P. Stocks and R. I. Davies. Zinc and Copper Content of Soils Associated with the Incidence of Cancer of the Stomach and Other Organs. Br J Cancer, 18, 14-24 (1964)
- [29] C. Devirgiliis, P D Zalewski, G. Perozzi and C. Murgia. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res, 622(1-2), 84-93 (2007)
- [30] B. Szewczyk: Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci, 5, 33 (2013)
- [31] J. Jansen, W. Karges and L. Rink. Zinc and diabetes--clinical links and molecular mechanisms. J Nutr Biochem, 20(6), 399-417 (2009)
- [32] G. Huang, Y. Xiang, L. Pan, X. Li, S. Luo and Z. Zhou. Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus. Diabetes Metab Res Rev, 29(5), 363-8 (2013)
- [33] B. Haglund, K. Ryckenberg, O. Selinus and G. Dahlquist. Evidence of a relationship between childhood-onset type I diabetes and low groundwater concentration of zinc. Diabetes Care, 19(8), 873-5 (1996)
- [34] A. S. Prasad: Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr, 1, 14 (2014)
- [35] J. C. King, D M Shames and L. R. Woodhouse. Zinc homeostasis in humans. J Nutr, 130(5S Suppl), 1360S-6S (2000)
- [36] M. J. Jackson: Physiology of Zinc: General Aspects. In: Zinc in Human Biology. Ed C. F. Mills. Springer London, London (1989)
- [37] N. Meunier, C. Feillet-Coudray, M. Rambeau, M. Andriollo-Sanchez, M. Brandolini-Bunlon, S J Coulter, K D Cashman, A. Mazur and C. Coudray. Impact of micronutrient dietary intake and status on intestinal zinc absorption in late middle-aged men: the ZENITH study. Eur J Clin Nutr, 59 Suppl 2, S48-52 (2005)
- [38] M. Rukgauer, J. Klein and J. D. Kruse-Jarres. Reference values for the trace elements copper, manganese, selenium, and zinc in the serum/plasma of children, adolescents, and adults. J Trace Elem Med Biol, 11(2), 92-8 (1997)
- [39] S. C. Burdette, G K Walkup, B. Spingler, R Y Tsien and S. J. Lippard. Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. J Am Chem Soc, 123(32), 7831-41 (2001)
- [40] C. E. Outten and T. V. O'Halloran. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science, 292(5526), 2488-92 (2001)
- [41] C. J. Frederickson, E J Kasarskis, D. Ringo and R. E. Frederickson. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods, 20(2), 91-103 (1987)
- [42] G. Karagulova, Y. Yue, A. Moreyra, M. Boutjdir and I. Korichneva. Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther, 321(2), 517-25 (2007)
- [43] J. Gibon, P. Tu, V. Frazzini, S L Sensi and A. Bouron. The thiol-modifying agent N-ethylmaleimide elevates the cytosolic concentration of free Zn(2+) but not of Ca(2+) in murine cortical neurons. Cell Calcium, 48(1), 37-43 (2010)
- [44] M. Chevallet, L. Jarvis, A. Harel, S. Luche, S. Degot, V. Chapuis, G. Boulay, T. Rabilloud and A. Bouron. Functional consequences of the over-expression of TRPC6 channels in HEK cells: impact on the homeostasis of zinc. Metallomics, 6(7), 1269-76 (2014)
- [45] J. L. Vinkenborg, T J Nicolson, E A Bellomo, M S Koay, G A Rutter and M. Merkx. Genetically encoded FRET sensors to monitor intracellular Zn2+homeostasis. Nat Methods, 6(10), 737-40 (2009)
- [46] P. J. Dittmer, J G Miranda, J A Gorski and A. E. Palmer. Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem, 284(24), 16289-97 (2009)
- [47] A. Fukunaka and T. Kambe. [Mechanism of zinc transport by zinc transporters, ZnT and ZIP]. Seikagaku, 82(1), 30-4 (2010)
- [48] T. Kambe: An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem, 75(6), 1036-43 (2011)
- [49] L. A. Lichten and R. J. Cousins. Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr, 29, 153-76 (2009)
- [50] R. J. Cousins, J P Liuzzi and L. A. Lichten. Mammalian zinc transport, trafficking, and signals. J Biol Chem, 281(34), 24085-9 (2006)
- [51] L. A. Gaither and D. J. Eide. Eukaryotic zinc transporters and their regulation. Biometals, 14(3-4), 251-270 (2001)
- [52] R. D. Palmiter and S. D. Findley. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J, 14(4), 639-49 (1995)
- [53] K. Inoue, Z. O'Bryant and Z. G. Xiong. Zinc-permeable ion channels: effects on intracellular zinc dynamics and potential physiological/pathophysiological significance. Curr Med Chem, 22(10), 1248-57 (2015)
- [54] K. Kawa: Zinc-dependent action potentials in giant neurons of the snail, Euhadra quaestia. J Membr Biol, 49(4), 325-44 (1979)
- [55] S. L. Sensi, L M Canzoniero, S P Yu, H S Ying, J Y Koh, G A Kerchner and D. W. Choi. Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci, 17(24), 9554-64 (1997)
- [56] A. V. Gyulkhandanyan, S C Lee, G. Bikopoulos, F. Dai and M. B. Wheeler. The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+channel. J Biol Chem, 281(14), 9361-72 (2006)
- [57] S. Yamasaki, A. Hasegawa, S. Hojyo, W. Ohashi, T. Fukada, K. Nishida and T. Hirano. A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: zinc wave. PLoS One, 7(6), e39654 (2012)
- [58] A. Bouron and J. Oberwinkler. Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch, 466(3), 381-7 (2014)
- [59] S. J. Park, S H Min, H W Kang and J. H. Lee. Differential zinc permeation and blockade of L-type Ca2+channel isoforms Cav1.2 and Cav1.3. Biochim Biophys Acta, 1848(10 Pt A), 2092-100 (2015)
- [60] Y. Jia, J M Jeng, S L Sensi and J. H. Weiss. Zn2+currents are mediated by calcium-permeable AMPA/kainate channels in cultured murine hippocampal neurones. J Physiol, 543(Pt 1), 35-48 (2002)
- [61] X. Zhu, M. Jiang, M. Peyton, G. Boulay, R. Hurst, E. Stefani and L. Birnbaumer. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+entry. Cell, 85(5), 661-71 (1996)
- [62] M. Gautier, I. Dhennin-Duthille, A S Ay, P. Rybarczyk, I. Korichneva and H. Ouadid-Ahidouch. New insights into pharmacological tools to TR(i)P cancer up. Br J Pharmacol, 171(10), 2582-92 (2014)
- [63] L. W. Runnels, L. Yue and D. E. Clapham. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science, 291(5506), 1043-7 (2001)
- [64] M. K. Monteilh-Zoller, M C Hermosura, M J Nadler, A M Scharenberg, R. Penner and A. Fleig. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol, 121(1), 49-60 (2003)
- [65] K. Inoue, D. Branigan and Z. G. Xiong. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem, 285(10), 7430-9 (2010)
- [66] T. F. Wagner, A. Drews, S. Loch, F. Mohr, S E Philipp, S. Lambert and J. Oberwinkler. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch, 460(4), 755-65 (2010)
- [67] K. Kiselyov, G A Colletti, A. Terwilliger, K. Ketchum, C W Lyons, J. Quinn and S. Muallem. TRPML: transporters of metals in lysosomes essential for cell survival? Cell Calcium, 50(3), 288-94 (2011)
- [68] C. T. Walsh, H H Sandstead, A S Prasad, P M Newberne and P. J. Fraker. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect, 102 Suppl 2, 5-46 (1994)
- [69] M. Brnic, R. Wegmuller, A. Melse-Boonstra, T. Stomph, C. Zeder, F M Tay and R. F. Hurrell. Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate. J Nutr, 146(1), 76-80 (2016)
- [70] J. H. Beattie and I. S. Kwun. Is zinc deficiency a risk factor for atherosclerosis? Br J Nutr, 91(2), 177-81 (2004)
- [71] J. H. Beattie, M J Gordon, S J Duthie, C J McNeil, G W Horgan, G F Nixon, J. Feldmann and I. S. Kwun. Suboptimal dietary zinc intake promotes vascular inflammation and atherogenesis in a mouse model of atherosclerosis. Mol Nutr Food Res, 56(7), 1097-105 (2012)
- [72] L. M. Jampol and F. L. Ferris, 3rd. Antioxidants and zinc to prevent progression of age-related macular degeneration. JAMA, 286(19), 2466-8 (2001)
- [73] A. S. Prasad: Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol, 28(4), 357-63 (2014)
- [74] A. S. Prasad: Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr, 4(2), 176-90 (2013)
- [75] C. S. Yang: Research on esophageal cancer in China: a review. Cancer Res, 40(8 Pt 1), 2633-44 (1980)
- [76] K. Jaskiewicz, W F Marasas, J E Rossouw, F E Van Niekerk and E. W. Heine Tech. Selenium and other mineral elements in populations at risk for esophageal cancer. Cancer, 62(12), 2635-9 (1988)
- [77] D. H. Barch: Esophageal cancer and microelements. J Am Coll Nutr, 8(2), 99-107 (1989)
- [78] C. C. Abnet, B. Lai, Y L Qiao, S. Vogt, X M Luo, P R Taylor, Z W Dong, S D Mark and S. M. Dawsey. Zinc concentration in esophageal biopsy specimens measured by x-ray fluorescence and esophageal cancer risk. J Natl Cancer Inst, 97(4), 301-6 (2005)
- [79] J. Gumulec, M. Masarik, S. Krizkova, V. Adam, J. Hubalek, J. Hrabeta, T. Eckschlager, M. Stiborova and R. Kizek. Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr Med Chem, 18(33), 5041-51 (2011)
- [80] P. Christudoss, R. Selvakumar, J J Fleming and G. Gopalakrishnan. Zinc status of patients with benign prostatic hyperplasia and prostate carcinoma. Indian J Urol, 27(1), 14-8 (2011)
- [81] B. F. Issell, B V MacFadyen, E T Gum, M. Valdivieso, S J Dudrick and G. P. Bodey. Serum zinc levels in lung cancer patients. Cancer, 47(7), 1845-8 (1981)
- [82] J. Buntzel, F. Bruns, M. Glatzel, A. Garayev, R. Mucke, K. Kisters, U. Schafer, K. Schonekaes and O. Micke. Zinc concentrations in serum during head and neck cancer progression. Anticancer Res, 27(4A), 1941-3 (2007)
- [83] S. Alam and S. L. Kelleher. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients, 4(8), 875-903 (2012)
- [84] V. Zaichick, T V Sviridova and S. V. Zaichick. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol, 29(5), 565-74 (1997)
- [85] C. T. Han, N W Schoene and K. Y. Lei. Influence of zinc deficiency on Akt-Mdm2-p53 and Akt-p21 signaling axes in normal and malignant human prostate cells. Am J Physiol Cell Physiol, 297(5), C1188-99 (2009)
- [86] M. Yan, Y. Song, C P Wong, K. Hardin and E. Ho. Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr, 138(4), 667-73 (2008)
- [87] K. Golovine, R G Uzzo, P. Makhov, P L Crispen, D. Kunkle and V. M. Kolenko. Depletion of intracellular zinc increases expression of tumorigenic cytokines VEGF, IL-6 and IL-8 in prostate cancer cells via NF-kappaB-dependent pathway. Prostate, 68(13), 1443-9 (2008)
- [88] L. Y. Fong, V T Nguyen and J. L. Farber. Esophageal cancer prevention in zinc-deficient rats: rapid induction of apoptosis by replenishing zinc. J Natl Cancer Inst, 93(20), 1525-33 (2001)
- [89] T. O. Lipman, A. Diamond, M H Mellow and K. Y. Patterson. Esophageal zinc content in human squamous esophageal cancer. J Am Coll Nutr, 6(1), 41-6 (1987)
- [90] L. Y. Fong, A. Sivak and P. M. Newberne. Zinc deficiency and methylbenzylnitrosamine-induced esophageal cancer in rats. J Natl Cancer Inst, 61(1), 145-50 (1978)
- [91] D. H. Barch, S C Kuemmerle, P F Hollenberg and P. M. Iannaccone. Esophageal microsomal metabolism of N-nitrosomethylbenzylamine in the zinc-deficient rat. Cancer Res, 44(12 Pt 1), 5629-33 (1984)
- [92] L. Y. Fong, J L Farber and P. N. Magee. Zinc replenishment reduces esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in zinc-deficient rats. Carcinogenesis, 19(9), 1591-6 (1998)
- [93] L. Y. Fong, D J Feith and A. E. Pegg. Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. Cancer Res, 63(14), 3945-54 (2003)
- [94] L. Y. Fong, H. Ishii, V T Nguyen, A. Vecchione, J L Farber, C M Croce and K. Huebner. p53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice. Cancer Res, 63(1), 186-95 (2003)
- [95] L. Y. Fong, K M Lau, K. Huebner and P. N. Magee. Induction of esophageal tumors in zinc-deficient rats by single low doses of N-nitrosomethylbenzylamine (NMBA): analysis of cell proliferation, and mutations in H-ras and p53 genes. Carcinogenesis, 18(8), 1477-84 (1997)
- [96] L. Y. Fong, J X Li, J L Farber and P. N. Magee. Cell proliferation and esophageal carcinogenesis in the zinc-deficient rat. Carcinogenesis, 17(9), 1841-8 (1996)
- [97] L. Y. Fong and P. N. Magee. Dietary zinc deficiency enhances esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in C57BL/6 mouse. Cancer Lett, 143(1), 63-9 (1999)
- [98] L. Y. Fong, R. Mancini, H. Nakagawa, A K Rustgi and K. Huebner. Combined cyclin D1 overexpression and zinc deficiency disrupts cell cycle and accelerates mouse forestomach carcinogenesis. Cancer Res, 63(14), 4244-52 (2003)
- [99] L. Y. Fong, V T Nguyen, J L Farber, K. Huebner and P. N. Magee. Early deregulation of the the p16ink4a-cyclin D1/cyclin-dependent kinase 4-retinoblastoma pathway in cell proliferation-driven esophageal tumorigenesis in zinc-deficient rats. Cancer Res, 60(16), 4589-95 (2000)
- [100] L. Y. Fong, A E Pegg and P. N. Magee. Alpha-difluoromethylornithine inhibits N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in zinc-deficient rats: effects on esophageal cell proliferation and apoptosis. Cancer Res, 58(23), 5380-8 (1998)
- [101] C. Taccioli, H. Chen, Y. Jiang, X P Liu, K. Huang, K J Smalley, J L Farber, C M Croce and L. Y. Fong. Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature. Oncogene, 31(42), 4550-8 (2012)
- [102] A. Kumar, T. Chatopadhyay, M. Raziuddin and R. Ralhan. Discovery of deregulation of zinc homeostasis and its associated genes in esophageal squamous cell carcinoma using cDNA microarray. Int J Cancer, 120(2), 230-42 (2007)
- [103] X. Wu, J. Tang and M. Xie. Serum and hair zinc levels in breast cancer: a meta-analysis. Sci Rep, 5, 12249 (2015)
- [104] Z. Bostanci, R P Mack, Jr., S. Lee, D I Soybel and S. L. Kelleher. Paradoxical zinc toxicity and oxidative stress in the mammary gland during marginal dietary zinc deficiency. Reprod Toxicol, 54, 84-92 (2015)
- [105] E. J. Margalioth, J G Schenker and M. Chevion. Copper and zinc levels in normal and malignant tissues. Cancer, 52(5), 868-72 (1983)
- [106] Y. Cui, S. Vogt, N. Olson, A G Glass and T. E. Rohan. Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomarkers Prev, 16(8), 1682-5 (2007)
- [107] P. Chandler, B S Kochupurakkal, S. Alam, A L Richardson, D I Soybel and S. L. Kelleher. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer. Mol Cancer, 15(1), 2 (2016)
- [108] M. Hasumi, K. Suzuki, H. Matsui, H. Koike, K. Ito and H. Yamanaka. Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett, 200(2), 187-95 (2003)
- [109] N. H. McCormick and S. L. Kelleher. ZnT4 provides zinc to zinc-dependent proteins in the trans-Golgi network critical for cell function and Zn export in mammary epithelial cells. Am J Physiol Cell Physiol, 303(3), C291-7 (2012)
- [110] S. M. Henshall, D E Afar, K K Rasiah, L G Horvath, K. Gish, I. Caras, V. Ramakrishnan, M. Wong, U. Jeffry, J G Kench, D I Quinn, J J Turner, W. Delprado, C S Lee, D. Golovsky, P C Brenner, G F O'Neill, R. Kooner, P D Stricker, J J Grygiel, D H Mack and R. L. Sutherland. Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene, 22(38), 6005-12 (2003)
- [111] L. A. Johnson, M A Kanak, A. Kajdacsy-Balla, J P Pestaner and O. Bagasra. Differential zinc accumulation and expression of human zinc transporter 1 (hZIP1) in prostate glands. Methods, 52(4), 316-21 (2010)
- [112] R. B. Franklin, P. Feng, B. Milon, M M Desouki, K K Singh, A. Kajdacsy-Balla, O. Bagasra and L. C. Costello. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer, 4, 32 (2005)
- [113] M. M. Desouki, J. Geradts, B. Milon, R B Franklin and L. C. Costello. hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol Cancer, 6, 37 (2007)
- [114] Q. G. Chen, Z. Zhang, Q. Yang, G Y Shan, X Y Yu and C. Z. Kong. The role of zinc transporter ZIP4 in prostate carcinoma. Urol Oncol, 30(6), 906-11 (2012)
- [115] L. C. Costello, B A Levy, M M Desouki, J. Zou, O. Bagasra, L A Johnson, N. Hanna and R. B. Franklin. Decreased zinc and downregulation of ZIP3 zinc uptake transporter in the development of pancreatic adenocarcinoma. Cancer Biol Ther, 12(4), 297-303 (2011)
- [116] M. Li, Y. Zhang, Z. Liu, U. Bharadwaj, H. Wang, X. Wang, S. Zhang, J P Liuzzi, S M Chang, R J Cousins, W E Fisher, F C Brunicardi, C D Logsdon, C. Chen and Q. Yao. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A, 104(47), 1↼-41 (2007)
- [117] R. B. Franklin, J. Zou and L. C. Costello. The cytotoxic role of RREB1, ZIP3 zinc transporter, and zinc in human pancreatic adenocarcinoma. Cancer Biol Ther, 15(10), 1431-7 (2014)
- [118] L. C. Costello and R. B. Franklin. A Review of the Current Status and Concept of the Emerging Implications of Zinc and Zinc Transporters in the Development of Pancreatic Cancer. Pancreat Disord Ther, Suppl 4 (2013)
- [119] M. Li, Y. Zhang, U. Bharadwaj, Q J Zhai, C H Ahern, W E Fisher, F C Brunicardi, C D Logsdon, C. Chen and Q. Yao. Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts. Clin Cancer Res, 15(19), 5993-6001 (2009)
- [120] X. Cui, Y. Zhang, J. Yang, X. Sun, J P Hagan, S. Guha and M. Li. ZIP4 confers resistance to zinc deficiency-induced apoptosis in pancreatic cancer. Cell Cycle, 13(7), 1180-6 (2014)
- [121] K. M. Taylor, P. Vichova, N. Jordan, S. Hiscox, R. Hendley and R. I. Nicholson. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer Cells. Endocrinology, 149(10), 4912-20 (2008)
- [122] W. Maret: Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. Biometals, 24(3), 411-8 (2011)
- [123] P. J. Little, R. Bhattacharya, A E Moreyra and I. L. Korichneva. Zinc and cardiovascular disease. Nutrition, 26(11-12), 1050-7 (2010)
- [124] I. Korichneva: Zinc dynamics in the myocardial redox signaling network. Antioxid Redox Signal, 8(9-10), 1707-21 (2006)
- [125] A. Hartwig: Metal interaction with redox regulation: an integrating concept in metal carcinogenesis? Free Radic Biol Med, 55, 63-72 (2013)
- [126] L. Marger, C R Schubert and D. Bertrand. Zinc: an underappreciated modulatory factor of brain function. Biochem Pharmacol, 91(4), 426-35 (2014)
- [127] S. Punthambaker, J A Blum and R. I. Hume. High potency zinc modulation of human P2X2 receptors and low potency zinc modulation of rat P2X2 receptors share a common molecular mechanism. J Biol Chem, 287(26), 22099-111 (2012)
- [128] K. Xiong, R W Peoples, J P Montgomery, Y. Chiang, R R Stewart, F F Weight and C. Li. Differential modulation by copper and zinc of P2X2 and P2X4 receptor function. J Neurophysiol, 81(5), 2088-94 (1999)
- [129] Q. Jiang, C J Papasian, J Q Wang, Z G Xiong and X. P. Chu. Inhibitory regulation of acid-sensing ion channel 3 by zinc. Neuroscience, 169(2), 574-83 (2010)
- [130] S. Hou, L E Vigeland, G. Zhang, R. Xu, M. Li, S H Heinemann and T. Hoshi. Zn2+activates large conductance Ca2+-activated K+channel via an intracellular domain. J Biol Chem, 285(9), 6434-42 (2010)
- [131] A. Traboulsie, J. Chemin, M. Chevalier, J F Quignard, J. Nargeot and P. Lory. Subunit-specific modulation of T-type calcium channels by zinc. J Physiol, 578(Pt 1), 159-71 (2007)
- [132] K. Uchida and M. Tominaga. Extracellular zinc ion regulates transient receptor potential melastatin 5 (TRPM5) channel activation through its interaction with a pore loop domain. J Biol Chem, 288(36), 25950-5 (2013)
- [133] T. G. Banke and A. D. Wickenden. Intracellular zinc irritates TRPA1. Nat Chem Biol, 5(3), 141-2 (2009)
- [134] H. Hu, M. Bandell, M J Petrus, M X Zhu and A. Patapoutian. Zinc activates damage-sensing TRPA1 ion channels. Nat Chem Biol, 5(3), 183-90 (2009)
- [135] H. Ouadid-Ahidouch and A. Ahidouch. K(+) channels and cell cycle progression in tumor cells. Front Physiol, 4, 220 (2013)
- [136] V. Lehen'kyi, G. Shapovalov, R. Skryma and N. Prevarskaya. Ion channnels and transporters in cancer. 5. Ion channels in control of cancer and cell apoptosis. Am J Physiol Cell Physiol, 301(6), C1281-9 (2011)
- [137] A. Becchetti and A. Arcangeli. Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Adv Exp Med Biol, 674, 107-23 (2010)
- [138] A. Fiorio Pla, D. Avanzato, L. Munaron and I. S. Ambudkar. Ion channels and transporters in cancer. 6. Vascularizing the tumor: TRP channels as molecular targets. Am J Physiol Cell Physiol, 302(1), C9-15 (2012)
- [139] L. A. Pardo, C. Contreras-Jurado, M. Zientkowska, F. Alves and W. Stuhmer. Role of voltage-gated potassium channels in cancer. J Membr Biol, 205(3), 115-24 (2005)
- [140] N. Comes, A. Serrano-Albarras, J. Capera, C. Serrano-Novillo, E. Condom, Y C S. Ramon, J C Ferreres and A. Felipe. Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta, 1848(10 Pt B), 2477-92 (2015)
- [141] M. Gueguinou, A. Chantome, G. Fromont, P. Bougnoux, C. Vandier and M. Potier-Cartereau. KCa and Ca(2+) channels: the complex thought. Biochim Biophys Acta, 1843(10), 2322-33 (2014)
- [142] L. Catacuzzeno, B. Fioretti and F. Franciolini. Expression and Role of the Intermediate-Conductance Calcium-Activated Potassium Channel KCa3.1 in Glioblastoma. J Signal Transduct, 2012, 421564 (2012)
- [143] J. A. Rodriguez-Rasgado, I. Acuna-Macias and J. Camacho. Eag1 channels as potential cancer biomarkers. Sensors (Basel), 12(5), 5986-95 (2012)
- [144] H. Ouadid-Ahidouch, A. Ahidouch and L. A. Pardo. Kv10.1 K channel: from physiology to cancer. Pflugers Arch (2016)
- [145] E. Bulk, A S Ay, M. Hammadi, H. Ouadid-Ahidouch, S. Schelhaas, A. Hascher, C. Rohde, N H Thoennissen, R. Wiewrodt, E. Schmidt, A. Marra, L. Hillejan, A H Jacobs, H U Klein, M. Dugas, W E Berdel, C. Muller-Tidow and A. Schwab. Epigenetic dysregulation of KCa 3.1 channels induces poor prognosis in lung cancer. Int J Cancer, 137(6), 1306-17 (2015)
- [146] N. Haren, H. Khorsi, M. Faouzi, A. Ahidouch, H. Sevestre and H. Ouadid-Ahidouch. Intermediate conductance Ca2+activated K+channels are expressed and functional in breast adenocarcinomas: correlation with tumour grade and metastasis status. Histol Histopathol, 25(10), 1247-55 (2010)
- [147] L. A. Pardo and W. Stuhmer. The roles of K(+) channels in cancer. Nat Rev Cancer, 14(1), 39-48 (2014)
- [148] H. Ouadid-Ahidouch and A. Ahidouch. K+channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis. Journal of Membrane Biology, 221(1), 1-6 (2008)
- [149] H. Ouadid-Ahidouch, X. Le Bourhis, M. Roudbaraki, R A Toillon, P. Delcourt and N. Prevarskaya. Changes in the K+current-density of MCF-7 cells during progression through the cell cycle: Possible involvement of a h-ether.a-gogo K+channel. Recept. Channels, 7(5), 345-356 (2001)
- [150] M. Hammadi, V. Chopin, F. Matifat, I. Dhennin-Duthille, M. Chasseraud, H. Sevestre and H. Ouadid-Ahidouch. Human ether a-gogo K+channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry. J Cell Physiol, 227(12), 3837-3846 (2012)
- [151] I. Restrepo-Angulo, C. Sanchez-Torres and J. Camacho. Human EAG1 potassium channels in the epithelial-to-mesenchymal transition in lung cancer cells. Anticancer Res, 31(4), 1265-70 (2011)
- [152] M. Faouzi, V. Chopin, A. Ahidouch and H. Ouadid-Ahidouch. Intermediate Ca2+-sensitive K+channels are necessary for prolactin-induced proliferation in breast cancer cells. J Membr Biol, 234(1), 47-56 (2010)
- [153] H. Ouadid-Ahidouch, M. Roudbaraki, P. Delcourt, A. Ahidouch, N. Joury and N. Prevarskaya. Functional and molecular identification of intermediate-conductance Ca(2+)-activated K(+) channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol, 287(1), C125-34 (2004)
- [154] N. Prevarskaya, L. Zhang and G. Barritt. TRP channels in cancer. Biochim Biophys Acta, 1772(8), 937-46 (2007)
- [155] H. Ouadid-Ahidouch, I. Dhennin-Duthille, M. Gautier, H. Sevestre and A. Ahidouch. TRP channels: diagnostic markers and therapeutic targets for breast cancer? Trends Mol Med, 19(2), 117-24 (2013)
- [156] B. Nilius: TRP channels in disease. Biochim Biophys Acta, 1772(8), 805-12 (2007)
- [157] D. Gkika and N. Prevarskaya. TRP channels in prostate cancer: the good, the bad and the ugly? Asian J Androl, 13(5), 673-6 (2011)
- [158] X. Ding, Z. He, Y. Shi, Q. Wang and Y. Wang. Targeting TRPC6 channels in oesophageal carcinoma growth. Expert Opin Ther Targets, 14(5), 513-27 (2010)
- [159] I. Dhennin-Duthille, M. Gautier, M. Faouzi, A. Guilbert, M. Brevet, D. Vaudry, A. Ahidouch, H. Sevestre and H. Ouadid-Ahidouch. High expression of transient receptor potential channels in human breast cancer epithelial cells and tissues: correlation with pathological parameters. Cell Physiol Biochem, 28(5), 813-22 (2011)
- [160] A. Guilbert, M. Gautier, I. Dhennin-Duthille, N. Haren, H. Sevestre and H. Ouadid-Ahidouch. Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol, 297(3), C493-502 (2009)
- [161] X. Cai: Molecular evolution and structural analysis of the Ca(2+) release-activated Ca(2+) channel subunit, Orai. J Mol Biol, 368(5), 1284-91 (2007)
- [162] A. Amcheslavsky, M L Wood, A V Yeromin, I. Parker, J A Freites, D J Tobias and M. D. Cahalan. Molecular biophysics of Orai store-operated Ca2+channels. Biophys J, 108(2), 237-46 (2015)
- [163] M. Prakriya and R. S. Lewis. Store-Operated Calcium Channels. Physiol Rev, 95(4), 1383-436 (2015)
- [164] S. Yang, J J Zhang and X. Y. Huang. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell, 15(2), 124-34 (2009)
- [165] H. Zhu, H. Zhang, F. Jin, M. Fang, M. Huang, C S Yang, T. Chen, L. Fu and Z. Pan. Elevated Orai1 expression mediates tumor-promoting intracellular Ca2+oscillations in human esophageal squamous cell carcinoma. Oncotarget, 5(11), 3455-71 (2014)
- [166] L. Clarysse, M. Gueguinou, M. Potier-Cartereau, G. Vandecasteele, P. Bougnoux, S. Chevalier, A. Chantome and C. Vandier. cAMP-PKA inhibition of SK3 channel reduced both Ca2+entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Arch, 466(10), 1921-32 (2014)
- [167] M. Faouzi, F. Hague, M. Potier, A. Ahidouch, H. Sevestre and H. Ouadid-Ahidouch. Down-regulation of Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast epithelial cells. J Cell Physiol, 226(2), 542-51 (2011)
- [168] M. Faouzi, P. Kischel, F. Hague, A. Ahidouch, N. Benzerdjeb, H. Sevestre, R. Penner and H. Ouadid-Ahidouch. ORAI3 silencing alters cell proliferation and cell cycle progression via c-myc pathway in breast cancer cells. Biochim Biophys Acta, 1833(3), 752-60 (2013)
- [169] R. K. Motiani, X. Zhang, K E Harmon, R S Keller, K. Matrougui, J A Bennett and M. Trebak. Orai3 is an estrogen receptor alpha-regulated Ca(2)(+) channel that promotes tumorigenesis. Faseb j, 27(1), 63-75 (2013)
- [170] M. Yang, S H Kroft and C. R. Chitambar. Gene expression analysis of gallium-resistant and gallium-sensitive lymphoma cells reveals a role for metal-responsive transcription factor-1, metallothionein-2A, and zinc transporter-1 in modulating the antineoplastic activity of gallium nitrate. Mol Cancer Ther, 6(2), 633-43 (2007)
- [171] K. Iguchi, K. Ishii, T. Nakano, T. Otsuka, S. Usui, Y. Sugimura and K. Hirano. Isolation and characterization of LNCaP sublines differing in hormone sensitivity. J Androl, 28(5), 670-8 (2007)
- [172] L. C. Costello, J. Zou, M M Desouki and R. B. Franklin. Evidence for changes in RREB-1, ZIP3, and Zinc in the early development of pancreatic adenocarcinoma. J Gastrointest Cancer, 43(4), 570-8 (2012)
- [173] X. Xu, H J Guo, H Y Xie, J. Li, R Z Zhuang, Q. Ling, L. Zhou, X Y Wei, Z K Liu, S M Ding, K J Chen, Z Y Xu and S. S. Zheng. ZIP4, a novel determinant of tumor invasion in hepatocellular carcinoma, contributes to tumor recurrence after liver transplantation. Int J Biol Sci, 10(3), 245-56 (2014)
- [174] Y. Lin, Y. Chen, Y. Wang, J. Yang, V F Zhu, Y. Liu, X. Cui, L. Chen, W. Yan, T. Jiang, G W Hergenroeder, S A Fletcher, J M Levine, D H Kim, N. Tandon, J J Zhu and M. Li. ZIP4 is a novel molecular marker for glioma. Neuro Oncol, 15(8), 1008-16 (2013)
- [175] X. Kang, R. Chen, J. Zhang, G. Li, P G Dai, C. Chen and H. J. Wang. Expression Profile Analysis of Zinc Transporters (ZIP4, ZIP9, ZIP11, ZnT9) in Gliomas and their Correlation with IDH1 Mutation Status. Asian Pac J Cancer Prev, 16(8), 3355-60 (2015)
- [176] C. Xu, M B Wallace, J. Yang, L. Jiang, Q. Zhai, Y. Zhang, C. Hong, Y. Chen, T S Frank, J A Stauffer, H J Asbun, M. Raimondo, T A Woodward, Z. Li, S. Guha, L. Zheng and M. Li. ZIP4 is a novel diagnostic and prognostic marker in human pancreatic cancer: a systemic comparison between EUS-FNA and surgical specimens. Curr Mol Med, 14(3), 309-15 (2014)
- [177] N. Yang, Y. Tang, F. Wang, H. Zhang, D. Xu, Y. Shen, S. Sun and G. Yang. Blockade of store-operated Ca(2+) entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Lett, 330(2), 163-9 (2013)
- [178] J. Jin, Z. Li, J. Liu, Y. Wu, X. Gao and Y. He. Knockdown of zinc transporter ZIP5 (SLC39A5) expression significantly inhibits human esophageal cancer progression. Oncol Rep, 34(3), 1431-9 (2015)
- [179] J. Schneider, M. Ruschhaupt, A. Buness, M. Asslaber, P. Regitnig, K. Zatloukal, W. Schippinger, F. Ploner, A. Poustka and H. Sultmann. Identification and meta-analysis of a small gene expression signature for the diagnosis of estrogen receptor status in invasive ductal breast cancer. Int J Cancer, 119(12), 2974-9 (2006)
- [180] S. Tozlu, I. Girault, S. Vacher, J. Vendrell, C. Andrieu, F. Spyratos, P. Cohen, R. Lidereau and I. Bieche. Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-PCR approach. Endocr Relat Cancer, 13(4), 1109-20 (2006)
- [181] G. Kasper, A A Weiser, A. Rump, K. Sparbier, E. Dahl, A. Hartmann, P. Wild, U. Schwidetzky, E. Castanos-Velez and K. Lehmann. Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer, 117(6), 961-73 (2005)
- [182] H. W. Lue, X. Yang, R. Wang, W. Qian, R Z Xu, R. Lyles, A O Osunkoya, B P Zhou, R L Vessella, M. Zayzafoon, Z R Liu, H E Zhau and L. W. Chung. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One, 6(11), e27720 (2011)
- [183] J. Unno, K. Satoh, M. Hirota, A. Kanno, S. Hamada, H. Ito, A. Masamune, N. Tsukamoto, F. Motoi, S. Egawa, M. Unno, A. Horii and T. Shimosegawa. LIV-1 enhances the aggressive phenotype through the induction of epithelial to mesenchymal transition in human pancreatic carcinoma cells. Int J Oncol, 35(4), 813-21 (2009)
- [184] L. Zhao, W. Chen, K M Taylor, B. Cai and X. Li. LIV-1 suppression inhibits HeLa cell invasion by targeting ERK1/2-Snail/Slug pathway. Biochem Biophys Res Commun, 363(1), 82-8 (2007)
- [185] R. Shen, F. Xie, H. Shen, Q. liu, T. Zheng, X. Kou, D. Wang and J. Yang. Negative correlation of LIV-1 and E-cadherin expression in hepatocellular carcinoma cells. PLoS One, 8(2), e56542 (2013)
- [186] C. Wu, D. Li, W. Jia, Z. Hu, Y. Zhou, D. Yu, T. Tong, M. Wang, D. Lin, Y. Qiao, J. Chang, K. Zhai, L. Wei, W. Tan, H. Shen and Y. Zeng. Genome-wide association study identifies common variants in SLC39A6 associated with length of survival in esophageal squamous-cell carcinoma. Nat Genet, 45(6), 632-8 (2013)
- [187] K. M. Taylor: A distinct role in breast cancer for two LIV-1 family zinc transporters. Biochem Soc Trans, 36(Pt 6), 1247-51 (2008)
- [188] K. M. Taylor, H E Morgan, K. Smart, N M Zahari, S. Pumford, I O Ellis, J F Robertson and R. I. Nicholson. The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med, 13(7-8), 396-406 (2007)
- [189] P. Thomas, Y. Pang, J. Dong and A. H. Berg. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. Endocrinology, 155(11), 4250-65 (2014)
- [190] D. Pal, U. Sharma, S K Singh and R. Prasad. Association between ZIP10 gene expression and tumor aggressiveness in renal cell carcinoma. Gene, 552(1), 195-8 (2014)
- [191] N. Kagara, N. Tanaka, S. Noguchi and T. Hirano. Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci, 98(5), 692-7 (2007)
- [192] L. Wu, K G Chaffee, A S Parker, H. Sicotte and G. M. Petersen. Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer. Tumour Biol, 36(10), 7431-7 (2015)
- [193] R. B. Franklin, B A Levy, J. Zou, N. Hanna, M M Desouki, O. Bagasra, L A Johnson and L. C. Costello. ZIP14 zinc transporter downregulation and zinc depletion in the development and progression of hepatocellular cancer. J Gastrointest Cancer, 43(2), 249-57 (2012)
