Information
References
Contents
Download
[1]K. Cotter, L. Stransky, C. McGuire, M. Forgac: Recent Insights into the Structure, Regulation, and Function of the V-ATPases. Trends Biochem Sci 40, 611–622 (2015)
[2]M. Forgac: Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8, 917–929 (2007)
[3]S. Breton, D. Brown: Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 28, 318–329 (2013)
[4]P.M. Kane: Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13, 117–123 (2012)
[5]V. Marshansky, J.L. Rubinstein, G. Grüber: Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim Biophys Acta 1837, 857–879 (2014)
[6]G.-H. Sun-Wada, Y. Wada: Vacuolar-type proton pump ATPases: acidification and pathological relationships. Histol Histopathol 28, 805–815 (2013)
[7]J. Gruenberg, F.G. van der Goot: Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7, 495–504 (2006)
[8]J. Capecci, M. Forgac: The Function of Vacuolar ATPase (V-ATPase) a Subunit Isoforms in Invasiveness of MCF10a and MCF10CA1a Human Breast Cancer Cells. J Biol Chem 288, 32731–32741 (2013)
[9]K. von Schwarzenberg, R.M. Wiedmann, P. Oak, S. Schulz, H. Zischka, G. Wanner, T. Efferth, D. Trauner, A.M. Vollmar: Mode of Cell Death Induction by Pharmacological Vacuolar H+-ATPase (V-ATPase) Inhibition. J Biol Chem 288, 1385–1396 (2013)
[10]K. Cotter, J. Capecci, S. Sennoune, M. Huss, M. Maier, R. Martinez-Zaguilan, M. Forgac: Activity of Plasma Membrane V-ATPases is Critical for the Invasion of MDA-MB231 Breast Cancer Cells. J Biol Chem 290, 3680–3692 (2015)
[11]A. Hinton, S.R. Sennoune, S. Bond, M. Fang, M. Reuveni, G.G. Sahagian, D. Jay, R. Martinez-Zaguilan, M. Forgac: Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284, 16400–16408 (2009)
[12]V. Gocheva, J.A. Joyce: Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6, 60–64 (2007)
[13]J. Zhao, S. Benlekbir, J.L. Rubinstein: Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521, 241–245 (2015)
[14]T. Hirata, A. Iwamoto-Kihara, G.-H. Sun-Wada, T. Okajima, Y. Wada, M. Futai: Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 278, 23714–23719 (2003)
[15]K. Yokoyama, K. Nagata, H. Imamura, S. Ohkuma, M. Yoshida, M. Tamakoshi: Subunit arrangement in V-ATPase from Thermus thermophilus. J Biol Chem 278, 42686–42691 (2003)
[16]R.A. Oot, S. Wilkens: Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase. J Biol Chem 287, 13396–13406 (2012)
[17]M. Toei, S. Toei, M. Forgac: Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. J Biol Chem 286, 35176–35186 (2011)
[18]S. Kawasaki-Nishi, T. Nishi, M. Forgac: Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci U S A 98, 12397–12402 (2001)
[19]J.R. Casey, S. Grinstein, J. Orlowski: Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11, 50–61 (2010)
[20]P.M. Kane: Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem 270, 17025–17032 (1995)
[21]J.P. Sumner, J.A. Dow, F.G. Earley, U. Klein, D. Jäger, H. Wieczorek: Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270, 5649–5653 (1995)
[22]K. Puopolo, M. Forgac: Functional reassembly of the coated vesicle proton pump. J Biol Chem 265, 14836–14841 (1990)
[23]J. Zhang, M. Myers, M. Forgac: Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J Biol Chem 267, 9773–9778 (1992)
[24]K.J. Parra, P.M. Kane: Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18, 7064–7074 (1998)
[25]K.J. MacLeod, E. Vasilyeva, K. Merdek, P.D. Vogel, M. Forgac: Photoaffinity labeling of wild-type and mutant forms of the yeast V-ATPase A subunit by 2-azido-((32)P)ADP. J Biol Chem 274, 32869–32874 (1999)
[26]T. Xu, M. Forgac: Microtubules are involved in glucose-dependent dissociation of the yeast vacuolar (H+)-ATPase in vivo. J Biol Chem 276, 24855–24861 (2001)
[27]M. Lu, Y.Y. Sautin, L.S. Holliday, S.L. Gluck: The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J Biol Chem 279, 8732–∣(2004)
[28]M. Lu, D. Ammar, H. Ives, F. Albrecht, S.L. Gluck: Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282, 24495–24503 (2007)
[29]Y. Su, K.G. Blake-Palmer, S. Sorrell, B. Javid, K. Bowers, A. Zhou, S.H. Chang, S. Qamar, F.E. Karet: Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J of Physiol Renal Physiol 295, F950–958 (2008)
[30]C.-Y. Chan, K.J. Parra: Yeast Phosphofructokinase-1 Subunit Pfk2p Is Necessary for pH Homeostasis and Glucose-dependent Vacuolar ATPase Reassembly. J Biol Chem 289, 19448–19457 (2014)
[31]S. Bond, M. Forgac: The Ras/cAMP/Protein Kinase A Pathway Regulates Glucose-dependent Assembly of the Vacuolar (H+)-ATPase in Yeast. J Biol Chem 283, 36513–36521 (2008)
[32]K. Tanaka, B.K. Lin, D.R. Wood, F. Tamanoi: IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc Natl Acad Sci U S A 88, 468–472 (1991)
[33]J.M. Thevelein: Signal transduction in yeast. Yeast 10, 1753–1790 (1994)
[34]T. Toda, S. Cameron, P. Sass, M. Zoller, J.D. Scott, B. McMullen, M. Hurwitz, E.G. Krebs, M. Wigler: Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7, 1371–1377 (1987)
[35]R. Dechant, M. Binda, S.S. Lee, S. Pelet, J. Winderickx, M. Peter: Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29, 2515–2526 (2010)
[36]T.T. Diakov, P.M. Kane: Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. The J Biol Chem 285, 23771–23778 (2010)
[37]E. Shao, M. Forgac: Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. J Biol Chem 279, 4⇗–48670 (2004)
[38]J.H. Seol, A. Shevchenko, A. Shevchenko, R.J. Deshaies: Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3, 384–391 (2001)
[39]A.M. Smardon, M. Tarsio, P.M. Kane: The RAVE complex is essential for stable assembly of the yeast V-ATPase. The J Biol Chem 277, 13831–13839 (2002)
[40]A.M. Smardon, N.D. Nasab, M. Tarsio, T.T. Diakov, P.M. Kane: Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex. J Biol Chem 290, 27511–27523 (2015)
[41]A.M. Smardon, P.M. Kane: RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase. J Biol Chem 282, 26185–26194 (2007)
[42]E. Shao, T. Nishi, S. Kawasaki-Nishi, M. Forgac: Mutational Analysis of the Non-homologous Region of Subunit A of the Yeast V-ATPase. J Biol Chem 278, 12985–12991 (2003)
[43]S. Kawasaki-Nishi, T. Nishi, M. Forgac: Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 276, 17941–17948 (2001)
[44]S. Kawasaki-Nishi, K. Bowers, T. Nishi, M. Forgac, T.H. Stevens: The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276, 47411–47420 (2001)
[45]J. Qi, M. Forgac: Cellular Environment Is Important in Controlling V-ATPase Dissociation and Its Dependence on Activity. J Biol Chem 282, 24743–24751 (2007)
[46]A.M. Smardon, H.I. Diab, M. Tarsio, T.T. Diakov, N.D. Nasab, R.W. West, P.M. Kane: The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell 25, 356–367 (2014)
[47]S.C. Li, T.T. Diakov, T. Xu, M. Tarsio, W. Zhu, S. Couoh-Cardel, L.S. Weisman, P.M. Kane: The signaling lipid PI(3,5)P2 stabilizes V1-Vo sector interactions and activates the V-ATPase. Mol Biol Cell 25, 1251–1262 (2014)
[48]K. Tabke, A. Albertmelcher, O. Vitavska, M. Huss, H.-P. Schmitz, H. Wieczorek: Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions. Biochem J 462, 185–197 (2014)
[49]R.D. Doherty, P.M. Kane: Partial assembly of the yeast vacuolar H(+)-ATPase in mutants lacking one subunit of the enzyme. J Biol Chem 268, 16845–16851 (1993)
[50]H. Wieczorek, K.W. Beyenbach, M. Huss, O. Vitavska: Vacuolar-type proton pumps in insect epithelia. J Exp Biol 212, 1611–1619 (2009)
[51]M. Voss, O. Vitavska, B. Walz, H. Wieczorek, O. Baumann: Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 282, 33735–33742 (2007)
[52]P. Dames, B. Zimmermann, R. Schmidt, J. Rein, M. Voss, B. Schewe, B. Walz, O. Baumann: cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands. Proc Natl Acad Sci U S A 103, 3926–3931 (2006)
[53]F. Tiburcy, K.W. Beyenbach, H. Wieczorek: Protein kinase A-dependent and -independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti. J Exp Biol 216, 881–891 (2013)
[54]J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka: Immunobiology of dendritic cells. Annu Rev Immunol 18, 767–811 (2000)
[55]E.S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert, I. Mellman: Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003)
[56]M.B. Lutz, G. Schuler: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?Trends Immunol 23, 445–449 (2002)
[57]B. Vander Lugt, Z.T. Beck, R.C. Fuhlbrigge, N. Hacohen, J.J. Campbell, M. Boes: TGF-βSuppresses β-Catenin-Dependent Tolerogenic Activation Program in Dendritic Cells. PLoS One 6, e20099 (2011)
[58]R. Liberman, S. Bond, M.G. Shainheit, M.J. Stadecker, M. Forgac: Regulated assembly of vacuolar ATPase is increased during cluster disruption-induced maturation of dendritic cells through a phosphatidylinositol 3-kinase/mTOR-dependent pathway. J Biol Chem 289, 1355–1363 (2014)
[59]Y.Y. Sautin, M. Lu, A. Gaugler, L. Zhang, S.L. Gluck: Phosphatidylinositol 3-Kinase-Mediated Effects of Glucose on Vacuolar H+-ATPase Assembly, Translocation, and Acidification of Intracellular Compartments in Renal Epithelial Cells. Mol Cell Biol 25, 575–589 (2005)
[60]H.P. Kohio, A.L. Adamson: Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection. Virol J 444, 301–309 (2013)
[61]L.A. Stransky, M. Forgac: Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly. J Biol Chem 290, 27360–27369 (2015)
[62]R. Zoncu, L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, D.M. Sabatini: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683 (2011)
[63]H. Marjuki, A. Gornitzky, B.M. Marathe, N.A. Ilyushina, J.R. Aldridge, G. Desai, R.J. Webby, R.G. Webster: Influenza A virus-induced early activation of ERK and PI3K mediates V-ATPase-dependent intracellular pH change required for fusion: ERK and PI3K regulate V-ATPase activity. Cell Microbiol 13, 587–601 (2011)
[64]Y. Xu, A. Parmar, E. Roux, A. Balbis, V. Dumas, S. Chevalier, B.I. Posner: Epidermal Growth Factor-induced Vacuolar (H+)-ATPase Assembly: A ROLE IN SIGNALING VIA mTORC1 ACTIVATION. J Biol Chem 287, 26409–26422 (2012)
[65]C. Lafourcade, K. Sobo, S. Kieffer-Jaquinod, J. Garin, F.G. van der Goot: Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PloS One 3, e2758 (2008)
[66]S. Breton, D. Brown: Cold-induced microtubule disruption and relocalization of membrane proteins in kidney epithelial cells. Clin J Am Soc Nephrol 9, 155–166 (1998)
[67]A. Banerjee, T. Shih, E.A. Alexander, J.H. Schwartz: SNARE proteins regulate H(+)-ATPase redistribution to the apical membrane in rat renal inner medullary collecting duct cells. J Biol Chem 274, 26518–26522 (1999)
[68]T.G. Păunescu, M. Ljubojevic, L.M. Russo, C. Winter, M.M. McLaughlin, C.A. Wagner, S. Breton, D. Brown: cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J PhysiolRenal Physiol 298, F643–654 (2010)
[69]R. Alzamora, R.F. Thali, F. Gong, C. Smolak, H. Li, C.J. Baty, C.A. Bertrand, Y. Auchli, R.A. Brunisholz, D. Neumann, K.R. Hallows, N.M. Pastor-Soler: PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 285, 24676–24685 (2010)
[70]R. Alzamora, M.M. Al-Bataineh, W. Liu, F. Gong, H. Li, R.F. Thali, Y. Joho-Auchli, R.A. Brunisholz, L.M. Satlin, D. Neumann, K.R. Hallows, N.M. Pastor-Soler: AMP-activated protein kinase regulates the vacuolar H+-ATPase via direct phosphorylation of the A subunit (ATP6V1A) in the kidney. Am J PhysiolRenal Physiol 305, F943–956 (2013)
[71]F. Rothenberger, A. Velic, P.A. Stehberger, J. Kovacikova, C.A. Wagner: Angiotensin II stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 18, 2085–2093 (2007)
[72]C. Winter, N.B. Kampik, L. Vedovelli, F. Rothenberger, T.G. Paunescu, P.A. Stehberger, D. Brown, H. John, C.A. Wagner: Aldosterone stimulates vacuolar H(+)-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway. Am J Physiol Cell Physiol 301, C1251–1261 (2011)
[73]N. Pastor-Soler, V. Beaulieu, T.N. Litvin, N. Da Silva, Y. Chen, D. Brown, J. Buck, L.R. Levin, S. Breton: Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem 278, 49523–49529 (2003)
[74]N.M. Pastor-Soler, K.R. Hallows, C. Smolak, F. Gong, D. Brown, S. Breton: Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am J Physiol Cell Physiol 294, C488–494 (2008)
[75]W.W. Shum, N. Da Silva, C. Belleannee, M. McKee, D. Brown, S. Breton: Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol 301, C31–C43 (2011)
[76]W.W.C. Shum, N. Da Silva, M. McKee, P.J.S. Smith, D. Brown, S. Breton: Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135, 1108–1117 (2008)
[77]T. Toyomura, Y. Murata, A. Yamamoto, T. Oka, G.-H. Sun-Wada, Y. Wada, M. Futai: From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 278, 22023–22030 (2003)
[78]A. Frattini, P.J. Orchard, C. Sobacchi, S. Giliani, M. Abinun, J.P. Mattsson, D.J. Keeling, A.K. Andersson, P. Wallbrandt, L. Zecca, L.D. Notarangelo, P. Vezzoni, A. Villa: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25, 343–346 (2000)
[79]G.-H. Sun-Wada, T. Toyomura, Y. Murata, A. Yamamoto, M. Futai, Y. Wada: The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 119, 4531–4540 (2006)
[80]T. Nishisho, K. Hata, M. Nakanishi, Y. Morita, G.-H. Sun-Wada, Y. Wada, N. Yasui, T. Yoneda: The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res: MCR 9, 845–855 (2011)
[81]V. Gleize, B. Boisselier, Y. Marie, S. Poëa-Guyon, M. Sanson, N. Morel: The renal v-ATPase a4 subunit is expressed in specific subtypes of human gliomas. Glia 60, 1004–1012 (2012)
[82]A. Kulshrestha, G.K. Katara, S. Ibrahim, S. Pamarthy, M.K. Jaiswal, A. Gilman Sachs, K.D. Beaman: Vacuolar ATPase 'a2'isoform exhibits distinct cell surface accumulation and modulates matrix metalloproteinase activity in ovarian cancer. Oncotarget 6, 3797–3810 (2015)
[83]S. Feng, G. Zhu, M. McConnell, L. Deng, Q. Zhao, M. Wu, Q. Zhou, J. Wang, J. Qi, Y.-P. Li, W. Chen: Silencing of atp6v1c1 prevents breast cancer growth and bone metastasis. Int. J Biol Sci 9, 853–862 (2013)
[84]T. Ohta, M. Numata, H. Yagishita, F. Futagami, Y. Tsukioka, H. Kitagawa, M. Kayahara, T. Nagakawa, I. Miyazaki, M. Yamamoto, S. Iseki, S. Ohkuma: Expression of 16 kDa proteolipid of vacuolar-type H(+)-ATPase in human pancreatic cancer. Br J Cancer 73, 1511–1517 (1996)
[85]X. Lu, W. Qin, J. Li, N. Tan, D. Pan, H. Zhang, L. Xie, G. Yao, H. Shu, M. Yao, D. Wan, J. Gu, S. Yang: The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65, 6843–6849 (2005)
[86]S. Pe-a-Llopis, S. Vega-Rubin-de-Celis, J.C. Schwartz, N.C. Wolff, T.A.T. Tran, L. Zou, X.-J. Xie, D.R. Corey, J. Brugarolas: Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30, 3242–3258 (2011)
[87]T. Zhang, Q. Zhou, M.H. Ogmundsdottir, K. Möller, R. Siddaway, L. Larue, M. Hsing, S.W. Kong, C.R. Goding, A. Palsson, E. Steingrimsson, F. Pignoni: Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J Cell Sci 128, 2938–2950 (2015)
[88]E. Tognon, F. Kobia, I. Busi, A. Fumagalli, F. De Masi, T. Vaccari: Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in Drosophila melanogaster. Autophagy January 4, 2016: 10.1.080/ 1554↳.2.015.1.134080 (2016)
[89]A. Yamamoto, Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki, Y. Tashiro: Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23, 33–42 (1998)
[90]Y. Feng, M. Forgac: A novel mechanism for regulation of vacuolar acidification. J Biol Chem 267, 19769–19772 (1992)
[91]Y. Feng, M. Forgac: Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem 267, 5817–5822 (1992)
[92]Y. Feng, M. Forgac: Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 269, 13224–13230 (1994)
[93]J.E. Walker: The regulation of catalysis in ATP synthase. Curr Opin Struct Biol 4, 912–918 (1994)
[94]Y.E. Oluwatosin, P.M. Kane: Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo. J Biol Chem 272, 28149–28157 (1997)
[95]K.M. O'Callaghan, V. Ayllon, J. O'Keeffe, Y. Wang, O.T. Cox, G. Loughran, M. Forgac, R. O'Connor: Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J Biol Chem 285, 381–391 (2010)
[96]M. Merkulova, T.G. Păunescu, A. Azroyan, V. Marshansky, S. Breton, D. Brown: Mapping the H+(V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation. Sci Rep 5, 14827 (2015)
[97]J. Orlowski, S. Grinstein: Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Curr Opin Cell Biol 19, 483–492 (2007)
[98]M. Hara-Chikuma, B. Yang, N.D. Sonawane, S. Sasaki, S. Uchida, A.S. Verkman: ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 280, 1241–1247 (2005)
[99]S. Couoh-Cardel, E. Milgrom, S. Wilkens: Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector. J Biol Chem September 28, 2015: 10.1.074/jbc.M115.6.62494 (2015)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Regulation of V-ATPase activity
1 Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, USA
2 Program in Cell and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, USA
3 Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
Abstract
V-ATPases are ATP-driven proton pumps present in both intracellular and cell surface membranes of eukaryotes that function in many normal and disease processes. V-ATPases are large, multi-subunit complexes composed of a peripheral domain (V1) that hydrolyzes ATP and a membrane integral domain (V0) that translocates protons. Because of the diversity of their functions, V-ATPase activity is controlled by a number of mechanisms. Regulated assembly of the V1 and V0 domains rapidly modulates V-ATPase activity in response to a variety of cues, including nutrient availability, growth factor stimulation and cellular differentiation. Considerable information has recently emerged concerning the cellular signaling pathways controlling regulated assembly. Acid secretion by epithelial cells in the kidney and epididymus is controlled by regulated trafficking of V-ATPases to the cell surface. Isoforms of subunit a of the V0 domain both control trafficking of V-ATPases to distinct cellular membranes and confer properties to the resultant complexes that help account for differences in pH between cellular compartments. Finally, differential expression of genes encoding V-ATPases subunits occurs in a number of contexts, including cancer.
Keywords
- V-ATPase
- Control Of Acidification
- Control Of Cellular Ph
- Regulated Assembly
- Regulated Trafficking
- Review
References
- [1] K. Cotter, L. Stransky, C. McGuire, M. Forgac: Recent Insights into the Structure, Regulation, and Function of the V-ATPases. Trends Biochem Sci 40, 611–622 (2015)
- [2] M. Forgac: Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8, 917–929 (2007)
- [3] S. Breton, D. Brown: Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 28, 318–329 (2013)
- [4] P.M. Kane: Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13, 117–123 (2012)
- [5] V. Marshansky, J.L. Rubinstein, G. Grüber: Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim Biophys Acta 1837, 857–879 (2014)
- [6] G.-H. Sun-Wada, Y. Wada: Vacuolar-type proton pump ATPases: acidification and pathological relationships. Histol Histopathol 28, 805–815 (2013)
- [7] J. Gruenberg, F.G. van der Goot: Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7, 495–504 (2006)
- [8] J. Capecci, M. Forgac: The Function of Vacuolar ATPase (V-ATPase) a Subunit Isoforms in Invasiveness of MCF10a and MCF10CA1a Human Breast Cancer Cells. J Biol Chem 288, 32731–32741 (2013)
- [9] K. von Schwarzenberg, R.M. Wiedmann, P. Oak, S. Schulz, H. Zischka, G. Wanner, T. Efferth, D. Trauner, A.M. Vollmar: Mode of Cell Death Induction by Pharmacological Vacuolar H+-ATPase (V-ATPase) Inhibition. J Biol Chem 288, 1385–1396 (2013)
- [10] K. Cotter, J. Capecci, S. Sennoune, M. Huss, M. Maier, R. Martinez-Zaguilan, M. Forgac: Activity of Plasma Membrane V-ATPases is Critical for the Invasion of MDA-MB231 Breast Cancer Cells. J Biol Chem 290, 3680–3692 (2015)
- [11] A. Hinton, S.R. Sennoune, S. Bond, M. Fang, M. Reuveni, G.G. Sahagian, D. Jay, R. Martinez-Zaguilan, M. Forgac: Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284, 16400–16408 (2009)
- [12] V. Gocheva, J.A. Joyce: Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6, 60–64 (2007)
- [13] J. Zhao, S. Benlekbir, J.L. Rubinstein: Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521, 241–245 (2015)
- [14] T. Hirata, A. Iwamoto-Kihara, G.-H. Sun-Wada, T. Okajima, Y. Wada, M. Futai: Subunit rotation of vacuolar-type proton pumping ATPase: relative rotation of the G and C subunits. J Biol Chem 278, 23714–23719 (2003)
- [15] K. Yokoyama, K. Nagata, H. Imamura, S. Ohkuma, M. Yoshida, M. Tamakoshi: Subunit arrangement in V-ATPase from Thermus thermophilus. J Biol Chem 278, 42686–42691 (2003)
- [16] R.A. Oot, S. Wilkens: Subunit interactions at the V1-Vo interface in yeast vacuolar ATPase. J Biol Chem 287, 13396–13406 (2012)
- [17] M. Toei, S. Toei, M. Forgac: Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. J Biol Chem 286, 35176–35186 (2011)
- [18] S. Kawasaki-Nishi, T. Nishi, M. Forgac: Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc Natl Acad Sci U S A 98, 12397–12402 (2001)
- [19] J.R. Casey, S. Grinstein, J. Orlowski: Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11, 50–61 (2010)
- [20] P.M. Kane: Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. J Biol Chem 270, 17025–17032 (1995)
- [21] J.P. Sumner, J.A. Dow, F.G. Earley, U. Klein, D. Jäger, H. Wieczorek: Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270, 5649–5653 (1995)
- [22] K. Puopolo, M. Forgac: Functional reassembly of the coated vesicle proton pump. J Biol Chem 265, 14836–14841 (1990)
- [23] J. Zhang, M. Myers, M. Forgac: Characterization of the V0 domain of the coated vesicle (H+)-ATPase. J Biol Chem 267, 9773–9778 (1992)
- [24] K.J. Parra, P.M. Kane: Reversible association between the V1 and V0 domains of yeast vacuolar H+-ATPase is an unconventional glucose-induced effect. Mol Cell Biol 18, 7064–7074 (1998)
- [25] K.J. MacLeod, E. Vasilyeva, K. Merdek, P.D. Vogel, M. Forgac: Photoaffinity labeling of wild-type and mutant forms of the yeast V-ATPase A subunit by 2-azido-((32)P)ADP. J Biol Chem 274, 32869–32874 (1999)
- [26] T. Xu, M. Forgac: Microtubules are involved in glucose-dependent dissociation of the yeast vacuolar (H+)-ATPase in vivo. J Biol Chem 276, 24855–24861 (2001)
- [27] M. Lu, Y.Y. Sautin, L.S. Holliday, S.L. Gluck: The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J Biol Chem 279, 8732–∣(2004)
- [28] M. Lu, D. Ammar, H. Ives, F. Albrecht, S.L. Gluck: Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282, 24495–24503 (2007)
- [29] Y. Su, K.G. Blake-Palmer, S. Sorrell, B. Javid, K. Bowers, A. Zhou, S.H. Chang, S. Qamar, F.E. Karet: Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J of Physiol Renal Physiol 295, F950–958 (2008)
- [30] C.-Y. Chan, K.J. Parra: Yeast Phosphofructokinase-1 Subunit Pfk2p Is Necessary for pH Homeostasis and Glucose-dependent Vacuolar ATPase Reassembly. J Biol Chem 289, 19448–19457 (2014)
- [31] S. Bond, M. Forgac: The Ras/cAMP/Protein Kinase A Pathway Regulates Glucose-dependent Assembly of the Vacuolar (H+)-ATPase in Yeast. J Biol Chem 283, 36513–36521 (2008)
- [32] K. Tanaka, B.K. Lin, D.R. Wood, F. Tamanoi: IRA2, an upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc Natl Acad Sci U S A 88, 468–472 (1991)
- [33] J.M. Thevelein: Signal transduction in yeast. Yeast 10, 1753–1790 (1994)
- [34] T. Toda, S. Cameron, P. Sass, M. Zoller, J.D. Scott, B. McMullen, M. Hurwitz, E.G. Krebs, M. Wigler: Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7, 1371–1377 (1987)
- [35] R. Dechant, M. Binda, S.S. Lee, S. Pelet, J. Winderickx, M. Peter: Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29, 2515–2526 (2010)
- [36] T.T. Diakov, P.M. Kane: Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. The J Biol Chem 285, 23771–23778 (2010)
- [37] E. Shao, M. Forgac: Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation. J Biol Chem 279, 4⇗–48670 (2004)
- [38] J.H. Seol, A. Shevchenko, A. Shevchenko, R.J. Deshaies: Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3, 384–391 (2001)
- [39] A.M. Smardon, M. Tarsio, P.M. Kane: The RAVE complex is essential for stable assembly of the yeast V-ATPase. The J Biol Chem 277, 13831–13839 (2002)
- [40] A.M. Smardon, N.D. Nasab, M. Tarsio, T.T. Diakov, P.M. Kane: Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex. J Biol Chem 290, 27511–27523 (2015)
- [41] A.M. Smardon, P.M. Kane: RAVE is essential for the efficient assembly of the C subunit with the vacuolar H(+)-ATPase. J Biol Chem 282, 26185–26194 (2007)
- [42] E. Shao, T. Nishi, S. Kawasaki-Nishi, M. Forgac: Mutational Analysis of the Non-homologous Region of Subunit A of the Yeast V-ATPase. J Biol Chem 278, 12985–12991 (2003)
- [43] S. Kawasaki-Nishi, T. Nishi, M. Forgac: Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J Biol Chem 276, 17941–17948 (2001)
- [44] S. Kawasaki-Nishi, K. Bowers, T. Nishi, M. Forgac, T.H. Stevens: The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276, 47411–47420 (2001)
- [45] J. Qi, M. Forgac: Cellular Environment Is Important in Controlling V-ATPase Dissociation and Its Dependence on Activity. J Biol Chem 282, 24743–24751 (2007)
- [46] A.M. Smardon, H.I. Diab, M. Tarsio, T.T. Diakov, N.D. Nasab, R.W. West, P.M. Kane: The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell 25, 356–367 (2014)
- [47] S.C. Li, T.T. Diakov, T. Xu, M. Tarsio, W. Zhu, S. Couoh-Cardel, L.S. Weisman, P.M. Kane: The signaling lipid PI(3,5)P2 stabilizes V1-Vo sector interactions and activates the V-ATPase. Mol Biol Cell 25, 1251–1262 (2014)
- [48] K. Tabke, A. Albertmelcher, O. Vitavska, M. Huss, H.-P. Schmitz, H. Wieczorek: Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions. Biochem J 462, 185–197 (2014)
- [49] R.D. Doherty, P.M. Kane: Partial assembly of the yeast vacuolar H(+)-ATPase in mutants lacking one subunit of the enzyme. J Biol Chem 268, 16845–16851 (1993)
- [50] H. Wieczorek, K.W. Beyenbach, M. Huss, O. Vitavska: Vacuolar-type proton pumps in insect epithelia. J Exp Biol 212, 1611–1619 (2009)
- [51] M. Voss, O. Vitavska, B. Walz, H. Wieczorek, O. Baumann: Stimulus-induced phosphorylation of vacuolar H(+)-ATPase by protein kinase A. J Biol Chem 282, 33735–33742 (2007)
- [52] P. Dames, B. Zimmermann, R. Schmidt, J. Rein, M. Voss, B. Schewe, B. Walz, O. Baumann: cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands. Proc Natl Acad Sci U S A 103, 3926–3931 (2006)
- [53] F. Tiburcy, K.W. Beyenbach, H. Wieczorek: Protein kinase A-dependent and -independent activation of the V-ATPase in Malpighian tubules of Aedes aegypti. J Exp Biol 216, 881–891 (2013)
- [54] J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka: Immunobiology of dendritic cells. Annu Rev Immunol 18, 767–811 (2000)
- [55] E.S. Trombetta, M. Ebersold, W. Garrett, M. Pypaert, I. Mellman: Activation of lysosomal function during dendritic cell maturation. Science 299, 1400–1403 (2003)
- [56] M.B. Lutz, G. Schuler: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?Trends Immunol 23, 445–449 (2002)
- [57] B. Vander Lugt, Z.T. Beck, R.C. Fuhlbrigge, N. Hacohen, J.J. Campbell, M. Boes: TGF-βSuppresses β-Catenin-Dependent Tolerogenic Activation Program in Dendritic Cells. PLoS One 6, e20099 (2011)
- [58] R. Liberman, S. Bond, M.G. Shainheit, M.J. Stadecker, M. Forgac: Regulated assembly of vacuolar ATPase is increased during cluster disruption-induced maturation of dendritic cells through a phosphatidylinositol 3-kinase/mTOR-dependent pathway. J Biol Chem 289, 1355–1363 (2014)
- [59] Y.Y. Sautin, M. Lu, A. Gaugler, L. Zhang, S.L. Gluck: Phosphatidylinositol 3-Kinase-Mediated Effects of Glucose on Vacuolar H+-ATPase Assembly, Translocation, and Acidification of Intracellular Compartments in Renal Epithelial Cells. Mol Cell Biol 25, 575–589 (2005)
- [60] H.P. Kohio, A.L. Adamson: Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection. Virol J 444, 301–309 (2013)
- [61] L.A. Stransky, M. Forgac: Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly. J Biol Chem 290, 27360–27369 (2015)
- [62] R. Zoncu, L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, D.M. Sabatini: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334, 678–683 (2011)
- [63] H. Marjuki, A. Gornitzky, B.M. Marathe, N.A. Ilyushina, J.R. Aldridge, G. Desai, R.J. Webby, R.G. Webster: Influenza A virus-induced early activation of ERK and PI3K mediates V-ATPase-dependent intracellular pH change required for fusion: ERK and PI3K regulate V-ATPase activity. Cell Microbiol 13, 587–601 (2011)
- [64] Y. Xu, A. Parmar, E. Roux, A. Balbis, V. Dumas, S. Chevalier, B.I. Posner: Epidermal Growth Factor-induced Vacuolar (H+)-ATPase Assembly: A ROLE IN SIGNALING VIA mTORC1 ACTIVATION. J Biol Chem 287, 26409–26422 (2012)
- [65] C. Lafourcade, K. Sobo, S. Kieffer-Jaquinod, J. Garin, F.G. van der Goot: Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PloS One 3, e2758 (2008)
- [66] S. Breton, D. Brown: Cold-induced microtubule disruption and relocalization of membrane proteins in kidney epithelial cells. Clin J Am Soc Nephrol 9, 155–166 (1998)
- [67] A. Banerjee, T. Shih, E.A. Alexander, J.H. Schwartz: SNARE proteins regulate H(+)-ATPase redistribution to the apical membrane in rat renal inner medullary collecting duct cells. J Biol Chem 274, 26518–26522 (1999)
- [68] T.G. Păunescu, M. Ljubojevic, L.M. Russo, C. Winter, M.M. McLaughlin, C.A. Wagner, S. Breton, D. Brown: cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J PhysiolRenal Physiol 298, F643–654 (2010)
- [69] R. Alzamora, R.F. Thali, F. Gong, C. Smolak, H. Li, C.J. Baty, C.A. Bertrand, Y. Auchli, R.A. Brunisholz, D. Neumann, K.R. Hallows, N.M. Pastor-Soler: PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J Biol Chem 285, 24676–24685 (2010)
- [70] R. Alzamora, M.M. Al-Bataineh, W. Liu, F. Gong, H. Li, R.F. Thali, Y. Joho-Auchli, R.A. Brunisholz, L.M. Satlin, D. Neumann, K.R. Hallows, N.M. Pastor-Soler: AMP-activated protein kinase regulates the vacuolar H+-ATPase via direct phosphorylation of the A subunit (ATP6V1A) in the kidney. Am J PhysiolRenal Physiol 305, F943–956 (2013)
- [71] F. Rothenberger, A. Velic, P.A. Stehberger, J. Kovacikova, C.A. Wagner: Angiotensin II stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 18, 2085–2093 (2007)
- [72] C. Winter, N.B. Kampik, L. Vedovelli, F. Rothenberger, T.G. Paunescu, P.A. Stehberger, D. Brown, H. John, C.A. Wagner: Aldosterone stimulates vacuolar H(+)-ATPase activity in renal acid-secretory intercalated cells mainly via a protein kinase C-dependent pathway. Am J Physiol Cell Physiol 301, C1251–1261 (2011)
- [73] N. Pastor-Soler, V. Beaulieu, T.N. Litvin, N. Da Silva, Y. Chen, D. Brown, J. Buck, L.R. Levin, S. Breton: Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem 278, 49523–49529 (2003)
- [74] N.M. Pastor-Soler, K.R. Hallows, C. Smolak, F. Gong, D. Brown, S. Breton: Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells. Am J Physiol Cell Physiol 294, C488–494 (2008)
- [75] W.W. Shum, N. Da Silva, C. Belleannee, M. McKee, D. Brown, S. Breton: Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol 301, C31–C43 (2011)
- [76] W.W.C. Shum, N. Da Silva, M. McKee, P.J.S. Smith, D. Brown, S. Breton: Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135, 1108–1117 (2008)
- [77] T. Toyomura, Y. Murata, A. Yamamoto, T. Oka, G.-H. Sun-Wada, Y. Wada, M. Futai: From lysosomes to the plasma membrane: localization of vacuolar-type H+-ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 278, 22023–22030 (2003)
- [78] A. Frattini, P.J. Orchard, C. Sobacchi, S. Giliani, M. Abinun, J.P. Mattsson, D.J. Keeling, A.K. Andersson, P. Wallbrandt, L. Zecca, L.D. Notarangelo, P. Vezzoni, A. Villa: Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25, 343–346 (2000)
- [79] G.-H. Sun-Wada, T. Toyomura, Y. Murata, A. Yamamoto, M. Futai, Y. Wada: The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 119, 4531–4540 (2006)
- [80] T. Nishisho, K. Hata, M. Nakanishi, Y. Morita, G.-H. Sun-Wada, Y. Wada, N. Yasui, T. Yoneda: The a3 isoform vacuolar type H+-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res: MCR 9, 845–855 (2011)
- [81] V. Gleize, B. Boisselier, Y. Marie, S. Poëa-Guyon, M. Sanson, N. Morel: The renal v-ATPase a4 subunit is expressed in specific subtypes of human gliomas. Glia 60, 1004–1012 (2012)
- [82] A. Kulshrestha, G.K. Katara, S. Ibrahim, S. Pamarthy, M.K. Jaiswal, A. Gilman Sachs, K.D. Beaman: Vacuolar ATPase 'a2'isoform exhibits distinct cell surface accumulation and modulates matrix metalloproteinase activity in ovarian cancer. Oncotarget 6, 3797–3810 (2015)
- [83] S. Feng, G. Zhu, M. McConnell, L. Deng, Q. Zhao, M. Wu, Q. Zhou, J. Wang, J. Qi, Y.-P. Li, W. Chen: Silencing of atp6v1c1 prevents breast cancer growth and bone metastasis. Int. J Biol Sci 9, 853–862 (2013)
- [84] T. Ohta, M. Numata, H. Yagishita, F. Futagami, Y. Tsukioka, H. Kitagawa, M. Kayahara, T. Nagakawa, I. Miyazaki, M. Yamamoto, S. Iseki, S. Ohkuma: Expression of 16 kDa proteolipid of vacuolar-type H(+)-ATPase in human pancreatic cancer. Br J Cancer 73, 1511–1517 (1996)
- [85] X. Lu, W. Qin, J. Li, N. Tan, D. Pan, H. Zhang, L. Xie, G. Yao, H. Shu, M. Yao, D. Wan, J. Gu, S. Yang: The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res 65, 6843–6849 (2005)
- [86] S. Pe-a-Llopis, S. Vega-Rubin-de-Celis, J.C. Schwartz, N.C. Wolff, T.A.T. Tran, L. Zou, X.-J. Xie, D.R. Corey, J. Brugarolas: Regulation of TFEB and V-ATPases by mTORC1. EMBO J 30, 3242–3258 (2011)
- [87] T. Zhang, Q. Zhou, M.H. Ogmundsdottir, K. Möller, R. Siddaway, L. Larue, M. Hsing, S.W. Kong, C.R. Goding, A. Palsson, E. Steingrimsson, F. Pignoni: Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1. J Cell Sci 128, 2938–2950 (2015)
- [88] E. Tognon, F. Kobia, I. Busi, A. Fumagalli, F. De Masi, T. Vaccari: Control of lysosomal biogenesis and Notch-dependent tissue patterning by components of the TFEB-V-ATPase axis in Drosophila melanogaster. Autophagy January 4, 2016: 10.1.080/ 1554↳.2.015.1.134080 (2016)
- [89] A. Yamamoto, Y. Tagawa, T. Yoshimori, Y. Moriyama, R. Masaki, Y. Tashiro: Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23, 33–42 (1998)
- [90] Y. Feng, M. Forgac: A novel mechanism for regulation of vacuolar acidification. J Biol Chem 267, 19769–19772 (1992)
- [91] Y. Feng, M. Forgac: Cysteine 254 of the 73-kDa A subunit is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by sulfhydryl reagents. J Biol Chem 267, 5817–5822 (1992)
- [92] Y. Feng, M. Forgac: Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem 269, 13224–13230 (1994)
- [93] J.E. Walker: The regulation of catalysis in ATP synthase. Curr Opin Struct Biol 4, 912–918 (1994)
- [94] Y.E. Oluwatosin, P.M. Kane: Mutations in the CYS4 gene provide evidence for regulation of the yeast vacuolar H+-ATPase by oxidation and reduction in vivo. J Biol Chem 272, 28149–28157 (1997)
- [95] K.M. O'Callaghan, V. Ayllon, J. O'Keeffe, Y. Wang, O.T. Cox, G. Loughran, M. Forgac, R. O'Connor: Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J Biol Chem 285, 381–391 (2010)
- [96] M. Merkulova, T.G. Păunescu, A. Azroyan, V. Marshansky, S. Breton, D. Brown: Mapping the H+(V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation. Sci Rep 5, 14827 (2015)
- [97] J. Orlowski, S. Grinstein: Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Curr Opin Cell Biol 19, 483–492 (2007)
- [98] M. Hara-Chikuma, B. Yang, N.D. Sonawane, S. Sasaki, S. Uchida, A.S. Verkman: ClC-3 chloride channels facilitate endosomal acidification and chloride accumulation. J Biol Chem 280, 1241–1247 (2005)
- [99] S. Couoh-Cardel, E. Milgrom, S. Wilkens: Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector. J Biol Chem September 28, 2015: 10.1.074/jbc.M115.6.62494 (2015)
