Information
References
Contents
Download
[1]V. Bettinardi, P. Mancosu, M. Danna, G. Giovacchini, C. Landoni, M. Picchio, MC. Gilardi, A. Savi, I. Castiglioni, M. Lecchi, F. Fazio: Two-dimensional vs three-dimensional imaging in whole body oncologic PET/CT: a Discovery-STE phantom and patient study. Q J Nucl Med Mol Imaging 51(3), 214-23 (2007)
[2]G. Rizzo, I. Castiglioni, G. Russo, MG. Tana, F. Dell’Acqua, MC. Gilardi, F. Fazio, S. Cerutti: Using deconvolution to improve PET spatial resolution in OSEM iterative reconstruction. Methods Inf Med 46(2), 231-5 (2007)
[3]JW Prescott: Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making. J Digit Imaging 26(1), 97-108 (2013)
[4]F. Gallivanone, A. Stefano, E. Grosso, C. Canevari, L. Gianolli, C. Messa, MC. Gilardi, I. Castiglioni: PVE correction in PET-CT whole body oncological studies from PVE-affected images. IEEE Trans Nucl Sci 58:736–747 (2011)
[5]F. Giganti, F. De Cobelli, C. Canevari, E. Orsenigo, F. Gallivanone, A. Esposito, I. Castiglioni, A. Ambrosi, L. Albarello, E. Mazza, L. Gianolli, C. Staudacher, A. Del Maschio: Response to chemotherapy in gastric adenocarcinoma with diffusion-weighted MRI and (18) F-FDG-PET/CT: correlation of apparent diffusion coefficient and partial volume corrected standardized uptake value with histological tumor regression grade. J Magn Reson Imaging 40(5), 1147-1157 (2014)
[6]M. Picchio, M. Kirienko, P. Mapelli, I. Dell’Oca, E. Villa, F. Gallivanone, L. Gianolli, C. Messa, I. Castiglioni: Predictive value of pre-therapy (18)F-FDG PET/CT for the outcome of (18)F-FDG PET-guided radiotherapy in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 41(1), 21-31 (2014)
[7]B. Blyth P. Sykes: Radiation-induced Bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 157, 139–57 (2011).
[8]B. Brans, L. Bodei, F. Giammarile, O. Linden, M. Luster, WJ. Oyen, J. Tennvall. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 34(5):772-86 (2007).
[9]A. Dash, FF. Knapp, MR. Pillai MR. Targeted radionuclide therapy--an overview. Curr Radiopharm. 6(3):152-80 (2013).
[10]K. Zukotynski, H. Jadvar, J. Capala, F. Fahey: Targeted Radionuclide Therapy: Practical Applications and Future Prospects. Biomark Cancer 8(Suppl 2), 35-38 (2016)
[11]A. Aerts NR. Impens M. Gijs, M. D’Huyvetter, H. Vanmarcke, B. Ponsard, T. Lahoutte, A. Luxen, S. Baatout: Biological carrier molecules of radiopharmaceuticals for molecular cancer imaging and targeted cancer therapy. Curr Pharm Des 20(32), 5218-44 (2014)
[12]F. Fahey, K. Zukotynski, J. Capala, N. Knight, Organizing Committee, Contributors, and Participants of NCI/SNMMI Joint Workshop on Targeted Radionuclide Therapy: Targeted radionuclide therapy: proceedings of a joint workshop hosted by the National Cancer Institute and the Society of Nuclear Medicine and Molecular Imaging. J Nucl Med 55(2):337-48 (2014)
[13]F. Fahey, K. Zukotynski, H. Jadvar, J. Capala, organizing committee, contributors, and participants of the second NCI–SNMMI Workshop on Targeted Radionuclide Therapy. J Nucl Med 56(7), 1119-1129 (2015).
[14]G. Sgouros, SJ. Knox, MC. Joiner, WF. Morgan, AI. Kassis: MIRD continuing education: Bystander and low dose-rate effects: are these relevant to radionuclide therapy? J Nucl Med 48(10), 1683-91 (2007)
[15]E. Rapisarda, V. Bettinardi, K. Thielemans, MC. Gilardi: Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 55(14), 4131-51 (2010)
[16]Thomas SR: Options for radionuclide therapy: from fixed activity to patient-specific treatment planning. Cancer Biother R4adiopharm 17(1),71-82 (2002)
[17]C. Harfmann-Siantar, MA. Descalle, GL. DeNardo, DW. Nigg: Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy. 12th Biennial Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society, Santa Fe, USA, 2002.
[18]P. Pérez, F. Botta, G. Pedroli, M. Valente. Dosimetry for beta-emitter radionuclides by means of Monte Carlo simulations. In: 12 Chapters on Nuclear Medicine, InTech, Chap. 11, 265-286, Ed: Dr. Ali Gholamrezanezhad (2011).
[19]RL. Harrison, TK. Lewellen. The SimSET program. In: Monte Carlo Calculation in Nuclear Medicine: Applications in Diagnostic Imaging. Eds: M. Ljungberg, SE. Strand, MA. King (2012)
[20]J. Seco, F. Verhaegen. Monte Carlo Techniques in Radiation Therapy. Eds: J. Seco, F. Verhaegen (2013).
[21]H. Zaidi, XG. Xu: Computational Anthropomorphic Models of the Human Anatomy: The Path to Realistic Monte Carlo odeling in Radiological Sciences. Annu Rev Biomed Eng 9, 471-500 (2007)
[22]G. Flux, M. Bardies, M. Monsieurs, S. Savolainen, SE. Strands, M. Lassmann: EANM Dosimetry Committee. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 16(1), 47-59 (2006)
[23]F. Botta, A. Mairani, G. Battistoni, M. Cremonesi, A. Di Dia, A. Fassò, A. Ferrari, M. Ferrari, G. Paganelli, G. Pedroli, M. Valente: Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy. Med Phys 38(7), 3944-3954 (2011).
[24]H. Uusijärvi, N. Chouin, P. Bernhardt, L. Ferrer, M. Bardiès, E. Forssell-Aronsson: Comparison of Electron Dose-Point Kernels in Water Generated by the Monte Carlo Codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Cancer Bioth Radiopharm 24(4), 461-467 (2009)
[25]N. Lanconelli, M. Pacilio, S. Lo Meo, F. Botta, A. Di Dia, LA. Torres Aroche, MA. Coca Pérez, M. Cremonesi: A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol 57(1), 517-533 (2012)
[26]M. Lassmann, H. Hänscheid, C. Chiesa, C. Hindorf, G. Flux, M. Luster: EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 35, 1405–1412 (2008).
[27]M. Salvatori, M. Luster: Radioiodine therapy dosimetry in benign thyroid disease and differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 37(4), 821-828 (2010)
[28]BC. Ahn: Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer. Biomed Res Int. 2016:1680464 (2016).
[29]HM. Park. 123I: almost a designer radioiodine for thyroid scanning. J Nucl Med. 43(1):77-8 (2002).
[30]SD. Sarkar, TP. Kalapparambath, CJ. Palestro. Comparison of (123)I and (131)I for whole-body imaging in thyroid cancer. J Nucl Med. 43(5):632-4 (2002).
[31]F. Capoccetti, B. Criscuoli, G. Rossi, F. Ferretti, C. Manni, E. Brianzoni. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 53(5):536-45 (2009).
[32]RF. Hobbs, RL. Wahl, MA. Lodge, MS. Javadi, SY. Cho, DT. Chien, ME. Ewertz, CE. Esaias, PW. Ladenson, G. Sgouros. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med. 50(11):1844-7 (2009)
[33]W. Jentzen, L. Freudenberg, EG. Eising, W. Sonnenschein, J. Knust, A. Bockisch. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 49(6):1017-23 (2008).
[34]W. Jentzen, F. Verschure, A. van Zon, R. van de Kolk, R. Wierts, J. Schmitz, A. Bockisch, I. Binse. 124I PET Assessment of Response of Bone Metastases to Initial Radioiodine Treatment of Differentiated Thyroid Cancer. J Nucl Med. 57(10):1499-1504 (2016).
[35]K. Oberg. Molecular Imaging Radiotherapy: Theranostics for Personalized Patient Management of Neuroendocrine Tumors (NETs). Theranostics. 2(5):448-58 (2012).
[36]C. Kratochwil, FL. Giesel, F. Bruchertseifer, W. Mier, C. Apostolidis, R. Boll, K. Murphy, U. Haberkorn, A. Morgenstern. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 41(11):2106–19 (2014).
[37]A. Pfeifer, U. Knigge, T. Binderup, J. Mortensen, P. Oturai, A. Loft, AK. Berthelsen, SW. Langer, P. Rasmussen, D. Elema, et al. 64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients. J Nucl Med. 56(6):847-54 (2015).
[38]R. Valkema, M. De Jong, WH. Bakker, WA. Breeman, PP. Kooij, PJ. Lugtenburg, FH. De Jong, A. Christiansen, BL. Kam, WW. De Herder, et al. Phase I study of peptide receptor radionuclide therapy with (In-DTPA)octreotide: the Rotterdam experience. Semin Nucl Med 32:110–22 (2002).
[39]LB. Anthony, EA. Woltering, GD. Espenan, MD. Cronin, TJ. Maloney, KE. McCarthy. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 32:123–32 (2002).
[40]S. Walrand, GD. Flux, MW. Konijnenberg, R. Valkema, EP. Krenning, R. Lhommel, S. Pauwels, F. Jamar: Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging 38(Suppl 1), S57-68 (2011)
[41]D. Minarik, K. Sjogreen Gleisner, M. Ljungberg: Evaluation of quantitative 90Y bremsstrahlung SPECT based on patient studies. J Nucl Med 50(2), 378 (2009).
[42]JC. Reubi, JC. Schär, B. Waser, S. Wenger, A. Heppeler, JS. Schmitt, HR. Mäcke: Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27, 273–282 (2000)
[43]JC. Sanders, T. Kuwert, J. Hornegger, P. Ritt: Quantitative SPECT/CT Imaging of (177)Lu with In vivo Validation in Patients Undergoing Peptide Receptor Radionuclide Therapy. Mol Imaging Biol 17(4), 585-593 (2015)
[44]A. Frilling, GC. Sotiropoulos, A. Radtke, M. Malago, A. Bockisch, H. Kuehl, J. Li, CE. Broelsch. The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann Surg. 252(5):850-6 (2010).
[45]I. Velikyan, A. Sundin, J. Sörensen, M. Lubberink, M. Sandström, U. Garske-Román, H. Lundqvist, D. Granberg, B. Eriksson: Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med 55(2), 204-210 (2014).
[46]S. Ezziddin, J. Lohmar, CJ. Yong-Hing, A. Sabet, H. Ahmadzadehfar, G. Kukuk, HJ. Biersack, S. Guhlke, K. Reichmann: Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin Nucl Med 37(6), e141-147 (2012).
[47]R. Sacco, C. Conte, E. Tumino, G. Parisi, S. Marceglia, S. Metrangolo, R. Eggenhoffner, G. Bresci, G. Cabibbo, L. Giacomelli: Transarterial radioembolization for hepatocellular carcinoma: a review. J Hepatocell Carcinoma 3:25-29 (2016)
[48]F. Giammarile, L. Bodei, C. Chiesa, G. Flux, F. Forrer, F. Kraeber-Bodere, B. Brans, B. Lambert, M. Konijnenberg, F. Borson-Chazot, J. Tennvall, M. Luster, the Therapy, Oncology and Dosimetry Committees: EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 38(7), 1393-1406 (2011)
[49]MG. Lam, ML. Goris, AH. Iagaru, ES. Mittra, JD. Louie, DY Sze DY: Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J Nucl Med 54(12), 2055-2061 (2013).
[50]ML. Smits, M. Elschot, MA. van den Bosch, GH van de Maat, AD. van het Schip, BA. Zonnenberg, PR. Seevinck, HM. Verkooijen, CJ. Bakker, HW. de Jong, MG. Lam, JF Nijsen: In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J Nucl Med 54(12), 2093-2100 (2013)
[51]S. Lütje, S. Heskamp, AS. Cornelissen, TD. Poeppel, SAMW. van den Broek, S. Rosenbaum-Krumme, A. Bockisch, M. Gotthardt, M. Rijpkema, OC. Boerman: PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status. Theranostics 5(12), 1388–1401 (2015)
[52]M. Weineisen, M. Schottelius, J. Simecek, RP. Baum, A. Yildiz, S. Beykan, HR. Kulkarni, M. Lassmann, I. Klette, M. Eiber, M. Schwaiger, HJ. Wester: 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J Nucl Med 56(8), 1169-1176 (2015)
[53]KL. Chatalic, S. Heskamp, M. Konijnenberg, JD. Molkenboer-Kuenen, GM. Franssen, MC. Clahsen-van Groningen, M. Schottelius, HJ. Wester, WM. van Weerden, OC. Boerman, M. de Jong: Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent. Theranostics 6(6), 849-861 (2016)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Targeted radionuclide therapy: frontiers in theranostics
1 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Milan, Italy
2 Instituto de Fisica E. Gaviola, CONICET, Argentina
3 Laboratory for Research and Instrumentation in Physics Applied to Medicine and X-Ray Imaging (LIIFAMIRx), National University of Cordoba, Cordoba, Argentina
4 Centro de Fisica e Ingenieriía en Medicina, CFIM, Universidad de La Frontera, Temuco, Chile
5 Departamento de Ciencias Fisicas, Universidad de La Frontera, Temuco, Chile
6 Department of Nuclear Medicine, Centre for Experimental Imaging, San Raffaele Scientific Institute, Milan, Italy
Abstract
The concept of targeted radionuclide therapy (TRT) relies on the use of injected nuclear medicine as treating agents, targeted at the cellular or molecular level. The growth of the interest in TRT was stimulated by the advances in radionuclide production and labeling as well as by the improvement in the knowledge of appropriate and specific molecular targets. In recent years, different studies on TRT were focused on the evaluation of radionuclide compounds able to combine imaging of the disease with TRT, in a theranostic approach. This approach is of particular interest towards the personalization of treatments, allowing both the baseline characterization of oncological pathologies and treatment optimization by correct dosimetric calculation as well as therapy monitoring. This paper presents a review of recent literature on TRT, with a particular focus on clinical applications promoting such a theranostic approach, showing the impact of the synergy of diagnostic imaging and therapeutics.
Keywords
- Radionuclide therapy
- Cancer
- Imaging
- Review
References
- [1] V. Bettinardi, P. Mancosu, M. Danna, G. Giovacchini, C. Landoni, M. Picchio, MC. Gilardi, A. Savi, I. Castiglioni, M. Lecchi, F. Fazio: Two-dimensional vs three-dimensional imaging in whole body oncologic PET/CT: a Discovery-STE phantom and patient study. Q J Nucl Med Mol Imaging 51(3), 214-23 (2007)
- [2] G. Rizzo, I. Castiglioni, G. Russo, MG. Tana, F. Dell’Acqua, MC. Gilardi, F. Fazio, S. Cerutti: Using deconvolution to improve PET spatial resolution in OSEM iterative reconstruction. Methods Inf Med 46(2), 231-5 (2007)
- [3] JW Prescott: Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making. J Digit Imaging 26(1), 97-108 (2013)
- [4] F. Gallivanone, A. Stefano, E. Grosso, C. Canevari, L. Gianolli, C. Messa, MC. Gilardi, I. Castiglioni: PVE correction in PET-CT whole body oncological studies from PVE-affected images. IEEE Trans Nucl Sci 58:736–747 (2011)
- [5] F. Giganti, F. De Cobelli, C. Canevari, E. Orsenigo, F. Gallivanone, A. Esposito, I. Castiglioni, A. Ambrosi, L. Albarello, E. Mazza, L. Gianolli, C. Staudacher, A. Del Maschio: Response to chemotherapy in gastric adenocarcinoma with diffusion-weighted MRI and (18) F-FDG-PET/CT: correlation of apparent diffusion coefficient and partial volume corrected standardized uptake value with histological tumor regression grade. J Magn Reson Imaging 40(5), 1147-1157 (2014)
- [6] M. Picchio, M. Kirienko, P. Mapelli, I. Dell’Oca, E. Villa, F. Gallivanone, L. Gianolli, C. Messa, I. Castiglioni: Predictive value of pre-therapy (18)F-FDG PET/CT for the outcome of (18)F-FDG PET-guided radiotherapy in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 41(1), 21-31 (2014)
- [7] B. Blyth P. Sykes: Radiation-induced Bystander effects: what are they, and how relevant are they to human radiation exposures? Radiat Res 157, 139–57 (2011).
- [8] B. Brans, L. Bodei, F. Giammarile, O. Linden, M. Luster, WJ. Oyen, J. Tennvall. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 34(5):772-86 (2007).
- [9] A. Dash, FF. Knapp, MR. Pillai MR. Targeted radionuclide therapy--an overview. Curr Radiopharm. 6(3):152-80 (2013).
- [10] K. Zukotynski, H. Jadvar, J. Capala, F. Fahey: Targeted Radionuclide Therapy: Practical Applications and Future Prospects. Biomark Cancer 8(Suppl 2), 35-38 (2016)
- [11] A. Aerts NR. Impens M. Gijs, M. D’Huyvetter, H. Vanmarcke, B. Ponsard, T. Lahoutte, A. Luxen, S. Baatout: Biological carrier molecules of radiopharmaceuticals for molecular cancer imaging and targeted cancer therapy. Curr Pharm Des 20(32), 5218-44 (2014)
- [12] F. Fahey, K. Zukotynski, J. Capala, N. Knight, Organizing Committee, Contributors, and Participants of NCI/SNMMI Joint Workshop on Targeted Radionuclide Therapy: Targeted radionuclide therapy: proceedings of a joint workshop hosted by the National Cancer Institute and the Society of Nuclear Medicine and Molecular Imaging. J Nucl Med 55(2):337-48 (2014)
- [13] F. Fahey, K. Zukotynski, H. Jadvar, J. Capala, organizing committee, contributors, and participants of the second NCI–SNMMI Workshop on Targeted Radionuclide Therapy. J Nucl Med 56(7), 1119-1129 (2015).
- [14] G. Sgouros, SJ. Knox, MC. Joiner, WF. Morgan, AI. Kassis: MIRD continuing education: Bystander and low dose-rate effects: are these relevant to radionuclide therapy? J Nucl Med 48(10), 1683-91 (2007)
- [15] E. Rapisarda, V. Bettinardi, K. Thielemans, MC. Gilardi: Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET. Phys Med Biol 55(14), 4131-51 (2010)
- [16] Thomas SR: Options for radionuclide therapy: from fixed activity to patient-specific treatment planning. Cancer Biother R4adiopharm 17(1),71-82 (2002)
- [17] C. Harfmann-Siantar, MA. Descalle, GL. DeNardo, DW. Nigg: Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy. 12th Biennial Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society, Santa Fe, USA, 2002.
- [18] P. Pérez, F. Botta, G. Pedroli, M. Valente. Dosimetry for beta-emitter radionuclides by means of Monte Carlo simulations. In: 12 Chapters on Nuclear Medicine, InTech, Chap. 11, 265-286, Ed: Dr. Ali Gholamrezanezhad (2011).
- [19] RL. Harrison, TK. Lewellen. The SimSET program. In: Monte Carlo Calculation in Nuclear Medicine: Applications in Diagnostic Imaging. Eds: M. Ljungberg, SE. Strand, MA. King (2012)
- [20] J. Seco, F. Verhaegen. Monte Carlo Techniques in Radiation Therapy. Eds: J. Seco, F. Verhaegen (2013).
- [21] H. Zaidi, XG. Xu: Computational Anthropomorphic Models of the Human Anatomy: The Path to Realistic Monte Carlo odeling in Radiological Sciences. Annu Rev Biomed Eng 9, 471-500 (2007)
- [22] G. Flux, M. Bardies, M. Monsieurs, S. Savolainen, SE. Strands, M. Lassmann: EANM Dosimetry Committee. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 16(1), 47-59 (2006)
- [23] F. Botta, A. Mairani, G. Battistoni, M. Cremonesi, A. Di Dia, A. Fassò, A. Ferrari, M. Ferrari, G. Paganelli, G. Pedroli, M. Valente: Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy. Med Phys 38(7), 3944-3954 (2011).
- [24] H. Uusijärvi, N. Chouin, P. Bernhardt, L. Ferrer, M. Bardiès, E. Forssell-Aronsson: Comparison of Electron Dose-Point Kernels in Water Generated by the Monte Carlo Codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Cancer Bioth Radiopharm 24(4), 461-467 (2009)
- [25] N. Lanconelli, M. Pacilio, S. Lo Meo, F. Botta, A. Di Dia, LA. Torres Aroche, MA. Coca Pérez, M. Cremonesi: A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys Med Biol 57(1), 517-533 (2012)
- [26] M. Lassmann, H. Hänscheid, C. Chiesa, C. Hindorf, G. Flux, M. Luster: EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 35, 1405–1412 (2008).
- [27] M. Salvatori, M. Luster: Radioiodine therapy dosimetry in benign thyroid disease and differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 37(4), 821-828 (2010)
- [28] BC. Ahn: Personalized Medicine Based on Theranostic Radioiodine Molecular Imaging for Differentiated Thyroid Cancer. Biomed Res Int. 2016:1680464 (2016).
- [29] HM. Park. 123I: almost a designer radioiodine for thyroid scanning. J Nucl Med. 43(1):77-8 (2002).
- [30] SD. Sarkar, TP. Kalapparambath, CJ. Palestro. Comparison of (123)I and (131)I for whole-body imaging in thyroid cancer. J Nucl Med. 43(5):632-4 (2002).
- [31] F. Capoccetti, B. Criscuoli, G. Rossi, F. Ferretti, C. Manni, E. Brianzoni. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 53(5):536-45 (2009).
- [32] RF. Hobbs, RL. Wahl, MA. Lodge, MS. Javadi, SY. Cho, DT. Chien, ME. Ewertz, CE. Esaias, PW. Ladenson, G. Sgouros. 124I PET-based 3D-RD dosimetry for a pediatric thyroid cancer patient: real-time treatment planning and methodologic comparison. J Nucl Med. 50(11):1844-7 (2009)
- [33] W. Jentzen, L. Freudenberg, EG. Eising, W. Sonnenschein, J. Knust, A. Bockisch. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 49(6):1017-23 (2008).
- [34] W. Jentzen, F. Verschure, A. van Zon, R. van de Kolk, R. Wierts, J. Schmitz, A. Bockisch, I. Binse. 124I PET Assessment of Response of Bone Metastases to Initial Radioiodine Treatment of Differentiated Thyroid Cancer. J Nucl Med. 57(10):1499-1504 (2016).
- [35] K. Oberg. Molecular Imaging Radiotherapy: Theranostics for Personalized Patient Management of Neuroendocrine Tumors (NETs). Theranostics. 2(5):448-58 (2012).
- [36] C. Kratochwil, FL. Giesel, F. Bruchertseifer, W. Mier, C. Apostolidis, R. Boll, K. Murphy, U. Haberkorn, A. Morgenstern. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 41(11):2106–19 (2014).
- [37] A. Pfeifer, U. Knigge, T. Binderup, J. Mortensen, P. Oturai, A. Loft, AK. Berthelsen, SW. Langer, P. Rasmussen, D. Elema, et al. 64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients. J Nucl Med. 56(6):847-54 (2015).
- [38] R. Valkema, M. De Jong, WH. Bakker, WA. Breeman, PP. Kooij, PJ. Lugtenburg, FH. De Jong, A. Christiansen, BL. Kam, WW. De Herder, et al. Phase I study of peptide receptor radionuclide therapy with (In-DTPA)octreotide: the Rotterdam experience. Semin Nucl Med 32:110–22 (2002).
- [39] LB. Anthony, EA. Woltering, GD. Espenan, MD. Cronin, TJ. Maloney, KE. McCarthy. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 32:123–32 (2002).
- [40] S. Walrand, GD. Flux, MW. Konijnenberg, R. Valkema, EP. Krenning, R. Lhommel, S. Pauwels, F. Jamar: Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging 38(Suppl 1), S57-68 (2011)
- [41] D. Minarik, K. Sjogreen Gleisner, M. Ljungberg: Evaluation of quantitative 90Y bremsstrahlung SPECT based on patient studies. J Nucl Med 50(2), 378 (2009).
- [42] JC. Reubi, JC. Schär, B. Waser, S. Wenger, A. Heppeler, JS. Schmitt, HR. Mäcke: Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27, 273–282 (2000)
- [43] JC. Sanders, T. Kuwert, J. Hornegger, P. Ritt: Quantitative SPECT/CT Imaging of (177)Lu with In vivo Validation in Patients Undergoing Peptide Receptor Radionuclide Therapy. Mol Imaging Biol 17(4), 585-593 (2015)
- [44] A. Frilling, GC. Sotiropoulos, A. Radtke, M. Malago, A. Bockisch, H. Kuehl, J. Li, CE. Broelsch. The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann Surg. 252(5):850-6 (2010).
- [45] I. Velikyan, A. Sundin, J. Sörensen, M. Lubberink, M. Sandström, U. Garske-Román, H. Lundqvist, D. Granberg, B. Eriksson: Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med 55(2), 204-210 (2014).
- [46] S. Ezziddin, J. Lohmar, CJ. Yong-Hing, A. Sabet, H. Ahmadzadehfar, G. Kukuk, HJ. Biersack, S. Guhlke, K. Reichmann: Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin Nucl Med 37(6), e141-147 (2012).
- [47] R. Sacco, C. Conte, E. Tumino, G. Parisi, S. Marceglia, S. Metrangolo, R. Eggenhoffner, G. Bresci, G. Cabibbo, L. Giacomelli: Transarterial radioembolization for hepatocellular carcinoma: a review. J Hepatocell Carcinoma 3:25-29 (2016)
- [48] F. Giammarile, L. Bodei, C. Chiesa, G. Flux, F. Forrer, F. Kraeber-Bodere, B. Brans, B. Lambert, M. Konijnenberg, F. Borson-Chazot, J. Tennvall, M. Luster, the Therapy, Oncology and Dosimetry Committees: EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 38(7), 1393-1406 (2011)
- [49] MG. Lam, ML. Goris, AH. Iagaru, ES. Mittra, JD. Louie, DY Sze DY: Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J Nucl Med 54(12), 2055-2061 (2013).
- [50] ML. Smits, M. Elschot, MA. van den Bosch, GH van de Maat, AD. van het Schip, BA. Zonnenberg, PR. Seevinck, HM. Verkooijen, CJ. Bakker, HW. de Jong, MG. Lam, JF Nijsen: In vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies. J Nucl Med 54(12), 2093-2100 (2013)
- [51] S. Lütje, S. Heskamp, AS. Cornelissen, TD. Poeppel, SAMW. van den Broek, S. Rosenbaum-Krumme, A. Bockisch, M. Gotthardt, M. Rijpkema, OC. Boerman: PSMA Ligands for Radionuclide Imaging and Therapy of Prostate Cancer: Clinical Status. Theranostics 5(12), 1388–1401 (2015)
- [52] M. Weineisen, M. Schottelius, J. Simecek, RP. Baum, A. Yildiz, S. Beykan, HR. Kulkarni, M. Lassmann, I. Klette, M. Eiber, M. Schwaiger, HJ. Wester: 68Ga- and 177Lu-Labeled PSMA I&T: Optimization of a PSMA-Targeted Theranostic Concept and First Proof-of-Concept Human Studies. J Nucl Med 56(8), 1169-1176 (2015)Cited within: 0Google Scholar
- [53] KL. Chatalic, S. Heskamp, M. Konijnenberg, JD. Molkenboer-Kuenen, GM. Franssen, MC. Clahsen-van Groningen, M. Schottelius, HJ. Wester, WM. van Weerden, OC. Boerman, M. de Jong: Towards Personalized Treatment of Prostate Cancer: PSMA I&T, a Promising Prostate-Specific Membrane Antigen-Targeted Theranostic Agent. Theranostics 6(6), 849-861 (2016)Cited within: 0Google Scholar
