Information
References
Contents
Download
[1]I. T. Gavrilovic and J. B. Posner: Brain metastases: epidemiology and pathophysiology. J Neurooncol 75, 5-14 (2005)
[2]E. Tabouret, O. Chinot, P. Metellus, A. Tallet, P. Viens and A. Goncalves: Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32, 4655-62 (2012)
[3]J. Polivka, Jr., J. Polivka, L. Holubec, T. Kubikova, V. Priban, O. Hes, K. Pivovarcikova and I. Treskova: Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme. Anticancer Res 37, 21-33 (2017)
[4]O. L. Chinot, T. de La Motte Rouge, N. Moore, A. Zeaiter, A. Das, H. Phillips, Z. Modrusan and T. Cloughesy: AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther 28, 334-40 (2011)
[5]M. Staberg, S. R. Michaelsen, R. D. Rasmussen, M. Villingshoj, H. S. Poulsen and P. Hamerlik: Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol (Dordr) 40, 21-32 (2017)
[6]M. B. Graeber, B. W. Scheithauer and G. W. Kreutzberg: Microglia in brain tumors. Glia 40, 252-9 (2002)
[7]J. J. Watters, J. M. Schartner and B. Badie: Microglia function in brain tumors. J Neurosci Res 81, 447-55 (2005)
[8]C. Huettner, S. Czub, S. Kerkau, W. Roggendorf and J. C. Tonn: Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 17, 3217-24 (1997)
[9]S. Wagner, S. Czub, M. Greif, G. H. Vince, N. Suss, S. Kerkau, P. Rieckmann, W. Roggendorf, K. Roosen and J. C. Tonn: Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 82, 12-6 (1999)
[10]E. Giraudo, M. Inoue and D. Hanahan: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114, 623-33 (2004)
[11]S. M. Zeisberger, B. Odermatt, C. Marty, A. H. Zehnder-Fjallman, K. Ballmer-Hofer and R. A. Schwendener: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95, 272-81 (2006)
[12]S. S. Padalecki and T. A. Guise: Actions of bisphosphonates in animal models of breast cancer. Breast Cancer Res 4, 35-41 (2002)
[13]T. Pukrop, F. Dehghani, H. N. Chuang, R. Lohaus, K. Bayanga, S. Heermann, T. Regen, D. Van Rossum, F. Klemm, M. Schulz, L. Siam, A. Hoffmann, L. Trumper, C. Stadelmann, I. Bechmann, U. K. Hanisch and C. Binder: Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58, 1477-89 (2010)
[14]T. M. Robinson-Smith, I. Isaacsohn, C. A. Mercer, M. Zhou, N. Van Rooijen, N. Husseinzadeh, M. M. McFarland-Mancini and A. F. Drew: Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res 67, 5708-16 (2007)
[15]U. K. Hanisch and H. Kettenmann: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10, 1387-94 (2007)
[16]J. Wei, K. Gabrusiewicz and A. Heimberger: The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013, 285246 (2013)
[17]K. Nakajima, Y. Tohyama, S. Maeda, S. Kohsaka and T. Kurihara: Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neurochem Int 50, 807-20 (2007)
[18]C. N. Parkhurst, G. Yang, I. Ninan, J. N. Savas, J. R. Yates, 3rd, J. J. Lafaille, B. L. Hempstead, D. R. Littman and W. B. Gan: Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596-609 (2013)
[19]M. L. Rossi, J. T. Hughes, M. M. Esiri, H. B. Coakham and D. B. Brownell: Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol 74, 269-77 (1987)
[20]W. Roggendorf, S. Strupp and W. Paulus: Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92, 288-93 (1996)
[21]C. Schulz, E. Gomez Perdiguero, L. Chorro, H. Szabo-Rogers, N. Cagnard, K. Kierdorf, M. Prinz, B. Wu, S. E. Jacobsen, J. W. Pollard, J. Frampton, K. J. Liu and F. Geissmann: A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86-90 (2012)
[22]M. Prinz and J. Priller: Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15, 300-12 (2014)
[23]E. Gomez Perdiguero, K. Klapproth, C. Schulz, K. Busch, E. Azzoni, L. Crozet, H. Garner, C. Trouillet, M. F. de Bruijn, F. Geissmann and H. R. Rodewald: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547-51 (2015)
[24]M. Mizutani, P. A. Pino, N. Saederup, I. F. Charo, R. M. Ransohoff and A. E. Cardona: The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188, 29-36 (2012)
[25]X. Feng, F. Szulzewsky, A. Yerevanian, Z. Chen, D. Heinzmann, R. D. Rasmussen, V. Alvarez-Garcia, Y. Kim, B. Wang, I. Tamagno, H. Zhou, X. Li, H. Kettenmann, R. M. Ransohoff and D. Hambardzumyan: Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget 6, 15077-94 (2015)
[26]A. Muller, S. Brandenburg, K. Turkowski, S. Muller and P. Vajkoczy: Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer 137, 278-88 (2015)
[27]B. Badie and J. M. Schartner: Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46, 957-61; discussion 961-2 (2000)
[28]M. Lorger and B. Felding-Habermann: Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176, 2958-71 (2010)
[29]R. A. Morantz, G. W. Wood, M. Foster, M. Clark and K. Gollahon: Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50, 305-11 (1979)
[30]R. A. Morantz, G. W. Wood, M. Foster, M. Clark and K. Gollahon: Macrophages in experimental and human brain tumors. Part 1: Studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. J Neurosurg 50, 298-304 (1979)
[31]J. Murata, P. Ricciardi-Castagnoli, P. Dessous L'Eglise Mange, F. Martin and L. Juillerat-Jeanneret: Microglial cells induce cytotoxic effects toward colon carcinoma cells: measurement of tumor cytotoxicity with a gamma-glutamyl transpeptidase assay. Int J Cancer 70, 169-74 (1997)
[32]N. Leitinger and I. G. Schulman: Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 33, 1120-6 (2013)
[33]A. Ellert-Miklaszewska, M. Dabrowski, M. Lipko, M. Sliwa, M. Maleszewska and B. Kaminska: Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia 61, 1178-90 (2013)
[34]K. Gabrusiewicz, A. Ellert-Miklaszewska, M. Lipko, M. Sielska, M. Frankowska and B. Kaminska: Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 6, e23902 (2011)
[35]H. Yu, D. Pardoll and R. Jove: STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798-809 (2009)
[36]K. Takeda and S. Akira: STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 11, 199-207 (2000)
[37]A. E. Juedes and N. H. Ruddle: Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 166, 5168-75 (2001)
[38]E. Ulvestad, K. Williams, R. Bjerkvig, K. Tiekotter, J. Antel and R. Matre: Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol 56, 732-40 (1994)
[39]C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman and A. M. Hill: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164, 6166-73 (2000)
[40]J. L. Pace and S. W. Russell: Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol 126, 1863-7 (1981)
[41]J. L. Pace, S. M. Taffet and S. W. Russell: The effect of endotoxin in eliciting agents on the activation of mouse macrophages for tumor cell killing. J Reticuloendothel Soc 30, 15-21 (1981)
[42]S. Sarkar, A. Doring, F. J. Zemp, C. Silva, X. Lun, X. Wang, J. Kelly, W. Hader, M. Hamilton, P. Mercier, J. F. Dunn, D. Kinniburgh, N. van Rooijen, S. Robbins, P. Forsyth, G. Cairncross, S. Weiss and V. W. Yong: Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 17, 46-55 (2014)
[43]A. Mantovani, S. Sozzani, M. Locati, P. Allavena and A. Sica: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549-55 (2002)
[44]A. Sica, T. Schioppa, A. Mantovani and P. Allavena: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-27 (2006)
[45]L. M. Jones, M. L. Broz, J. J. Ranger, J. Ozcelik, R. Ahn, D. Zuo, J. Ursini-Siegel, M. T. Hallett, M. Krummel and W. J. Muller: STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis. Cancer Res 76, 1416-28 (2016)
[46]E. C. Brantley and E. N. Benveniste: Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 6, 675-84 (2008)
[47]M. Kortylewski, M. Kujawski, T. Wang, S. Wei, S. Zhang, S. Pilon-Thomas, G. Niu, H. Kay, J. Mule, W. G. Kerr, R. Jove, D. Pardoll and H. Yu: Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11, 1314-21 (2005)
[48]Y. Shen, G. Devgan, J. E. Darnell, Jr. and J. F. Bromberg: Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci U S A 98, 1543-8 (2001)
[49]J. W. Pollard: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4, 71-8 (2004)
[50]L. Zhang, M. V. Handel, J. M. Schartner, A. Hagar, G. Allen, M. Curet and B. Badie: Regulation of IL-10 expression by upstream stimulating factor (USF-1) in glioma-associated microglia. J Neuroimmunol 184, 188-97 (2007)
[51]Y. Komohara, H. Horlad, K. Ohnishi, Y. Fujiwara, B. Bai, T. Nakagawa, S. Suzu, H. Nakamura, J. Kuratsu and M. Takeya: Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci 103, 2165-72 (2012)
[52]Y. Komohara, K. Ohnishi, J. Kuratsu and M. Takeya: Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216, 15-24 (2008)
[53]B. Qiu, D. Zhang, C. Wang, J. Tao, X. Tie, Y. Qiao, K. Xu, Y. Wang and A. Wu: IL-10 and TGF-beta2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep 38, 3585-91 (2011)
[54]P. S. Zeiner, C. Preusse, A. E. Blank, C. Zachskorn, P. Baumgarten, L. Caspary, A. K. Braczynski, J. Weissenberger, H. Bratzke, S. Reiss, S. Pennartz, R. Winkelmann, C. Senft, K. H. Plate, J. Wischhusen, W. Stenzel, P. N. Harter and M. Mittelbronn: MIF Receptor CD74 is Restricted to Microglia/Macrophages, Associated with a M1-Polarized Immune Milieu and Prolonged Patient Survival in Gliomas. Brain Pathol 25, 491-504 (2015)
[55]B. P. He, J. J. Wang, X. Zhang, Y. Wu, M. Wang, B. H. Bay and A. Y. Chang: Differential reactions of microglia to brain metastasis of lung cancer. Mol Med 12, 161-70 (2006)
[56]J. M. Schartner, A. R. Hagar, M. Van Handel, L. Zhang, N. Nadkarni and B. Badie: Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51, 279-85 (2005)
[57]S. Singh, S. Swarnkar, P. Goswami and C. Nath: Astrocytes and microglia: responses to neuropathological conditions. Int J Neurosci 121, 589-97 (2011)
[58]B. J. Rollins: Chemokines. Blood 90, 909-28 (1997)
[59]S. Y. Leung, M. P. Wong, L. P. Chung, A. S. Chan and S. T. Yuen: Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol 93, 518-27 (1997)
[60]M. Platten, A. Kretz, U. Naumann, S. Aulwurm, K. Egashira, S. Isenmann and M. Weller: Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54, 388-92 (2003)
[61]M. Okada, M. Saio, Y. Kito, N. Ohe, H. Yano, S. Yoshimura, T. Iwama and T. Takami: Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 34, 1621-7 (2009)
[62]G. Soria and A. Ben-Baruch: The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267, 271-85 (2008)
[63]S. L. Deshmane, S. Kremlev, S. Amini and B. E. Sawaya: Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29, 313-26 (2009)
[64]T. Ueno, M. Toi, H. Saji, M. Muta, H. Bando, K. Kuroi, M. Koike, H. Inadera and K. Matsushima: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6, 3282-9 (2000)
[65]J. M. Galasso, L. D. Stegman, M. Blaivas, J. K. Harrison, B. D. Ross and F. S. Silverstein: Experimental gliosarcoma induces chemokine receptor expression in rat brain. Exp Neurol 161, 85-95 (2000)
[66]J. Kuratsu, K. Yoshizato, T. Yoshimura, E. J. Leonard, H. Takeshima and Y. Ushio: Quantitative study of monocyte chemoattractant protein-1 (MCP-1) in cerebrospinal fluid and cyst fluid from patients with malignant glioma. J Natl Cancer Inst 85, 1836-9 (1993)
[67]H. Fujimoto, T. Sangai, G. Ishii, A. Ikehara, T. Nagashima, M. Miyazaki and A. Ochiai: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125, 1276-84 (2009)
[68]D. Giulian and J. E. Ingeman: Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 8, 4707-17 (1988)
[69]M. M. Mueller, C. C. Herold-Mende, D. Riede, M. Lange, H. H. Steiner and N. E. Fusenig: Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression. Am J Pathol 155, 1557-67 (1999)
[70]M. H. Park, J. S. Lee and J. H. Yoon: High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J Surg Oncol 106, 386-92 (2012)
[71]J. Held-Feindt, K. Hattermann, S. S. Muerkoster, H. Wedderkopp, F. Knerlich-Lukoschus, H. Ungefroren, H. M. Mehdorn and R. Mentlein: CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res 316, 1553-66 (2010)
[72]E. Ferretti, V. Pistoia and A. Corcione: Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm 2014, 480941 (2014)
[73]O. Medina-Contreras, D. Geem, O. Laur, I. R. Williams, S. A. Lira, A. Nusrat, C. A. Parkos and T. L. Denning: CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 121, 4787-95 (2011)
[74]J. K. Harrison, Y. Jiang, S. Chen, Y. Xia, D. Maciejewski, R. K. McNamara, W. J. Streit, M. N. Salafranca, S. Adhikari, D. A. Thompson, P. Botti, K. B. Bacon and L. Feng: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95, 10896-901 (1998)
[75]F. Andre, N. Cabioglu, H. Assi, J. C. Sabourin, S. Delaloge, A. Sahin, K. Broglio, J. P. Spano, C. Combadiere, C. Bucana, J. C. Soria and M. Cristofanilli: Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol 17, 945-51 (2006)
[76]M. Sarmiento: Use of confocal microscopy in the study of microglia in a brain metastasis model. Methods Mol Biol 1041, 337-46 (2013)
[77]C. Hao, I. F. Parney, W. H. Roa, J. Turner, K. C. Petruk and D. A. Ramsay: Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103, 171-8 (2002)
[78]A. Ghosh and S. Chaudhuri: Microglial action in glioma: a boon turns bane. Immunol Lett 131, 3-9 (2010)
[79]W. Li and M. B. Graeber: The molecular profile of microglia under the influence of glioma. Neuro Oncol 14, 958-78 (2012)
[80]J. Zhang, S. Sarkar, R. Cua, Y. Zhou, W. Hader and V. W. Yong: A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33, 312-9 (2012)
[81]R. Li, G. Li, L. Deng, Q. Liu, J. Dai, J. Shen and J. Zhang: IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep 23, 1553-9 (2010)
[82]K. S. Mark and D. W. Miller: Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sci 64, 1941-53 (1999)
[83]H. E. de Vries, M. C. Blom-Roosemalen, M. van Oosten, A. G. de Boer, T. J. van Berkel, D. D. Breimer and J. Kuiper: The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64, 37-43 (1996)
[84]C. S. Abraham, M. A. Deli, F. Joo, P. Megyeri and G. Torpier: Intracarotid tumor necrosis factor-alpha administration increases the blood-brain barrier permeability in cerebral cortex of the newborn pig: quantitative aspects of double-labelling studies and confocal laser scanning analysis. Neurosci Lett 208, 85-8 (1996)
[85]G. M. Murphy, Jr., L. Bitting, A. Majewska, K. Schmidt, Y. Song and C. R. Wood: Expression of interleukin-11 and its encoding mRNA by glioblastoma cells. Neurosci Lett 196, 153-6 (1995)
[86]S. F. Hussain, D. Yang, D. Suki, K. Aldape, E. Grimm and A. B. Heimberger: The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8, 261-79 (2006)
[87]S. A. Almatroodi, C. F. McDonald, I. A. Darby and D. S. Pouniotis: Characterization of M1/M2 Tumour-Associated Macrophages (TAMs) and Th1/Th2 Cytokine Profiles in Patients with NSCLC. Cancer Microenviron 9, 1-11 (2016)
[88]M. Rincon, A. Tugores, A. Lopez-Rivas, A. Silva, M. Alonso, M. O. De Landazuri and M. Lopez-Botet: Prostaglandin E2 and the increase of intracellular cAMP inhibit the expression of interleukin 2 receptors in human T cells. Eur J Immunol 18, 1791-6 (1988)
[89]I. Rivkin, J. Rosenblatt and E. L. Becker: The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cyclic AMP levels by catecholamines, prostaglandins, theophylline and cholera toxin. J Immunol 115, 1126-34 (1975)
[90]X. Z. Ye, S. L. Xu, Y. H. Xin, S. C. Yu, Y. F. Ping, L. Chen, H. L. Xiao, B. Wang, L. Yi, Q. L. Wang, X. F. Jiang, L. Yang, P. Zhang, C. Qian, Y. H. Cui, X. Zhang and X. W. Bian: Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 189, 444-53 (2012)
[91]A. Wesolowska, A. Kwiatkowska, L. Slomnicki, M. Dembinski, A. Master, M. Sliwa, K. Franciszkiewicz, S. Chouaib and B. Kaminska: Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27, 918-30 (2008)
[92]A. Merzak, S. McCrea, S. Koocheckpour and G. J. Pilkington: Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1. Br J Cancer 70, 199-203 (1994)
[93]S. Penuelas, J. Anido, R. M. Prieto-Sanchez, G. Folch, I. Barba, I. Cuartas, D. Garcia-Dorado, M. A. Poca, J. Sahuquillo, J. Baselga and J. Seoane: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15, 315-27 (2009)
[94]H. Ikushima, T. Todo, Y. Ino, M. Takahashi, K. Miyazawa and K. Miyazono: Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5, 504-14 (2009)
[95]M. C. Ku, S. A. Wolf, D. Respondek, V. Matyash, A. Pohlmann, S. Waiczies, H. Waiczies, T. Niendorf, M. Synowitz, R. Glass and H. Kettenmann: GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol 125, 609-20 (2013)
[96]B. Badie, J. Schartner, J. Klaver and J. Vorpahl: In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor. Neurosurgery 44, 1077-82; discussion 1082-3 (1999)
[97]E. M. Rosen, J. Laterra, A. Joseph, L. Jin, A. Fuchs, D. Way, M. Witte, M. Weinand and I. D. Goldberg: Scatter factor expression and regulation in human glial tumors. Int J Cancer 67, 248-55 (1996)
[98]M. F. Di Renzo, A. Bertolotto, M. Olivero, P. Putzolu, T. Crepaldi, D. Schiffer, C. A. Pagni and P. M. Comoglio: Selective expression of the Met/HGF receptor in human central nervous system microglia. Oncogene 8, 219-22 (1993)
[99]T. Yamagata, K. Muroya, T. Mukasa, H. Igarashi, M. Momoi, T. Tsukahara, K. Arahata, H. Kumagai and T. Momoi: Hepatocyte growth factor specifically expressed in microglia activated Ras in the neurons, similar to the action of neurotrophic factors. Biochem Biophys Res Commun 210, 231-7 (1995)
[100]D. A. Mayes, Y. Hu, Y. Teng, E. Siegel, X. Wu, K. Panda, F. Tan, W. K. Yung and Y. H. Zhou: PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res 66, 9809-17 (2006)
[101]P. Guo, Y. Imanishi, F. C. Cackowski, M. J. Jarzynka, H. Q. Tao, R. Nishikawa, T. Hirose, B. Hu and S. Y. Cheng: Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol 166, 877-90 (2005)
[102]T. Yamada, Y. Yoshiyama, H. Sato, M. Seiki, A. Shinagawa and M. Takahashi: White matter microglia produce membrane-type matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta Neuropathol 90, 421-4 (1995)
[103]D. S. Markovic, K. Vinnakota, S. Chirasani, M. Synowitz, H. Raguet, K. Stock, M. Sliwa, S. Lehmann, R. Kalin, N. van Rooijen, K. Holmbeck, F. L. Heppner, J. Kiwit, V. Matyash, S. Lehnardt, B. Kaminska, R. Glass and H. Kettenmann: Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A 106, 12530-5 (2009)
[104]S. Yoshida and H. Takahashi: Expression of extracellular matrix molecules in brain metastasis. J Surg Oncol 100, 65-8 (2009)
[105]I. Bechmann, I. Galea and V. H. Perry: What is the blood-brain barrier (not)? Trends Immunol 28, 5-11 (2007)
[106]K. Denzer, M. J. Kleijmeer, H. F. Heijnen, W. Stoorvogel and H. J. Geuze: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113 Pt 19, 3365-74 (2000)
[107]J. G. van den Boorn, J. Dassler, C. Coch, M. Schlee and G. Hartmann: Exosomes as nucleic acid nanocarriers. dv Drug Deliv Rev 65, 331-5 (2013)
[108]K. M. Fang, Y. L. Wang, M. C. Huang, S. H. Sun, H. Cheng and S. F. Tzeng: Expression of macrophage inflammatory protein-1alpha and monocyte chemoattractant protein-1 in glioma-infiltrating microglia: involvement of ATP and P2X(7) receptor. J Neurosci Res 89, 199-211 (2011)
[109]M. A. Wollmer, R. Lucius, H. Wilms, J. Held-Feindt, J. Sievers and R. Mentlein: ATP and adenosine induce ramification of microglia in vitro. J Neuroimmunol 115, 19-27 (2001)
[110]S. Honda, Y. Sasaki, K. Ohsawa, Y. Imai, Y. Nakamura, K. Inoue and S. Kohsaka: Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21, 1975-82 (2001)
[111]C. Lambert, A. R. Ase, P. Seguela and J. P. AnTel: Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain Behav Immun 24, 1241-8 (2010)
[112]B. Csoka, Z. Selmeczy, B. Koscso, Z. H. Nemeth, P. Pacher, P. J. Murray, D. Kepka-Lenhart, S. M. Morris, Jr., W. C. Gause, S. J. Leibovich and G. Hasko: Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26, 376-86 (2012)
[113]G. Hasko and B. N. Cronstein: Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25, 33-9 (2004)
[114]Y. Imura, Y. Morizawa, R. Komatsu, K. Shibata, Y. Shinozaki, H. Kasai, K. Moriishi, Y. Moriyama and S. Koizumi: Microglia release ATP by exocytosis. Glia 61, 1320-30 (2013)
[115]N. Jantaratnotai, H. B. Choi and J. G. McLarnon: ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells. BMC Cancer 9, 442 (2009)
[116]F. B. Morrone, A. P. Horn, J. Stella, F. Spiller, J. J. Sarkis, C. G. Salbego, G. Lenz and A. M. Battastini: Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 71, 135-40 (2005)
[117]G. A. Calin, C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004 (2004)
[118]C. Z. Chen: MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353, 1768-71 (2005)
[119]M. Yang, J. Chen, F. Su, B. Yu, F. Su, L. Lin, Y. Liu, J. D. Huang and E. Song: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10, 117 (2011)
[120]H. Xia, Y. Qi, S. S. Ng, X. Chen, S. Chen, M. Fang, D. Li, Y. Zhao, R. Ge, G. Li, Y. Chen, M. L. He, H. F. Kung, L. Lai and M. C. Lin: MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 380, 205-10 (2009)
[121]H. Xia, Y. Qi, S. S. Ng, X. Chen, D. Li, S. Chen, R. Ge, S. Jiang, G. Li, Y. Chen, M. L. He, H. F. Kung, L. Lai and M. C. Lin: microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269, 158-65 (2009)
[122]H. Xia, W. K. Cheung, S. S. Ng, X. Jiang, S. Jiang, J. Sze, G. K. Leung, G. Lu, D. T. Chan, X. W. Bian, H. F. Kung, W. S. Poon and M. C. Lin: Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 287, 9962-71 (2012)
[123]J. Silber, D. A. Lim, C. Petritsch, A. I. Persson, A. K. Maunakea, M. Yu, S. R. Vandenberg, D. G. Ginzinger, C. D. James, J. F. Costello, G. Bergers, W. A. Weiss, A. Alvarez-Buylla and J. G. Hodgson: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6, 14 (2008)
[124]J. Godlewski, M. O. Nowicki, A. Bronisz, G. Nuovo, J. Palatini, M. De Lay, J. Van Brocklyn, M. C. Ostrowski, E. A. Chiocca and S. E. Lawler: MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37, 620-32 (2010)
[125]L. C. Cheng, E. Pastrana, M. Tavazoie and F. Doetsch: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12, 399-408 (2009)
[126]A. S. Yoo, A. X. Sun, L. Li, A. Shcheglovitov, T. Portmann, Y. Li, C. Lee-Messer, R. E. Dolmetsch, R. W. Tsien and G. R. Crabtree: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228-31 (2011)
[127]E. D. Ponomarev, T. Veremeyko, N. Barteneva, A. M. Krichevsky and H. L. Weiner: MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17, 64-70 (2011)
[128]K. K. Li, J. C. Pang, A. K. Ching, C. K. Wong, X. Kong, Y. Wang, L. Zhou, Z. Chen and H. K. Ng: miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 40, 1234-43 (2009)
[129]L. Zhang, S. Zhang, J. Yao, F. J. Lowery, Q. Zhang, W. C. Huang, P. Li, M. Li, X. Wang, C. Zhang, H. Wang, K. Ellis, M. Cheerathodi, J. H. McCarty, D. Palmieri, J. Saunus, S. Lakhani, S. Huang, A. A. Sahin, K. D. Aldape, P. S. Steeg and D. Yu: Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100-4 (2015)
[130]J. Kakimura, Y. Kitamura, K. Takata, M. Umeki, S. Suzuki, K. Shibagaki, T. Taniguchi, Y. Nomura, P. J. Gebicke-Haerter, M. A. Smith, G. Perry and S. Shimohama: Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16, 601-3 (2002)
[131]A. Wu, J. Wei, L. Y. Kong, Y. Wang, W. Priebe, W. Qiao, R. Sawaya and A. B. Heimberger: Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12, 1113-25 (2010)
[132]L. Zhang, W. Liu, D. Alizadeh, D. Zhao, O. Farrukh, J. Lin, S. A. Badie and B. Badie: S100B attenuates microglia activation in gliomas: possible role of STAT3 pathway. Glia 59, 486-98 (2011)
[133]X. Chen, L. Zhang, I. Y. Zhang, J. Liang, H. Wang, M. Ouyang, S. Wu, A. C. da Fonseca, L. Weng, Y. Yamamoto, H. Yamamoto, R. Natarajan and B. Badie: RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res 74, 7285-97 (2014)
[134]F. Klemm, A. Bleckmann, L. Siam, H. N. Chuang, E. Rietkotter, D. Behme, M. Schulz, M. Schaffrinski, S. Schindler, L. Trumper, F. Kramer, T. Beissbarth, C. Stadelmann, C. Binder and T. Pukrop: beta-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 32, 434-42 (2011)
[135]A. Bleckmann, L. Siam, F. Klemm, E. Rietkotter, C. Wegner, F. Kramer, T. Beissbarth, C. Binder, C. Stadelmann and T. Pukrop: Nuclear LEF1/TCF4 correlate with poor prognosis but not with nuclear beta-catenin in cerebral metastasis of lung adenocarcinomas. Clin Exp Metastasis 30, 471-82 (2013)
[136]T. Pukrop, F. Klemm, T. Hagemann, D. Gradl, M. Schulz, S. Siemes, L. Trumper and C. Binder: Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 103, 5454-9 (2006)
[137]H. N. Chuang, D. van Rossum, D. Sieger, L. Siam, F. Klemm, A. Bleckmann, M. Bayerlova, K. Farhat, J. Scheffel, M. Schulz, F. Dehghani, C. Stadelmann, U. K. Hanisch, C. Binder and T. Pukrop: Carcinoma cells misuse the host tissue damage response to invade the brain. Glia 61, 1331-46 (2013)
[138]C. Halleskog, J. Mulder, J. Dahlstrom, K. Mackie, T. Hortobagyi, H. Tanila, L. Kumar Puli, K. Farber, T. Harkany and G. Schulte: WNT signaling in activated microglia is proinflammatory. Glia 59, 119-31 (2011)
[139]M. Smid, Y. Wang, Y. Zhang, A. M. Sieuwerts, J. Yu, J. G. Klijn, J. A. Foekens and J. W. Martens: Subtypes of breast cancer show preferential site of relapse. Cancer Res 68, 3108-14 (2008)
[140]T. Tammela, G. Zarkada, H. Nurmi, L. Jakobsson, K. Heinolainen, D. Tvorogov, W. Zheng, C. A. Franco, A. Murtomaki, E. Aranda, N. Miura, S. Yla-Herttuala, M. Fruttiger, T. Makinen, A. Eichmann, J. W. Pollard, H. Gerhardt and K. Alitalo: VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13, 1202-13 (2011)
[141]S. S. Lakka, C. S. Gondi and J. S. Rao: Proteases and glioma angiogenesis. Brain Pathol 15, 327-41 (2005)
[142]M. Anghelina, P. Krishnan, L. Moldovan and N. I. Moldovan: Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells Dev 13, 665-76 (2004)
[143]K. Wu, K. Fukuda, F. Xing, Y. Zhang, S. Sharma, Y. Liu, M. D. Chan, X. Zhou, S. A. Qasem, R. Pochampally, Y. Y. Mo and K. Watabe: Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem 290, 9842-54 (2015)
[144]F. Xing, A. Kobayashi, H. Okuda, M. Watabe, S. K. Pai, P. R. Pandey, S. Hirota, A. Wilber, Y. Y. Mo, B. E. Moore, W. Liu, K. Fukuda, M. Iiizumi, S. Sharma, Y. Liu, K. Wu, E. Peralta and K. Watabe: Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 5, 384-96 (2013)
[145]D. H. Nam, H. M. Jeon, S. Kim, M. H. Kim, Y. J. Lee, M. S. Lee, H. Kim, K. M. Joo, D. S. Lee, J. E. Price, S. I. Bang and W. Y. Park: Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res 14, 4059-66 (2008)
[146]J. Neman, J. Termini, S. Wilczynski, N. Vaidehi, C. Choy, C. M. Kowolik, H. Li, A. C. Hambrecht, E. Roberts and R. Jandial: Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A 111, 984-9 (2014)
[147]O. M. Larsson and A. Schousboe: Kinetic characterization of GABA-transaminase from cultured neurons and astrocytes. Neurochem Res 15, 1073-7 (1990)
[148]L. Yi, H. Xiao, M. Xu, X. Ye, J. Hu, F. Li, M. Li, C. Luo, S. Yu, X. Bian and H. Feng: Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 232, 75-82 (2011)
[149]F. Forstreuter, R. Lucius and R. Mentlein: Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 132, 93-8 (2002)
[150]B. Johnson, T. Osada, T. Clay, H. Lyerly and M. Morse: Physiology and therapeutics of vascular endothelial growth factor in tumor immunosuppression. Curr Mol Med 9, 702-7 (2009)
[151]S. Martin, E. Dicou, J. P. Vincent and J. Mazella: Neurotensin and the neurotensin receptor-3 in microglial cells. J Neurosci Res 81, 322-6 (2005)
[152]H. Wang, J. D. Lathia, Q. Wu, J. Wang, Z. Li, J. M. Heddleston, C. E. Eyler, J. Elderbroom, J. Gallagher, J. Schuschu, J. MacSwords, Y. Cao, R. E. McLendon, X. F. Wang, A. B. Hjelmeland and J. N. Rich: Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27, 2393-404 (2009)
[153]A. Poli, J. Wang, O. Domingues, J. Planaguma, T. Yan, C. B. Rygh, K. O. Skaftnesmo, F. Thorsen, E. McCormack, F. Hentges, P. H. Pedersen, J. Zimmer, P. O. Enger and M. Chekenya: Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget 4, 1527-46 (2013)
[154]T. Nagai, M. Tanaka, Y. Tsuneyoshi, B. Xu, S. A. Michie, K. Hasui, H. Hirano, K. Arita and T. Matsuyama: Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother 58, 1577-86 (2009)
[155]H. Zhai, F. L. Heppner and S. E. Tsirka: Microglia/macrophages promote glioma progression. Glia 59, 472-85 (2011)
[156]S. Y. Hwang, B. C. Yoo, J. W. Jung, E. S. Oh, J. S. Hwang, J. A. Shin, S. Y. Kim, S. H. Cha and I. O. Han: Induction of glioma apoptosis by microglia-secreted molecules: The role of nitric oxide and cathepsin B. Biochim Biophys Acta 1793, 1656-68 (2009)
[157]R. Mora, A. Abschuetz, T. Kees, I. Dokic, N. Joschko, S. Kleber, R. Geibig, E. Mosconi, H. Zentgraf, A. Martin-Villalba and A. Regnier-Vigouroux: TNF-alpha- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia. Glia 57, 561-81 (2009)
[158]T. L. Chiu, C. W. Peng and M. J. Wang: Enhanced anti-glioblastoma activity of microglia by AAV2-mediated IL-12 through TRAIL and phagocytosis in vitro. Oncol Rep 25, 1373-80 (2011)
[159]T. Kees, J. Lohr, J. Noack, R. Mora, G. Gdynia, G. Todt, A. Ernst, B. Radlwimmer, C. S. Falk, C. Herold-Mende and A. Regnier-Vigouroux: Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol 14, 64-78 (2012)
[160]S. M. Pyonteck, L. Akkari, A. J. Schuhmacher, R. L. Bowman, L. Sevenich, D. F. Quail, O. C. Olson, M. L. Quick, J. T. Huse, V. Teijeiro, M. Setty, C. S. Leslie, Y. Oei, A. Pedraza, J. Zhang, C. W. Brennan, J. C. Sutton, E. C. Holland, D. Daniel and J. A. Joyce: CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19, 1264-72 (2013)
[161]D. S. Markovic, K. Vinnakota, N. van Rooijen, J. Kiwit, M. Synowitz, R. Glass and H. Kettenmann: Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25, 624-8 (2011)
[162]J. D. Weingart, E. P. Sipos and H. Brem: The role of minocycline in the treatment of intracranial 9L glioma. J Neurosurg 82, 635-40 (1995)
[163]D. Alizadeh, L. Zhang, J. Hwang, T. Schluep and B. Badie: Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine 6, 382-90 (2010)
[164]M. VanHandel, D. Alizadeh, L. Zhang, B. Kateb, M. Bronikowski, H. Manohara and B. Badie: Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 208, 3-9 (2009)
[165]S. C. Wang, C. F. Yu, J. H. Hong, C. S. Tsai and C. S. Chiang: Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One 8, e69182 (2013)
[166]M. Kioi, H. Vogel, G. Schultz, R. M. Hoffman, G. R. Harsh and J. M. Brown: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120, 694-705 (2010)
[167]C. Lu-Emerson, M. Snuderl, N. D. Kirkpatrick, J. Goveia, C. Davidson, Y. Huang, L. Riedemann, J. Taylor, P. Ivy, D. G. Duda, M. Ancukiewicz, S. R. Plotkin, A. S. Chi, E. R. Gerstner, A. F. Eichler, J. Dietrich, A. O. Stemmer-Rachamimov, T. T. Batchelor and R. K. Jain: Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro Oncol 15, 1079-87 (2013)
[168]Y. Piao, J. Liang, L. Holmes, A. J. Zurita, V. Henry, J. V. Heymach and J. F. de Groot: Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14, 1379-92 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
The roles of microglia/macrophages in tumor progression of brain cancer and metastatic disease
1 Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, U.S.A
Abstract
Malignant brain tumors and brain metastases are highly aggressive diseases that are often resistant to treatment. Consequently, the current prognosis of patients with brain tumors and metastases is dismal. Activated microglia and macrophages are often observed in close proximity to or within the malignant tumor masses, suggesting that microglia/macrophages play an important role in brain tumor progression. Microglia, being resident macrophages of the central nervous system, form a major component of the brain immune system. They exhibit anti-tumor functions by phagocytosis and the release of cytotoxic factors. However, these microglia/macrophages can be polarized into becoming tumor-supportive and immunosuppressive cells by certain tumor-derived soluble factors, thereby promoting tumor maintenance and progression. The activated microglia/macrophages also participate in the process of tumor angiogenesis, metastasis, dormancy, and relapse. In this review, we discuss the recent literature on the dual roles of microglia/macrophages in brain tumor progression. We have also reviewed the effect of several well-known microglia/macrophages-derived molecules and signals on brain tumor progression and further discussed the potential therapeutic strategies for targeting the pro-tumor and metastatic functions of microglia/macrophages.
Keywords
- Microglia
- Macrophage
- Brain Tumor
- Brain Metastasis
- Review
References
- [1] I. T. Gavrilovic and J. B. Posner: Brain metastases: epidemiology and pathophysiology. J Neurooncol 75, 5-14 (2005)
- [2] E. Tabouret, O. Chinot, P. Metellus, A. Tallet, P. Viens and A. Goncalves: Recent trends in epidemiology of brain metastases: an overview. Anticancer Res 32, 4655-62 (2012)
- [3] J. Polivka, Jr., J. Polivka, L. Holubec, T. Kubikova, V. Priban, O. Hes, K. Pivovarcikova and I. Treskova: Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme. Anticancer Res 37, 21-33 (2017)
- [4] O. L. Chinot, T. de La Motte Rouge, N. Moore, A. Zeaiter, A. Das, H. Phillips, Z. Modrusan and T. Cloughesy: AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther 28, 334-40 (2011)
- [5] M. Staberg, S. R. Michaelsen, R. D. Rasmussen, M. Villingshoj, H. S. Poulsen and P. Hamerlik: Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol (Dordr) 40, 21-32 (2017)
- [6] M. B. Graeber, B. W. Scheithauer and G. W. Kreutzberg: Microglia in brain tumors. Glia 40, 252-9 (2002)
- [7] J. J. Watters, J. M. Schartner and B. Badie: Microglia function in brain tumors. J Neurosci Res 81, 447-55 (2005)
- [8] C. Huettner, S. Czub, S. Kerkau, W. Roggendorf and J. C. Tonn: Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 17, 3217-24 (1997)
- [9] S. Wagner, S. Czub, M. Greif, G. H. Vince, N. Suss, S. Kerkau, P. Rieckmann, W. Roggendorf, K. Roosen and J. C. Tonn: Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 82, 12-6 (1999)
- [10] E. Giraudo, M. Inoue and D. Hanahan: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114, 623-33 (2004)
- [11] S. M. Zeisberger, B. Odermatt, C. Marty, A. H. Zehnder-Fjallman, K. Ballmer-Hofer and R. A. Schwendener: Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95, 272-81 (2006)
- [12] S. S. Padalecki and T. A. Guise: Actions of bisphosphonates in animal models of breast cancer. Breast Cancer Res 4, 35-41 (2002)
- [13] T. Pukrop, F. Dehghani, H. N. Chuang, R. Lohaus, K. Bayanga, S. Heermann, T. Regen, D. Van Rossum, F. Klemm, M. Schulz, L. Siam, A. Hoffmann, L. Trumper, C. Stadelmann, I. Bechmann, U. K. Hanisch and C. Binder: Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58, 1477-89 (2010)
- [14] T. M. Robinson-Smith, I. Isaacsohn, C. A. Mercer, M. Zhou, N. Van Rooijen, N. Husseinzadeh, M. M. McFarland-Mancini and A. F. Drew: Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res 67, 5708-16 (2007)
- [15] U. K. Hanisch and H. Kettenmann: Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10, 1387-94 (2007)
- [16] J. Wei, K. Gabrusiewicz and A. Heimberger: The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013, 285246 (2013)
- [17] K. Nakajima, Y. Tohyama, S. Maeda, S. Kohsaka and T. Kurihara: Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neurochem Int 50, 807-20 (2007)
- [18] C. N. Parkhurst, G. Yang, I. Ninan, J. N. Savas, J. R. Yates, 3rd, J. J. Lafaille, B. L. Hempstead, D. R. Littman and W. B. Gan: Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155, 1596-609 (2013)
- [19] M. L. Rossi, J. T. Hughes, M. M. Esiri, H. B. Coakham and D. B. Brownell: Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol 74, 269-77 (1987)
- [20] W. Roggendorf, S. Strupp and W. Paulus: Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol 92, 288-93 (1996)
- [21] C. Schulz, E. Gomez Perdiguero, L. Chorro, H. Szabo-Rogers, N. Cagnard, K. Kierdorf, M. Prinz, B. Wu, S. E. Jacobsen, J. W. Pollard, J. Frampton, K. J. Liu and F. Geissmann: A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86-90 (2012)
- [22] M. Prinz and J. Priller: Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15, 300-12 (2014)
- [23] E. Gomez Perdiguero, K. Klapproth, C. Schulz, K. Busch, E. Azzoni, L. Crozet, H. Garner, C. Trouillet, M. F. de Bruijn, F. Geissmann and H. R. Rodewald: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547-51 (2015)
- [24] M. Mizutani, P. A. Pino, N. Saederup, I. F. Charo, R. M. Ransohoff and A. E. Cardona: The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. J Immunol 188, 29-36 (2012)
- [25] X. Feng, F. Szulzewsky, A. Yerevanian, Z. Chen, D. Heinzmann, R. D. Rasmussen, V. Alvarez-Garcia, Y. Kim, B. Wang, I. Tamagno, H. Zhou, X. Li, H. Kettenmann, R. M. Ransohoff and D. Hambardzumyan: Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget 6, 15077-94 (2015)
- [26] A. Muller, S. Brandenburg, K. Turkowski, S. Muller and P. Vajkoczy: Resident microglia, and not peripheral macrophages, are the main source of brain tumor mononuclear cells. Int J Cancer 137, 278-88 (2015)
- [27] B. Badie and J. M. Schartner: Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46, 957-61; discussion 961-2 (2000)
- [28] M. Lorger and B. Felding-Habermann: Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176, 2958-71 (2010)
- [29] R. A. Morantz, G. W. Wood, M. Foster, M. Clark and K. Gollahon: Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. J Neurosurg 50, 305-11 (1979)
- [30] R. A. Morantz, G. W. Wood, M. Foster, M. Clark and K. Gollahon: Macrophages in experimental and human brain tumors. Part 1: Studies of the macrophage content of experimental rat brain tumors of varying immunogenicity. J Neurosurg 50, 298-304 (1979)
- [31] J. Murata, P. Ricciardi-Castagnoli, P. Dessous L'Eglise Mange, F. Martin and L. Juillerat-Jeanneret: Microglial cells induce cytotoxic effects toward colon carcinoma cells: measurement of tumor cytotoxicity with a gamma-glutamyl transpeptidase assay. Int J Cancer 70, 169-74 (1997)
- [32] N. Leitinger and I. G. Schulman: Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 33, 1120-6 (2013)
- [33] A. Ellert-Miklaszewska, M. Dabrowski, M. Lipko, M. Sliwa, M. Maleszewska and B. Kaminska: Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia 61, 1178-90 (2013)
- [34] K. Gabrusiewicz, A. Ellert-Miklaszewska, M. Lipko, M. Sielska, M. Frankowska and B. Kaminska: Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS One 6, e23902 (2011)
- [35] H. Yu, D. Pardoll and R. Jove: STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798-809 (2009)
- [36] K. Takeda and S. Akira: STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 11, 199-207 (2000)
- [37] A. E. Juedes and N. H. Ruddle: Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J Immunol 166, 5168-75 (2001)
- [38] E. Ulvestad, K. Williams, R. Bjerkvig, K. Tiekotter, J. Antel and R. Matre: Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol 56, 732-40 (1994)
- [39] C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman and A. M. Hill: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164, 6166-73 (2000)
- [40] J. L. Pace and S. W. Russell: Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol 126, 1863-7 (1981)
- [41] J. L. Pace, S. M. Taffet and S. W. Russell: The effect of endotoxin in eliciting agents on the activation of mouse macrophages for tumor cell killing. J Reticuloendothel Soc 30, 15-21 (1981)
- [42] S. Sarkar, A. Doring, F. J. Zemp, C. Silva, X. Lun, X. Wang, J. Kelly, W. Hader, M. Hamilton, P. Mercier, J. F. Dunn, D. Kinniburgh, N. van Rooijen, S. Robbins, P. Forsyth, G. Cairncross, S. Weiss and V. W. Yong: Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 17, 46-55 (2014)
- [43] A. Mantovani, S. Sozzani, M. Locati, P. Allavena and A. Sica: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23, 549-55 (2002)
- [44] A. Sica, T. Schioppa, A. Mantovani and P. Allavena: Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42, 717-27 (2006)
- [45] L. M. Jones, M. L. Broz, J. J. Ranger, J. Ozcelik, R. Ahn, D. Zuo, J. Ursini-Siegel, M. T. Hallett, M. Krummel and W. J. Muller: STAT3 Establishes an Immunosuppressive Microenvironment during the Early Stages of Breast Carcinogenesis to Promote Tumor Growth and Metastasis. Cancer Res 76, 1416-28 (2016)
- [46] E. C. Brantley and E. N. Benveniste: Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res 6, 675-84 (2008)
- [47] M. Kortylewski, M. Kujawski, T. Wang, S. Wei, S. Zhang, S. Pilon-Thomas, G. Niu, H. Kay, J. Mule, W. G. Kerr, R. Jove, D. Pardoll and H. Yu: Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11, 1314-21 (2005)
- [48] Y. Shen, G. Devgan, J. E. Darnell, Jr. and J. F. Bromberg: Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci U S A 98, 1543-8 (2001)
- [49] J. W. Pollard: Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4, 71-8 (2004)
- [50] L. Zhang, M. V. Handel, J. M. Schartner, A. Hagar, G. Allen, M. Curet and B. Badie: Regulation of IL-10 expression by upstream stimulating factor (USF-1) in glioma-associated microglia. J Neuroimmunol 184, 188-97 (2007)
- [51] Y. Komohara, H. Horlad, K. Ohnishi, Y. Fujiwara, B. Bai, T. Nakagawa, S. Suzu, H. Nakamura, J. Kuratsu and M. Takeya: Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci 103, 2165-72 (2012)
- [52] Y. Komohara, K. Ohnishi, J. Kuratsu and M. Takeya: Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216, 15-24 (2008)
- [53] B. Qiu, D. Zhang, C. Wang, J. Tao, X. Tie, Y. Qiao, K. Xu, Y. Wang and A. Wu: IL-10 and TGF-beta2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep 38, 3585-91 (2011)
- [54] P. S. Zeiner, C. Preusse, A. E. Blank, C. Zachskorn, P. Baumgarten, L. Caspary, A. K. Braczynski, J. Weissenberger, H. Bratzke, S. Reiss, S. Pennartz, R. Winkelmann, C. Senft, K. H. Plate, J. Wischhusen, W. Stenzel, P. N. Harter and M. Mittelbronn: MIF Receptor CD74 is Restricted to Microglia/Macrophages, Associated with a M1-Polarized Immune Milieu and Prolonged Patient Survival in Gliomas. Brain Pathol 25, 491-504 (2015)
- [55] B. P. He, J. J. Wang, X. Zhang, Y. Wu, M. Wang, B. H. Bay and A. Y. Chang: Differential reactions of microglia to brain metastasis of lung cancer. Mol Med 12, 161-70 (2006)
- [56] J. M. Schartner, A. R. Hagar, M. Van Handel, L. Zhang, N. Nadkarni and B. Badie: Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51, 279-85 (2005)
- [57] S. Singh, S. Swarnkar, P. Goswami and C. Nath: Astrocytes and microglia: responses to neuropathological conditions. Int J Neurosci 121, 589-97 (2011)
- [58] B. J. Rollins: Chemokines. Blood 90, 909-28 (1997)
- [59] S. Y. Leung, M. P. Wong, L. P. Chung, A. S. Chan and S. T. Yuen: Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas. Acta Neuropathol 93, 518-27 (1997)
- [60] M. Platten, A. Kretz, U. Naumann, S. Aulwurm, K. Egashira, S. Isenmann and M. Weller: Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54, 388-92 (2003)
- [61] M. Okada, M. Saio, Y. Kito, N. Ohe, H. Yano, S. Yoshimura, T. Iwama and T. Takami: Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 34, 1621-7 (2009)
- [62] G. Soria and A. Ben-Baruch: The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett 267, 271-85 (2008)
- [63] S. L. Deshmane, S. Kremlev, S. Amini and B. E. Sawaya: Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29, 313-26 (2009)
- [64] T. Ueno, M. Toi, H. Saji, M. Muta, H. Bando, K. Kuroi, M. Koike, H. Inadera and K. Matsushima: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6, 3282-9 (2000)
- [65] J. M. Galasso, L. D. Stegman, M. Blaivas, J. K. Harrison, B. D. Ross and F. S. Silverstein: Experimental gliosarcoma induces chemokine receptor expression in rat brain. Exp Neurol 161, 85-95 (2000)
- [66] J. Kuratsu, K. Yoshizato, T. Yoshimura, E. J. Leonard, H. Takeshima and Y. Ushio: Quantitative study of monocyte chemoattractant protein-1 (MCP-1) in cerebrospinal fluid and cyst fluid from patients with malignant glioma. J Natl Cancer Inst 85, 1836-9 (1993)
- [67] H. Fujimoto, T. Sangai, G. Ishii, A. Ikehara, T. Nagashima, M. Miyazaki and A. Ochiai: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125, 1276-84 (2009)
- [68] D. Giulian and J. E. Ingeman: Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 8, 4707-17 (1988)
- [69] M. M. Mueller, C. C. Herold-Mende, D. Riede, M. Lange, H. H. Steiner and N. E. Fusenig: Autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor in human gliomas with tumor progression. Am J Pathol 155, 1557-67 (1999)
- [70] M. H. Park, J. S. Lee and J. H. Yoon: High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma. J Surg Oncol 106, 386-92 (2012)
- [71] J. Held-Feindt, K. Hattermann, S. S. Muerkoster, H. Wedderkopp, F. Knerlich-Lukoschus, H. Ungefroren, H. M. Mehdorn and R. Mentlein: CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res 316, 1553-66 (2010)
- [72] E. Ferretti, V. Pistoia and A. Corcione: Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm 2014, 480941 (2014)
- [73] O. Medina-Contreras, D. Geem, O. Laur, I. R. Williams, S. A. Lira, A. Nusrat, C. A. Parkos and T. L. Denning: CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J Clin Invest 121, 4787-95 (2011)
- [74] J. K. Harrison, Y. Jiang, S. Chen, Y. Xia, D. Maciejewski, R. K. McNamara, W. J. Streit, M. N. Salafranca, S. Adhikari, D. A. Thompson, P. Botti, K. B. Bacon and L. Feng: Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95, 10896-901 (1998)
- [75] F. Andre, N. Cabioglu, H. Assi, J. C. Sabourin, S. Delaloge, A. Sahin, K. Broglio, J. P. Spano, C. Combadiere, C. Bucana, J. C. Soria and M. Cristofanilli: Expression of chemokine receptors predicts the site of metastatic relapse in patients with axillary node positive primary breast cancer. Ann Oncol 17, 945-51 (2006)
- [76] M. Sarmiento: Use of confocal microscopy in the study of microglia in a brain metastasis model. Methods Mol Biol 1041, 337-46 (2013)
- [77] C. Hao, I. F. Parney, W. H. Roa, J. Turner, K. C. Petruk and D. A. Ramsay: Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 103, 171-8 (2002)
- [78] A. Ghosh and S. Chaudhuri: Microglial action in glioma: a boon turns bane. Immunol Lett 131, 3-9 (2010)
- [79] W. Li and M. B. Graeber: The molecular profile of microglia under the influence of glioma. Neuro Oncol 14, 958-78 (2012)
- [80] J. Zhang, S. Sarkar, R. Cua, Y. Zhou, W. Hader and V. W. Yong: A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33, 312-9 (2012)
- [81] R. Li, G. Li, L. Deng, Q. Liu, J. Dai, J. Shen and J. Zhang: IL-6 augments the invasiveness of U87MG human glioblastoma multiforme cells via up-regulation of MMP-2 and fascin-1. Oncol Rep 23, 1553-9 (2010)
- [82] K. S. Mark and D. W. Miller: Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sci 64, 1941-53 (1999)
- [83] H. E. de Vries, M. C. Blom-Roosemalen, M. van Oosten, A. G. de Boer, T. J. van Berkel, D. D. Breimer and J. Kuiper: The influence of cytokines on the integrity of the blood-brain barrier in vitro. J Neuroimmunol 64, 37-43 (1996)
- [84] C. S. Abraham, M. A. Deli, F. Joo, P. Megyeri and G. Torpier: Intracarotid tumor necrosis factor-alpha administration increases the blood-brain barrier permeability in cerebral cortex of the newborn pig: quantitative aspects of double-labelling studies and confocal laser scanning analysis. Neurosci Lett 208, 85-8 (1996)
- [85] G. M. Murphy, Jr., L. Bitting, A. Majewska, K. Schmidt, Y. Song and C. R. Wood: Expression of interleukin-11 and its encoding mRNA by glioblastoma cells. Neurosci Lett 196, 153-6 (1995)
- [86] S. F. Hussain, D. Yang, D. Suki, K. Aldape, E. Grimm and A. B. Heimberger: The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8, 261-79 (2006)
- [87] S. A. Almatroodi, C. F. McDonald, I. A. Darby and D. S. Pouniotis: Characterization of M1/M2 Tumour-Associated Macrophages (TAMs) and Th1/Th2 Cytokine Profiles in Patients with NSCLC. Cancer Microenviron 9, 1-11 (2016)
- [88] M. Rincon, A. Tugores, A. Lopez-Rivas, A. Silva, M. Alonso, M. O. De Landazuri and M. Lopez-Botet: Prostaglandin E2 and the increase of intracellular cAMP inhibit the expression of interleukin 2 receptors in human T cells. Eur J Immunol 18, 1791-6 (1988)
- [89] I. Rivkin, J. Rosenblatt and E. L. Becker: The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cyclic AMP levels by catecholamines, prostaglandins, theophylline and cholera toxin. J Immunol 115, 1126-34 (1975)
- [90] X. Z. Ye, S. L. Xu, Y. H. Xin, S. C. Yu, Y. F. Ping, L. Chen, H. L. Xiao, B. Wang, L. Yi, Q. L. Wang, X. F. Jiang, L. Yang, P. Zhang, C. Qian, Y. H. Cui, X. Zhang and X. W. Bian: Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 189, 444-53 (2012)
- [91] A. Wesolowska, A. Kwiatkowska, L. Slomnicki, M. Dembinski, A. Master, M. Sliwa, K. Franciszkiewicz, S. Chouaib and B. Kaminska: Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27, 918-30 (2008)
- [92] A. Merzak, S. McCrea, S. Koocheckpour and G. J. Pilkington: Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor beta 1. Br J Cancer 70, 199-203 (1994)
- [93] S. Penuelas, J. Anido, R. M. Prieto-Sanchez, G. Folch, I. Barba, I. Cuartas, D. Garcia-Dorado, M. A. Poca, J. Sahuquillo, J. Baselga and J. Seoane: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15, 315-27 (2009)
- [94] H. Ikushima, T. Todo, Y. Ino, M. Takahashi, K. Miyazawa and K. Miyazono: Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5, 504-14 (2009)
- [95] M. C. Ku, S. A. Wolf, D. Respondek, V. Matyash, A. Pohlmann, S. Waiczies, H. Waiczies, T. Niendorf, M. Synowitz, R. Glass and H. Kettenmann: GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol 125, 609-20 (2013)
- [96] B. Badie, J. Schartner, J. Klaver and J. Vorpahl: In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor. Neurosurgery 44, 1077-82; discussion 1082-3 (1999)
- [97] E. M. Rosen, J. Laterra, A. Joseph, L. Jin, A. Fuchs, D. Way, M. Witte, M. Weinand and I. D. Goldberg: Scatter factor expression and regulation in human glial tumors. Int J Cancer 67, 248-55 (1996)
- [98] M. F. Di Renzo, A. Bertolotto, M. Olivero, P. Putzolu, T. Crepaldi, D. Schiffer, C. A. Pagni and P. M. Comoglio: Selective expression of the Met/HGF receptor in human central nervous system microglia. Oncogene 8, 219-22 (1993)
- [99] T. Yamagata, K. Muroya, T. Mukasa, H. Igarashi, M. Momoi, T. Tsukahara, K. Arahata, H. Kumagai and T. Momoi: Hepatocyte growth factor specifically expressed in microglia activated Ras in the neurons, similar to the action of neurotrophic factors. Biochem Biophys Res Commun 210, 231-7 (1995)
- [100] D. A. Mayes, Y. Hu, Y. Teng, E. Siegel, X. Wu, K. Panda, F. Tan, W. K. Yung and Y. H. Zhou: PAX6 suppresses the invasiveness of glioblastoma cells and the expression of the matrix metalloproteinase-2 gene. Cancer Res 66, 9809-17 (2006)
- [101] P. Guo, Y. Imanishi, F. C. Cackowski, M. J. Jarzynka, H. Q. Tao, R. Nishikawa, T. Hirose, B. Hu and S. Y. Cheng: Up-regulation of angiopoietin-2, matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma. Am J Pathol 166, 877-90 (2005)
- [102] T. Yamada, Y. Yoshiyama, H. Sato, M. Seiki, A. Shinagawa and M. Takahashi: White matter microglia produce membrane-type matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta Neuropathol 90, 421-4 (1995)
- [103] D. S. Markovic, K. Vinnakota, S. Chirasani, M. Synowitz, H. Raguet, K. Stock, M. Sliwa, S. Lehmann, R. Kalin, N. van Rooijen, K. Holmbeck, F. L. Heppner, J. Kiwit, V. Matyash, S. Lehnardt, B. Kaminska, R. Glass and H. Kettenmann: Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A 106, 12530-5 (2009)
- [104] S. Yoshida and H. Takahashi: Expression of extracellular matrix molecules in brain metastasis. J Surg Oncol 100, 65-8 (2009)
- [105] I. Bechmann, I. Galea and V. H. Perry: What is the blood-brain barrier (not)? Trends Immunol 28, 5-11 (2007)
- [106] K. Denzer, M. J. Kleijmeer, H. F. Heijnen, W. Stoorvogel and H. J. Geuze: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113 Pt 19, 3365-74 (2000)
- [107] J. G. van den Boorn, J. Dassler, C. Coch, M. Schlee and G. Hartmann: Exosomes as nucleic acid nanocarriers. dv Drug Deliv Rev 65, 331-5 (2013)
- [108] K. M. Fang, Y. L. Wang, M. C. Huang, S. H. Sun, H. Cheng and S. F. Tzeng: Expression of macrophage inflammatory protein-1alpha and monocyte chemoattractant protein-1 in glioma-infiltrating microglia: involvement of ATP and P2X(7) receptor. J Neurosci Res 89, 199-211 (2011)
- [109] M. A. Wollmer, R. Lucius, H. Wilms, J. Held-Feindt, J. Sievers and R. Mentlein: ATP and adenosine induce ramification of microglia in vitro. J Neuroimmunol 115, 19-27 (2001)
- [110] S. Honda, Y. Sasaki, K. Ohsawa, Y. Imai, Y. Nakamura, K. Inoue and S. Kohsaka: Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21, 1975-82 (2001)
- [111] C. Lambert, A. R. Ase, P. Seguela and J. P. AnTel: Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain Behav Immun 24, 1241-8 (2010)
- [112] B. Csoka, Z. Selmeczy, B. Koscso, Z. H. Nemeth, P. Pacher, P. J. Murray, D. Kepka-Lenhart, S. M. Morris, Jr., W. C. Gause, S. J. Leibovich and G. Hasko: Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26, 376-86 (2012)
- [113] G. Hasko and B. N. Cronstein: Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25, 33-9 (2004)
- [114] Y. Imura, Y. Morizawa, R. Komatsu, K. Shibata, Y. Shinozaki, H. Kasai, K. Moriishi, Y. Moriyama and S. Koizumi: Microglia release ATP by exocytosis. Glia 61, 1320-30 (2013)
- [115] N. Jantaratnotai, H. B. Choi and J. G. McLarnon: ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells. BMC Cancer 9, 442 (2009)
- [116] F. B. Morrone, A. P. Horn, J. Stella, F. Spiller, J. J. Sarkis, C. G. Salbego, G. Lenz and A. M. Battastini: Increased resistance of glioma cell lines to extracellular ATP cytotoxicity. J Neurooncol 71, 135-40 (2005)
- [117] G. A. Calin, C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004 (2004)
- [118] C. Z. Chen: MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353, 1768-71 (2005)
- [119] M. Yang, J. Chen, F. Su, B. Yu, F. Su, L. Lin, Y. Liu, J. D. Huang and E. Song: Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10, 117 (2011)
- [120] H. Xia, Y. Qi, S. S. Ng, X. Chen, S. Chen, M. Fang, D. Li, Y. Zhao, R. Ge, G. Li, Y. Chen, M. L. He, H. F. Kung, L. Lai and M. C. Lin: MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun 380, 205-10 (2009)
- [121] H. Xia, Y. Qi, S. S. Ng, X. Chen, D. Li, S. Chen, R. Ge, S. Jiang, G. Li, Y. Chen, M. L. He, H. F. Kung, L. Lai and M. C. Lin: microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269, 158-65 (2009)
- [122] H. Xia, W. K. Cheung, S. S. Ng, X. Jiang, S. Jiang, J. Sze, G. K. Leung, G. Lu, D. T. Chan, X. W. Bian, H. F. Kung, W. S. Poon and M. C. Lin: Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 287, 9962-71 (2012)
- [123] J. Silber, D. A. Lim, C. Petritsch, A. I. Persson, A. K. Maunakea, M. Yu, S. R. Vandenberg, D. G. Ginzinger, C. D. James, J. F. Costello, G. Bergers, W. A. Weiss, A. Alvarez-Buylla and J. G. Hodgson: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6, 14 (2008)
- [124] J. Godlewski, M. O. Nowicki, A. Bronisz, G. Nuovo, J. Palatini, M. De Lay, J. Van Brocklyn, M. C. Ostrowski, E. A. Chiocca and S. E. Lawler: MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37, 620-32 (2010)
- [125] L. C. Cheng, E. Pastrana, M. Tavazoie and F. Doetsch: miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12, 399-408 (2009)
- [126] A. S. Yoo, A. X. Sun, L. Li, A. Shcheglovitov, T. Portmann, Y. Li, C. Lee-Messer, R. E. Dolmetsch, R. W. Tsien and G. R. Crabtree: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228-31 (2011)
- [127] E. D. Ponomarev, T. Veremeyko, N. Barteneva, A. M. Krichevsky and H. L. Weiner: MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17, 64-70 (2011)
- [128] K. K. Li, J. C. Pang, A. K. Ching, C. K. Wong, X. Kong, Y. Wang, L. Zhou, Z. Chen and H. K. Ng: miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 40, 1234-43 (2009)
- [129] L. Zhang, S. Zhang, J. Yao, F. J. Lowery, Q. Zhang, W. C. Huang, P. Li, M. Li, X. Wang, C. Zhang, H. Wang, K. Ellis, M. Cheerathodi, J. H. McCarty, D. Palmieri, J. Saunus, S. Lakhani, S. Huang, A. A. Sahin, K. D. Aldape, P. S. Steeg and D. Yu: Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100-4 (2015)
- [130] J. Kakimura, Y. Kitamura, K. Takata, M. Umeki, S. Suzuki, K. Shibagaki, T. Taniguchi, Y. Nomura, P. J. Gebicke-Haerter, M. A. Smith, G. Perry and S. Shimohama: Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J 16, 601-3 (2002)
- [131] A. Wu, J. Wei, L. Y. Kong, Y. Wang, W. Priebe, W. Qiao, R. Sawaya and A. B. Heimberger: Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12, 1113-25 (2010)
- [132] L. Zhang, W. Liu, D. Alizadeh, D. Zhao, O. Farrukh, J. Lin, S. A. Badie and B. Badie: S100B attenuates microglia activation in gliomas: possible role of STAT3 pathway. Glia 59, 486-98 (2011)
- [133] X. Chen, L. Zhang, I. Y. Zhang, J. Liang, H. Wang, M. Ouyang, S. Wu, A. C. da Fonseca, L. Weng, Y. Yamamoto, H. Yamamoto, R. Natarajan and B. Badie: RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res 74, 7285-97 (2014)
- [134] F. Klemm, A. Bleckmann, L. Siam, H. N. Chuang, E. Rietkotter, D. Behme, M. Schulz, M. Schaffrinski, S. Schindler, L. Trumper, F. Kramer, T. Beissbarth, C. Stadelmann, C. Binder and T. Pukrop: beta-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 32, 434-42 (2011)
- [135] A. Bleckmann, L. Siam, F. Klemm, E. Rietkotter, C. Wegner, F. Kramer, T. Beissbarth, C. Binder, C. Stadelmann and T. Pukrop: Nuclear LEF1/TCF4 correlate with poor prognosis but not with nuclear beta-catenin in cerebral metastasis of lung adenocarcinomas. Clin Exp Metastasis 30, 471-82 (2013)
- [136] T. Pukrop, F. Klemm, T. Hagemann, D. Gradl, M. Schulz, S. Siemes, L. Trumper and C. Binder: Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci U S A 103, 5454-9 (2006)
- [137] H. N. Chuang, D. van Rossum, D. Sieger, L. Siam, F. Klemm, A. Bleckmann, M. Bayerlova, K. Farhat, J. Scheffel, M. Schulz, F. Dehghani, C. Stadelmann, U. K. Hanisch, C. Binder and T. Pukrop: Carcinoma cells misuse the host tissue damage response to invade the brain. Glia 61, 1331-46 (2013)
- [138] C. Halleskog, J. Mulder, J. Dahlstrom, K. Mackie, T. Hortobagyi, H. Tanila, L. Kumar Puli, K. Farber, T. Harkany and G. Schulte: WNT signaling in activated microglia is proinflammatory. Glia 59, 119-31 (2011)
- [139] M. Smid, Y. Wang, Y. Zhang, A. M. Sieuwerts, J. Yu, J. G. Klijn, J. A. Foekens and J. W. Martens: Subtypes of breast cancer show preferential site of relapse. Cancer Res 68, 3108-14 (2008)
- [140] T. Tammela, G. Zarkada, H. Nurmi, L. Jakobsson, K. Heinolainen, D. Tvorogov, W. Zheng, C. A. Franco, A. Murtomaki, E. Aranda, N. Miura, S. Yla-Herttuala, M. Fruttiger, T. Makinen, A. Eichmann, J. W. Pollard, H. Gerhardt and K. Alitalo: VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13, 1202-13 (2011)
- [141] S. S. Lakka, C. S. Gondi and J. S. Rao: Proteases and glioma angiogenesis. Brain Pathol 15, 327-41 (2005)
- [142] M. Anghelina, P. Krishnan, L. Moldovan and N. I. Moldovan: Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells Dev 13, 665-76 (2004)
- [143] K. Wu, K. Fukuda, F. Xing, Y. Zhang, S. Sharma, Y. Liu, M. D. Chan, X. Zhou, S. A. Qasem, R. Pochampally, Y. Y. Mo and K. Watabe: Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem 290, 9842-54 (2015)
- [144] F. Xing, A. Kobayashi, H. Okuda, M. Watabe, S. K. Pai, P. R. Pandey, S. Hirota, A. Wilber, Y. Y. Mo, B. E. Moore, W. Liu, K. Fukuda, M. Iiizumi, S. Sharma, Y. Liu, K. Wu, E. Peralta and K. Watabe: Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med 5, 384-96 (2013)
- [145] D. H. Nam, H. M. Jeon, S. Kim, M. H. Kim, Y. J. Lee, M. S. Lee, H. Kim, K. M. Joo, D. S. Lee, J. E. Price, S. I. Bang and W. Y. Park: Activation of notch signaling in a xenograft model of brain metastasis. Clin Cancer Res 14, 4059-66 (2008)
- [146] J. Neman, J. Termini, S. Wilczynski, N. Vaidehi, C. Choy, C. M. Kowolik, H. Li, A. C. Hambrecht, E. Roberts and R. Jandial: Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A 111, 984-9 (2014)
- [147] O. M. Larsson and A. Schousboe: Kinetic characterization of GABA-transaminase from cultured neurons and astrocytes. Neurochem Res 15, 1073-7 (1990)
- [148] L. Yi, H. Xiao, M. Xu, X. Ye, J. Hu, F. Li, M. Li, C. Luo, S. Yu, X. Bian and H. Feng: Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 232, 75-82 (2011)
- [149] F. Forstreuter, R. Lucius and R. Mentlein: Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 132, 93-8 (2002)
- [150] B. Johnson, T. Osada, T. Clay, H. Lyerly and M. Morse: Physiology and therapeutics of vascular endothelial growth factor in tumor immunosuppression. Curr Mol Med 9, 702-7 (2009)
- [151] S. Martin, E. Dicou, J. P. Vincent and J. Mazella: Neurotensin and the neurotensin receptor-3 in microglial cells. J Neurosci Res 81, 322-6 (2005)
- [152] H. Wang, J. D. Lathia, Q. Wu, J. Wang, Z. Li, J. M. Heddleston, C. E. Eyler, J. Elderbroom, J. Gallagher, J. Schuschu, J. MacSwords, Y. Cao, R. E. McLendon, X. F. Wang, A. B. Hjelmeland and J. N. Rich: Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27, 2393-404 (2009)
- [153] A. Poli, J. Wang, O. Domingues, J. Planaguma, T. Yan, C. B. Rygh, K. O. Skaftnesmo, F. Thorsen, E. McCormack, F. Hentges, P. H. Pedersen, J. Zimmer, P. O. Enger and M. Chekenya: Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget 4, 1527-46 (2013)
- [154] T. Nagai, M. Tanaka, Y. Tsuneyoshi, B. Xu, S. A. Michie, K. Hasui, H. Hirano, K. Arita and T. Matsuyama: Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor beta. Cancer Immunol Immunother 58, 1577-86 (2009)
- [155] H. Zhai, F. L. Heppner and S. E. Tsirka: Microglia/macrophages promote glioma progression. Glia 59, 472-85 (2011)
- [156] S. Y. Hwang, B. C. Yoo, J. W. Jung, E. S. Oh, J. S. Hwang, J. A. Shin, S. Y. Kim, S. H. Cha and I. O. Han: Induction of glioma apoptosis by microglia-secreted molecules: The role of nitric oxide and cathepsin B. Biochim Biophys Acta 1793, 1656-68 (2009)
- [157] R. Mora, A. Abschuetz, T. Kees, I. Dokic, N. Joschko, S. Kleber, R. Geibig, E. Mosconi, H. Zentgraf, A. Martin-Villalba and A. Regnier-Vigouroux: TNF-alpha- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia. Glia 57, 561-81 (2009)
- [158] T. L. Chiu, C. W. Peng and M. J. Wang: Enhanced anti-glioblastoma activity of microglia by AAV2-mediated IL-12 through TRAIL and phagocytosis in vitro. Oncol Rep 25, 1373-80 (2011)
- [159] T. Kees, J. Lohr, J. Noack, R. Mora, G. Gdynia, G. Todt, A. Ernst, B. Radlwimmer, C. S. Falk, C. Herold-Mende and A. Regnier-Vigouroux: Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol 14, 64-78 (2012)
- [160] S. M. Pyonteck, L. Akkari, A. J. Schuhmacher, R. L. Bowman, L. Sevenich, D. F. Quail, O. C. Olson, M. L. Quick, J. T. Huse, V. Teijeiro, M. Setty, C. S. Leslie, Y. Oei, A. Pedraza, J. Zhang, C. W. Brennan, J. C. Sutton, E. C. Holland, D. Daniel and J. A. Joyce: CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19, 1264-72 (2013)
- [161] D. S. Markovic, K. Vinnakota, N. van Rooijen, J. Kiwit, M. Synowitz, R. Glass and H. Kettenmann: Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25, 624-8 (2011)
- [162] J. D. Weingart, E. P. Sipos and H. Brem: The role of minocycline in the treatment of intracranial 9L glioma. J Neurosurg 82, 635-40 (1995)
- [163] D. Alizadeh, L. Zhang, J. Hwang, T. Schluep and B. Badie: Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine 6, 382-90 (2010)
- [164] M. VanHandel, D. Alizadeh, L. Zhang, B. Kateb, M. Bronikowski, H. Manohara and B. Badie: Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 208, 3-9 (2009)
- [165] S. C. Wang, C. F. Yu, J. H. Hong, C. S. Tsai and C. S. Chiang: Radiation therapy-induced tumor invasiveness is associated with SDF-1-regulated macrophage mobilization and vasculogenesis. PLoS One 8, e69182 (2013)
- [166] M. Kioi, H. Vogel, G. Schultz, R. M. Hoffman, G. R. Harsh and J. M. Brown: Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120, 694-705 (2010)
- [167] C. Lu-Emerson, M. Snuderl, N. D. Kirkpatrick, J. Goveia, C. Davidson, Y. Huang, L. Riedemann, J. Taylor, P. Ivy, D. G. Duda, M. Ancukiewicz, S. R. Plotkin, A. S. Chi, E. R. Gerstner, A. F. Eichler, J. Dietrich, A. O. Stemmer-Rachamimov, T. T. Batchelor and R. K. Jain: Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma. Neuro Oncol 15, 1079-87 (2013)
- [168] Y. Piao, J. Liang, L. Holmes, A. J. Zurita, V. Henry, J. V. Heymach and J. F. de Groot: Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14, 1379-92 (2012)
