Information
References
Contents
Download
[1]P. Elliott, B. Andersson, E. Arbustini, Z. Bilinska, F. Cecchi, P. Charron, O. Dubourg, U. Kuhl, B. Maisch, W. J. McKenna, L. Monserrat, S. Pankuweit, C. Rapezzi, P. Seferovic, L. Tavazzi and A. Keren: Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J, 29(2), 270-6 (2008)
[2]P. M. Elliott, A. Anastasakis, M. A. Borger, M. Borggrefe, F. Cecchi, P. Charron, A. A. Hagege, A. Lafont, G. Limongelli, H. Mahrholdt, W. J. McKenna, J. Mogensen, P. Nihoyannopoulos, S. Nistri, P. G. Pieper, B. Pieske, C. Rapezzi, F. H. Rutten, C. Tillmanns and H. Watkins: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J, 35(39), 2733-79 (2014)
[3]B. J. Maron, J. M. Gardin, J. M. Flack, S. S. Gidding, T. T. Kurosaki and D. E. Bild: Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation, 92(4), 785-9 (1995)
[4]I. Olivotto, F. Cecchi, C. Poggesi and M. H. Yacoub: Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail, 5(4), 535-46 (2012)
[5]P. M. Elliott, J. R. Gimeno, R. Thaman, J. Shah, D. Ward, S. Dickie, M. T. Tome Esteban and W. J. McKenna: Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart, 92(6), 785-91 (2006)
[6]I. Christiaans, K. van Engelen, I. M. van Langen, E. Birnie, G. J. Bonsel, P. M. Elliott and A. A. Wilde: Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace, 12(3), 313-21 (2010)
[7]M. H. Yacoub, I. Olivotto and F. Cecchi: 'End-stage' hypertrophic cardiomyopathy: from mystery to model. Nat Clin Pract Cardiovasc Med, 4(5), 232-3 (2007)
[8]I. Olivotto, F. Girolami, S. Nistri, A. Rossi, L. Rega, F. Garbini, C. Grifoni, F. Cecchi and M. H. Yacoub: The many faces of hypertrophic cardiomyopathy: from developmental biology to clinical practice. J Cardiovasc Transl Res, 2(4), 349-67 (2009)
[9]B. J. Maron and P. Spirito: Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol, 81(11), 1339-44 (1998)
[10]WHO International Programme on Chemical Safety: Biomarkers in Risk Assessment: Validity and Validation. In, (2011)
[11]P. Ponikowski, A. A. Voors, S. D. Anker, H. Bueno, J. G. Cleland, A. J. Coats, V. Falk, J. R. Gonzalez-Juanatey, V. P. Harjola, E. A. Jankowska, M. Jessup, C. Linde, P. Nihoyannopoulos, J. T. Parissis, B. Pieske, J. P. Riley, G. M. Rosano, L. M. Ruilope, F. Ruschitzka, F. H. Rutten and P. van der Meer: 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail, 18(8), 891-975 (2016)
[12]D. Lazzeroni, O. Rimoldi and P. G. Camici: From Left Ventricular Hypertrophy to Dysfunction and Failure. Circ J, 80(3), 555-64 (2016)
[13]I. Olivotto, R. Gistri, P. Petrone, E. Pedemonte, D. Vargiu and F. Cecchi: Maximum left ventricular thickness and risk of sudden death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol, 41(2), 315-21 (2003) 14. S. Nistri, I. Olivotto, S. Betocchi, M. A. Losi, G. Valsecchi, B. Pinamonti, M. R. Conte, F. Casazza, M. Galderisi, B. J. Maron and F. Cecchi: Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). Am J Cardiol, 98(7), 960-5 (2006)
[15]L. Choudhury, H. Mahrholdt, A. Wagner, K. M. Choi, M. D. Elliott, F. J. Klocke, R. O. Bonow, R. M. Judd and R. J. Kim: Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol, 40(12), 2156-64 (2002)
[16]R. H. Chan, B. J. Maron, I. Olivotto, M. J. Pencina, G. E. Assenza, T. Haas, J. R. Lesser, C. Gruner, A. M. Crean, H. Rakowski, J. E. Udelson, E. Rowin, M. Lombardi, F. Cecchi, B. Tomberli, P. Spirito, F. Formisano, E. Biagini, C. Rapezzi, C. N. De Cecco, C. Autore, E. F. Cook, S. N. Hong, C. M. Gibson, W. J. Manning, E. Appelbaum and M. S. Maron: Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation, 130(6), 484-95 (2014)
[17]S. L. Friedman, D. Sheppard, J. S. Duffield and S. Violette: Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med, 5(167), 167sr1 (2013)
[18]L. C. Afonso, J. Bernal, J. J. Bax and T. P. Abraham: Echocardiography in hypertrophic cardiomyopathy: the role of conventional and emerging technologies. JACC Cardiovasc Imaging, 1(6), 787-800 (2008)
[19]M. S. Maron, I. Olivotto, A. G. Zenovich, M. S. Link, N. G. Pandian, J. T. Kuvin, S. Nistri, F. Cecchi, J. E. Udelson and B. J. Maron: Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation, 114(21), 2232-9 (2006)
[20]S. R. Ommen, P. M. Shah and A. J. Tajik: Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: past, present and future. Heart, 94(10), 1276-81 (2008)
[21]P. G. Camici and F. Crea: Coronary microvascular dysfunction. N Engl J Med, 356(8), 830-40 (2007)
[22]C. Basso, G. Thiene, D. Corrado, G. Buja, P. Melacini and A. Nava: Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol, 31(8), 988-98 (2000)
[23]I. Olivotto, F. Cecchi, R. Gistri, R. Lorenzoni, G. Chiriatti, F. Girolami, F. Torricelli and P. G. Camici: Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol, 47(5), 1043-8 (2006)
[24]F. Cecchi, I. Olivotto, R. Gistri, R. Lorenzoni, G. Chiriatti and P. G. Camici: Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med, 349(11), 1027-35 (2003)
[25]Q. Ciampi, I. Olivotto, C. Gardini, F. Mori, J. Peteiro, L. Monserrat, X. Fernandez, L. Cortigiani, F. Rigo, L. R. Lopes, I. Cruz, C. Cotrim, M. Losi, S. Betocchi, B. Beleslin, M. Tesic, A. D. Dikic, E. Lazzeroni, D. Lazzeroni, R. Sicari and E. Picano: Prognostic role of stress echocardiography in hypertrophic cardiomyopathy: The International Stress Echo Registry. Int J Cardiol, 219, 331-8 (2016)
[26]E. Lazzeroni, E. Picano, L. Morozzi, A. R. Maurizio, G. Palma, R. Ceriati, E. Iori and A. Barilli: Dipyridamole-induced ischemia as a prognostic marker of future adverse cardiac events in adult patients with hypertrophic cardiomyopathy. Echo Persantine Italian Cooperative (EPIC) Study Group, Subproject Hypertrophic Cardiomyopathy. Circulation, 96(12), 4268-72 (1997)
[27]E. Ammirati, R. Contri, R. Coppini, F. Cecchi, M. Frigerio and I. Olivotto: Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur J Heart Fail, 18(9), 1106-18 (2016)
[28]M. Schafers, D. Dutka, C. G. Rhodes, A. A. Lammertsma, F. Hermansen, O. Schober and P. G. Camici: Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res, 82(1), 57-62 (1998)
[29]C. Hall: Essential biochemistry and physiology of (NT-pro)BNP. Eur J Heart Fail, 6(3), 257-60 (2004)
[30]D. A. Morrow, J. A. de Lemos, M. S. Sabatine, S. A. Murphy, L. A. Demopoulos, P. M. DiBattiste, C. H. McCabe, C. M. Gibson, C. P. Cannon and E. Braunwald: Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol, 41(8), 1264-72 (2003)
[31]A. S. Maisel, P. Krishnaswamy, R. M. Nowak, J. McCord, J. E. Hollander, P. Duc, T. Omland, A. B. Storrow, W. T. Abraham, A. H. Wu, P. Clopton, P. G. Steg, A. Westheim, C. W. Knudsen, A. Perez, R. Kazanegra, H. C. Herrmann and P. A. McCullough: Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med, 347(3), 161-7 (2002)
[32]R. W. Troughton, C. M. Frampton, T. G. Yandle, E. A. Espiner, M. G. Nicholls and A. M. Richards: Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet, 355(9210), 1126-30 (2000)
[33]D. Brito, J. S. Matias, L. Sargento, M. J. Cabral and H. C. Madeira: Plasma N-terminal pro-brain natriuretic peptide: a marker of left ventricular hypertrophy in hypertrophic cardiomyopathy. Rev Port Cardiol, 23(12), 1557-82 (2004)
[34]G. J. Fahy, C. J. McCreery, F. O'Sullivan, A. K. Keenan, P. J. Quigley and B. J. Maurer: Plasma atrial natriuretic peptide is elevated in patients with hypertrophic cardiomyopathy. Int J Cardiol, 55(2), 149-55 (1996)
[35]B. J. Maron, V. N. Tholakanahalli, A. G. Zenovich, S. A. Casey, D. Duprez, D. M. Aeppli and J. N. Cohn: Usefulness of B-type natriuretic peptide assay in the assessment of symptomatic state in hypertrophic cardiomyopathy. Circulation, 109(8), 984-9 (2004)
[36]E. Arteaga, A. Q. Araujo, P. Buck, B. M. Ianni, R. Rabello and C. Mady: Plasma amino-terminal pro-B-type natriuretic peptide quantification in hypertrophic cardiomyopathy. Am Heart J, 150(6), 1228-32 (2005)
[37]R. Thaman, M. T. Esteban, S. Barnes, J. R. Gimeno, B. Mist, R. Murphy, P. O. Collinson, W. J. McKenna and P. M. Elliott: Usefulness of N-terminal pro-B-type natriuretic peptide levels to predict exercise capacity in hypertrophic cardiomyopathy. Am J Cardiol, 98(4), 515-9 (2006)
[38]K. Hasegawa, H. Fujiwara, K. Doyama, M. Miyamae, T. Fujiwara, S. Suga, M. Mukoyama, K. Nakao, H. Imura and S. Sasayama: Ventricular expression of brain natriuretic peptide in hypertrophic cardiomyopathy. Circulation, 88(2), 372-80 (1993)
[39]K. Nishigaki, M. Tomita, K. Kagawa, T. Noda, S. Minatoguchi, H. Oda, S. Watanabe, N. Morita, K. Nakao and H. Fujiwara: Marked expression of plasma brain natriuretic peptide is a special feature of hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol, 28(5), 1234-42 (1996)
[40]E. Paya, F. Marin, J. Gonzalez, J. R. Gimeno, E. Feliu, A. Romero, F. Ruiz-Espejo, V. Roldan, V. Climent, G. de la Morena and M. Valdes: Variables associated with contrast-enhanced cardiovascular magnetic resonance in hypertrophic cardiomyopathy: clinical implications. J Card Fail, 14(5), 414-9 (2008)
[41]B. Mutlu, F. Bayrak, G. Kahveci, M. Degertekin, E. Eroglu and Y. Basaran: Usefulness of N-terminal pro-B-type natriuretic peptide to predict clinical course in patients with hypertrophic cardiomyopathy. Am J Cardiol, 98(11), 1504-6 (2006)
[42]H. Kitaoka, N. Hitomi, T. Yabe, T. Furuno and Y. L. Doi: Cardiovascular events and plasma atrial natriuretic peptide level in patients with hypertrophic cardiomyopathy. Am J Cardiol, 87(11), 1318-20 (2001)
[43]J. B. Geske, P. M. McKie, S. R. Ommen and P. Sorajja: B-type natriuretic peptide and survival in hypertrophic cardiomyopathy. J Am Coll Cardiol, 61(24), 2456-60 (2013)
[44]Y. Sato, T. Yamada, R. Taniguchi, K. Nagai, T. Makiyama, H. Okada, K. Kataoka, H. Ito, A. Matsumori, S. Sasayama and Y. Takatsu: Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation, 103(3), 369-74 (2001)
[45]T. B. Horwich, J. Patel, W. R. MacLellan and G. C. Fonarow: Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation, 108(7), 833-8 (2003)
[46]C. Kawahara, T. Tsutamoto, H. Sakai, K. Nishiyama, M. Yamaji, M. Fujii, T. Yamamoto and M. Horie: Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J, 162(4), 639-45 (2011)
[47]R. Spoladore, A. Fisicaro, A. Faccini and P. G. Camici: Coronary microvascular dysfunction in primary cardiomyopathies. Heart, 100(10), 806-13 (2014)
[48]I. Olivotto, F. Girolami, R. Sciagra, M. J. Ackerman, B. Sotgia, J. M. Bos, S. Nistri, A. Sgalambro, C. Grifoni, F. Torricelli, P. G. Camici and F. Cecchi: Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol, 58(8), 839-48 (2011)
[49]Y. Sato, R. Taniguchi, K. Nagai, T. Makiyama, H. Okada, T. Yamada, A. Matsumori and Y. Takatsu: Measurements of cardiac troponin T in patients with hypertrophic cardiomyopathy. Heart, 89(6), 659-60 (2003)
[50]T. Kubo, H. Kitaoka, S. Yamanaka, T. Hirota, Y. Baba, K. Hayashi, T. Iiyama, N. Kumagai, K. Tanioka, N. Yamasaki, Y. Matsumura, T. Furuno, T. Sugiura and Y. L. Doi: Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J Am Coll Cardiol, 62(14), 1252-9 (2013)
[51]T. Kubo, H. Kitaoka, M. Okawa, S. Yamanaka, T. Hirota, Y. Baba, K. Hayato, N. Yamasaki, Y. Matsumura, N. Yasuda, T. Sugiura and Y. L. Doi: Combined measurements of cardiac troponin I and brain natriuretic peptide are useful for predicting adverse outcomes in hypertrophic cardiomyopathy. Circ J, 75(4), 919-26 (2011)
[52]F. Cambronero, F. Marin, V. Roldan, D. Hernandez-Romero, M. Valdes and G. Y. Lip: Biomarkers of pathophysiology in hypertrophic cardiomyopathy: implications for clinical management and prognosis. Eur Heart J, 30(2), 139-51 (2009)
[53]K. Zen, H. Irie, T. Doue, M. Takamiya, T. Yamano, T. Sawada, A. Azuma and H. Matsubara: Analysis of circulating apoptosis mediators and proinflammatory cytokines in patients with idiopathic hypertrophic cardiomyopathy: comparison between nonobstructive and dilated-phase hypertrophic cardiomyopathy. Int Heart J, 46(2), 231-44 (2005) 54. J. P. Zachariah, S. D. Colan, P. Lang, J. K. Triedman, M. E. Alexander, E. P. Walsh, C. I. Berul and F. Cecchin: Circulating matrix metalloproteinases in adolescents with hypertrophic cardiomyopathy and ventricular arrhythmia. Circ Heart Fail, 5(4), 462-6 (2012)
[55]B. J. Maron, M. S. Maron and C. Semsarian: Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol, 60(8), 705-15 (2012)
[56]H. Watkins, H. Ashrafian and C. Redwood: Inherited cardiomyopathies. N Engl J Med, 364(17), 1643-56 (2011) 57. L. Thierfelder, H. Watkins, C. MacRae, R. Lamas, W. McKenna, H. P. Vosberg, J. G. Seidman and C. E. Seidman: Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell, 77(5), 701-12 (1994)
[58]L. R. Lopes, A. Zekavati, P. Syrris, M. Hubank, C. Giambartolomei, C. Dalageorgou, S. Jenkins, W. McKenna, V. Plagnol and P. M. Elliott: Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet, 50(4), 228-39 (2013)
[59]A. J. Marian, L. Salek and S. Lutucuta: Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Med, 92(6), 435-51 (2001)
[60]J. D. Marsiglia, F. L. Credidio, T. G. de Oliveira, R. F. Reis, O. Antunes Mde, A. Q. de Araujo, R. P. Pedrosa, J. M. Barbosa-Ferreira, C. Mady, J. E. Krieger, E. Arteaga-Fernandez and C. Pereira Ada: Screening of MYH7, MYBPC3, and TNNT2 genes in Brazilian patients with hypertrophic cardiomyopathy. Am Heart J, 166(4), 775-82 (2013)
[61]H. Otsuka, T. Arimura, T. Abe, H. Kawai, Y. Aizawa, T. Kubo, H. Kitaoka, H. Nakamura, K. Nakamura, H. Okamoto, F. Ichida, M. Ayusawa, S. Nunoda, M. Isobe, M. Matsuzaki, Y. L. Doi, K. Fukuda, T. Sasaoka, T. Izumi, N. Ashizawa and A. Kimura: Prevalence and distribution of sarcomeric gene mutations in Japanese patients with familial hypertrophic cardiomyopathy. Circ J, 76(2), 453-61 (2012)
[62]J. D. Marsiglia and A. C. Pereira: Hypertrophic cardiomyopathy: how do mutations lead to disease? Arq Bras Cardiol, 102(3), 295-304 (2014)
[63]J. M. Bos and M. J. Ackerman: Z-disc genes in hypertrophic cardiomyopathy: stretching the cardiomyopathies? J Am Coll Cardiol, 55(11), 1136-8 (2010)
[64]C. Chiu, R. D. Bagnall, J. Ingles, L. Yeates, M. Kennerson, J. A. Donald, M. Jormakka, J. M. Lind and C. Semsarian: Mutations in Alpha-Actinin-2 Cause Hypertrophic Cardiomyopathy A Genome-Wide Analysis. Journal of the American College of Cardiology, 55(11), 1127-1135 (2010)
[65]A. P. Landstrom, B. A. Adekola, J. M. Bos, S. R. Ommen and M. J. Ackerman: PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J, 161(1), 165-71 (2011)
[66]A. P. Landstrom, N. Weisleder, K. B. Batalden, J. M. Bos, D. J. Tester, S. R. Ommen, X. H. Wehrens, W. C. Claycomb, J. K. Ko, M. Hwang, Z. Pan, J. Ma and M. J. Ackerman: Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol, 42(6), 1026-35 (2007)
[67]C. Chiu, M. Tebo, J. Ingles, L. Yeates, J. W. Arthur, J. M. Lind and C. Semsarian: Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol, 43(3), 337-43 (2007)
[68]A. Keren, P. Syrris and W. J. McKenna: Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med, 5(3), 158-68 (2008)
[69]A. P. Landstrom and M. J. Ackerman: Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins. Curr Mol Med, 12(5), 507-18 (2012)
[70]J. Yang, W. W. Xu and S. J. Hu: Heart failure: advanced development in genetics and epigenetics. Biomed Res Int, 2015, 352734 (2015)
[71]N. Frey, M. Luedde and H. A. Katus: Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol, 9(2), 91-100 (2012)
[72]R. Coppini, C. Y. Ho, E. Ashley, S. Day, C. Ferrantini, F. Girolami, B. Tomberli, S. Bardi, F. Torricelli, F. Cecchi, A. Mugelli, C. Poggesi, J. Tardiff and I. Olivotto: Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J Am Coll Cardiol, 64(24), 2589-600 (2014)
[73]T. Tsoutsman, R. D. Bagnall and C. Semsarian: Impact of multiple gene mutations in determining the severity of cardiomyopathy and heart failure. Clin Exp Pharmacol Physiol, 35(11), 1349-57 (2008)
[74]A. J. Marian: Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol, 17(3), 242-52 (2002)
[75]M. J. Perkins, S. L. Van Driest, E. G. Ellsworth, M. L. Will, B. J. Gersh, S. R. Ommen and M. J. Ackerman: Gene-specific modifying effects of pro-LVH polymorphisms involving the renin-angiotensin-aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur Heart J, 26(22), 2457-62 (2005)
[76]J. R. Ortlepp, H. P. Vosberg, S. Reith, F. Ohme, N. G. Mahon, D. Schroder, H. G. Klues, P. Hanrath and W. J. McKenna: Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart, 87(3), 270-5 (2002)
[77]I. Olivotto, M. S. Maron, A. S. Adabag, S. A. Casey, D. Vargiu, M. S. Link, J. E. Udelson, F. Cecchi and B. J. Maron: Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol, 46(3), 480-7 (2005)
[78]J. M. Lind, C. Chiu, J. Ingles, L. Yeates, S. E. Humphries, A. K. Heather and C. Semsarian: Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. J Mol Cell Cardiol, 45(2), 217-22 (2008)
[79]J. Ingles and C. Semsarian: The value of cardiac genetic testing. Trends Cardiovasc Med, 24(6), 217-24 (2014)
[80]B. Gray, J. Ingles and C. Semsarian: Natural history of genotype positive-phenotype negative patients with hypertrophic cardiomyopathy. Int J Cardiol, 152(2), 258-9 (2011)
[81]C. Semsarian, J. Ingles, M. S. Maron and B. J. Maron: New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol, 65(12), 1249-54 (2015)
[82]Clinical Trials.gov: Hypertrophic Cardiomyopathy. In, (2015)
[83]EU Clinical Trials Register: Hypertrophic Cardiomyopathy. In, (1995-2016)
[84]C. Y. Ho, N. K. Lakdawala, A. L. Cirino, S. E. Lipshultz, E. Sparks, S. A. Abbasi, R. Y. Kwong, E. M. Antman, C. Semsarian, A. Gonzalez, B. Lopez, J. Diez, E. J. Orav, S. D. Colan and C. E. Seidman: Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail, 3(2), 180-8 (2015)
[85]A. A. Geisterfer-Lowrance, M. Christe, D. A. Conner, J. S. Ingwall, F. J. Schoen, C. E. Seidman and J. G. Seidman: A mouse model of familial hypertrophic cardiomyopathy. Science, 272(5262), 731-4 (1996)
[86]A. J. Marian, Y. Wu, D. S. Lim, M. McCluggage, K. Youker, Q. T. Yu, R. Brugada, F. DeMayo, M. Quinones and R. Roberts: A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest, 104(12), 1683-92 (1999)
[87]J. C. Tardiff, T. E. Hewett, B. M. Palmer, C. Olsson, S. M. Factor, R. L. Moore, J. Robbins and L. A. Leinwand: Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest, 104(4), 469-81 (1999)
[88]D. S. Lim, S. Lutucuta, P. Bachireddy, K. Youker, A. Evans, M. Entman, R. Roberts and A. J. Marian: Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation, 103(6), 789-91 (2001)
[89]N. Tsybouleva, L. Zhang, S. Chen, R. Patel, S. Lutucuta, S. Nemoto, G. DeFreitas, M. Entman, B. A. Carabello, R. Roberts and A. J. Marian: Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation, 109(10), 1284-91 (2004)
[90]V. Senthil, S. N. Chen, N. Tsybouleva, T. Halder, S. F. Nagueh, J. T. Willerson, R. Roberts and A. J. Marian: Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res, 97(3), 285-92 (2005)
[91]R. Patel, S. F. Nagueh, N. Tsybouleva, M. Abdellatif, S. Lutucuta, H. A. Kopelen, M. A. Quinones, W. A. Zoghbi, M. L. Entman, R. Roberts and A. J. Marian: Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 104(3), 317-24 (2001)
[92]J. Bauersachs, S. Stork, M. Kung, C. Waller, F. Fidler, C. Hoyer, S. Frantz, F. Weidemann, G. Ertl and C. E. Angermann: HMG CoA reductase inhibition and left ventricular mass in hypertrophic cardiomyopathy: a randomized placebo-controlled pilot study. Eur J Clin Invest, 37(11), 852-9 (2007)
[93]F. Lan, J. Liu, K. H. Narsinh, S. Hu, L. Han, A. S. Lee, M. Karow, P. K. Nguyen, D. Nag, M. P. Calos, R. C. Robbins and J. C. Wu: Safe genetic modification of cardiac stem cells using a site-specific integration technique. Circulation, 126(11 Suppl 1), S20-8 (2012)
[94]F. Lan, A. S. Lee, P. Liang, V. Sanchez-Freire, P. K. Nguyen, L. Wang, L. Han, M. Yen, Y. Wang, N. Sun, O. J. Abilez, S. Hu, A. D. Ebert, E. G. Navarrete, C. S. Simmons, M. Wheeler, B. Pruitt, R. Lewis, Y. Yamaguchi, E. A. Ashley, D. M. Bers, R. C. Robbins, M. T. Longaker and J. C. Wu: Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell, 12(1), 101-13 (2013)
[95]L. Han, Y. Li, J. Tchao, A. D. Kaplan, B. Lin, J. Mich-Basso, A. Lis, N. Hassan, B. London, G. C. Bett, K. Tobita, R. L. Rasmusson and L. Yang: Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res, 104(2), 258-69 (2014)
[96]Stem Cell Theranostics: Stem Cell Theranostics Receives a Phase 1 SBIR Grant from the National Science Foundation to Develop a Novel Drug Discovery Platform for Genetic Heart Disease. In, (2015)
[97]Icahn School of Medicine at Mount Sinai: In, (2016)
[98]G. Mearini, D. Stimpel, B. Geertz, F. Weinberger, E. Kramer, S. Schlossarek, J. Mourot-Filiatre, A. Stoehr, A. Dutsch, P. J. Wijnker, I. Braren, H. A. Katus, O. J. Muller, T. Voit, T. Eschenhagen and L. Carrier: Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun, 5, 5515 (2014)
[99]E. M. Green, H. Wakimoto, R. L. Anderson, M. J. Evanchik, J. M. Gorham, B. C. Harrison, M. Henze, R. Kawas, J. D. Oslob, H. M. Rodriguez, Y. Song, W. Wan, L. A. Leinwand, J. A. Spudich, R. S. McDowell, J. G. Seidman and C. E. Seidman: A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science, 351(6273), 617-21 (2016)
[100]Cardiomyopathy UK: Myokardia. In: Trials begin on gene therapy for hypertrophic cardiomyopathy. (2015)
[101]C. Fiorillo, G. Astrea, M. Savarese, D. Cassandrini, G. Brisca, F. Trucco, M. Pedemonte, R. Trovato, L. Ruggiero, L. Vercelli, A. D'Amico, G. Tasca, M. Pane, M. Fanin, L. Bello, P. Broda, O. Musumeci, C. Rodolico, S. Messina, G. L. Vita, M. Sframeli, S. Gibertini, L. Morandi, M. Mora, L. Maggi, A. Petrucci, R. Massa, M. Grandis, A. Toscano, E. Pegoraro, E. Mercuri, E. Bertini, T. Mongini, L. Santoro, V. Nigro, C. Minetti, F. M. Santorelli and C. Bruno: MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis, 11(1), 91 (2016)
[102]J. van der Velden, C. Y. Ho, J. C. Tardiff, I. Olivotto, B. C. Knollmann and L. Carrier: Research priorities in sarcomeric cardiomyopathies. Cardiovasc Res, 105(4), 449-56 (2015)
[103]H. Kook, J. J. Lepore, A. D. Gitler, M. M. Lu, W. Wing-Man Yung, J. Mackay, R. Zhou, V. Ferrari, P. Gruber and J. A. Epstein: Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest, 112(6), 863-71 (2003)
[104]C. L. Zhang, T. A. McKinsey, S. Chang, C. L. Antos, J. A. Hill and E. N. Olson: Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 110(4), 479-88 (2002)
[105]G. H. Eom, Y. S. Nam, J. G. Oh, N. Choe, H. K. Min, E. K. Yoo, G. Kang, V. H. Nguyen, J. J. Min, J. K. Kim, I. K. Lee, R. Bassel-Duby, E. N. Olson, W. J. Park and H. Kook: Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res, 114(7), 1133-43 (2014)
[106]T. Yanazume, K. Hasegawa, T. Morimoto, T. Kawamura, H. Wada, A. Matsumori, Y. Kawase, M. Hirai and T. Kita: Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol, 23(10), 3593-606 (2003)
[107]C. T. Hang, J. Yang, P. Han, H. L. Cheng, C. Shang, E. Ashley, B. Zhou and C. P. Chang: Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466(7302), 62-7 (2010)
[108]L. G. D'Cruz, C. Baboonian, H. E. Phillimore, R. Taylor, P. M. Elliott, A. Varnava, F. Davison, W. J. McKenna and N. D. Carter: Cytosine methylation confers instability on the cardiac troponin T gene in hypertrophic cardiomyopathy. J Med Genet, 37(9), E18 (2000)
[109]K. M. Meurs and M. Kuan: Differential methylation of CpG sites in two isoforms of myosin binding protein C, an important hypertrophic cardiomyopathy gene. Environ Mol Mutagen, 52(2), 161-4 (2011)
[110]X. Fang, J. Robinson, J. Wang-Hu, L. Jiang, D. A. Freeman, S. A. Rivkees and C. C. Wendler: cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. Am J Physiol Cell Physiol, 309(6), C425-36 (2015)
[111]Q. J. Zhang, H. Z. Chen, L. Wang, D. P. Liu, J. A. Hill and Z. P. Liu: The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest, 121(6), 2447-56 (2011)
[112]Q. Duan, H. Chen, M. Costa and W. Dai: Phosphorylation of H3S10 blocks the access of H3K9 by specific antibodies and histone methyltransferase. Implication in regulating chromatin dynamics and epigenetic inheritance during mitosis. J Biol Chem, 283(48), 33585-90 (2008)
[113]M. Liu, Y. Li and R. Chen: CaMKII: do not work too hard in the failing heart. J Pathol, 235(5), 669-71 (2015) 114. T. Zhang and J. H. Brown: Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res, 63(3), 476-86 (2004)
[115]S. Awad, K. M. Al-Haffar, Q. Marashly, P. Quijada, M. Kunhi, N. Al-Yacoub, F. S. Wade, S. F. Mohammed, F. Al-Dayel, G. Sutherland, A. Assiri, M. Sussman, D. Bers, W. Al-Habeeb and C. Poizat: Control of histone H3 phosphorylation by CaMKIIdelta in response to haemodynamic cardiac stress. J Pathol, 235(4), 606-18 (2015)
[116]S. Awad, M. Kunhi, G. H. Little, Y. Bai, W. An, D. Bers, L. Kedes and C. Poizat: Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res, 41(16), 7656-72 (2013)
[117]R. Coppini, C. Ferrantini, L. Yao, P. Fan, M. Del Lungo, F. Stillitano, L. Sartiani, B. Tosi, S. Suffredini, C. Tesi, M. Yacoub, I. Olivotto, L. Belardinelli, C. Poggesi, E. Cerbai and A. Mugelli: Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation, 127(5), 575-84 (2013)
[118]C. Roma-Rodrigues, L. R. Raposo and A. R. Fernandes: MicroRNAs Based Therapy of Hypertrophic Cardiomyopathy: The Road Traveled So Far. Biomed Res Int, 2015, 983290 (2015)
[119]E. van Rooij and E. N. Olson: MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest, 117(9), 2369-76 (2007)
[120]R. D. Bagnall, T. Tsoutsman, R. E. Shephard, W. Ritchie and C. Semsarian: Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLoS One, 7(9), e44744 (2012)
[121]H. J. Feng, W. Ouyang, J. H. Liu, Y. G. Sun, R. Hu, L. H. Huang, J. L. Xian, C. F. Jing and M. J. Zhou: Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res, 47(5), 361-8 (2014) 122. L. Song, M. Su, S. Wang, Y. Zou, X. Wang, Y. Wang, H. Cui, P. Zhao, R. Hui and J. Wang: MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med, 18(11), 2266-74 (2014) doi:10.1111/jcmm.12380
[123]M. Palacin, J. R. Reguero, M. Martin, B. Diaz Molina, C. Moris, V. Alvarez and E. Coto: Profile of microRNAs differentially produced in hearts from patients with hypertrophic cardiomyopathy and sarcomeric mutations. Clin Chem, 57(11), 1614-6 (2011)
[124]R. Roncarati, C. Viviani Anselmi, M. A. Losi, L. Papa, E. Cavarretta, P. Da Costa Martins, C. Contaldi, G. Saccani Jotti, A. Franzone, L. Galastri, M. V. Latronico, M. Imbriaco, G. Esposito, L. De Windt, S. Betocchi and G. Condorelli: Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol, 63(9), 920-7 (2014)
[125]A. Care, D. Catalucci, F. Felicetti, D. Bonci, A. Addario, P. Gallo, M. L. Bang, P. Segnalini, Y. Gu, N. D. Dalton, L. Elia, M. V. Latronico, M. Hoydal, C. Autore, M. A. Russo, G. W. Dorn, 2nd, O. Ellingsen, P. Ruiz-Lozano, K. L. Peterson, C. M. Croce, C. Peschle and G. Condorelli: MicroRNA-133 controls cardiac hypertrophy. Nat Med, 13(5), 613-8 (2007)
[126]C. Liebetrau, H. Mollmann, O. Dorr, S. Szardien, C. Troidl, M. Willmer, S. Voss, L. Gaede, J. Rixe, A. Rolf, C. Hamm and H. Nef: Release kinetics of circulating muscle-enriched microRNAs in patients undergoing transcoronary ablation of septal hypertrophy. J Am Coll Cardiol, 62(11), 992-8 (2013)
[127]M. Palacin, E. Coto, J. R. Reguero, C. Moris and V. Alvarez: Profile of microRNAs in the plasma of hypertrophic cardiomyopathy patients compared to healthy controls. Int J Cardiol, 167(6), 3075-6 (2013)
[128]L. Cannon, Z. Y. Yu, T. Marciniec, A. J. Waardenberg, S. E. Iismaa, V. Nikolova-Krstevski, E. Neist, M. Ohanian, M. R. Qiu, S. Rainer, R. P. Harvey, M. P. Feneley, R. M. Graham and D. Fatkin: Irreversible triggers for hypertrophic cardiomyopathy are established in the early postnatal period. J Am Coll Cardiol, 65(6), 560-9 (2015)
[129]E. van Rooij, L. B. Sutherland, N. Liu, A. H. Williams, J. McAnally, R. D. Gerard, J. A. Richardson and E. N. Olson: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A, 103(48), 18255-60 (2006)
[130]C. Wang, S. Wang, P. Zhao, X. Wang, J. Wang, Y. Wang, L. Song, Y. Zou and R. Hui: MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J Cell Biochem, 113(6), 2040-6 (2012)
[131]D. W. Kuster, J. Mulders, F. J. Ten Cate, M. Michels, C. G. Dos Remedios, P. A. da Costa Martins, J. van der Velden and C. B. Oudejans: MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J Mol Cell Cardiol, 65, 59-66 (2013)
[132]S. J. van Dijk, E. R. Paalberends, A. Najafi, M. Michels, S. Sadayappan, L. Carrier, N. M. Boontje, D. W. Kuster, M. van Slegtenhorst, D. Dooijes, C. dos Remedios, F. J. ten Cate, G. J. Stienen and J. van der Velden: Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function. Circ Heart Fail, 5(1), 36-46 (2012)
[133]D. W. Kuster, A. C. Bawazeer, R. Zaremba, M. Goebel, N. M. Boontje and J. van der Velden: Cardiac myosin binding protein C phosphorylation in cardiac disease. J Muscle Res Cell Motil, 33(1), 43-52 (2012)
[134]E. van Rooij, D. Quiat, B. A. Johnson, L. B. Sutherland, X. Qi, J. A. Richardson, R. J. Kelm, Jr. and E. N. Olson: A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell, 17(5), 662-73 (2009)
[135]T. E. Callis, K. Pandya, H. Y. Seok, R. H. Tang, M. Tatsuguchi, Z. P. Huang, J. F. Chen, Z. Deng, B. Gunn, J. Shumate, M. S. Willis, C. H. Selzman and D. Z. Wang: MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest, 119(9), 2772-86 (2009)
[136]R. L. Montgomery, T. G. Hullinger, H. M. Semus, B. A. Dickinson, A. G. Seto, J. M. Lynch, C. Stack, P. A. Latimer, E. N. Olson and E. van Rooij: Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 124(14), 1537-47 (2011)
[137]A. J. Tijsen, E. E. Creemers, P. D. Moerland, L. J. de Windt, A. C. van der Wal, W. E. Kok and Y. M. Pinto: MiR423-5p as a circulating biomarker for heart failure. Circ Res, 106(6), 1035-9 (2010)
[138]S. J. Matkovich, Y. Hu, W. H. Eschenbacher, L. E. Dorn and G. W. Dorn, 2nd: Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy. Circ Res, 111(5), 521-31 (2012)
[139]A. Etheridge, I. Lee, L. Hood, D. Galas and K. Wang: Extracellular microRNA: a new source of biomarkers. Mutat Res, 717(1-2), 85-90 (2011)
[140]X. Chen, Y. Ba, L. Ma, X. Cai, Y. Yin, K. Wang, J. Guo, Y. Zhang, J. Chen, X. Guo, Q. Li, X. Li, W. Wang, J. Wang, X. Jiang, Y. Xiang, C. Xu, P. Zheng, J. Zhang, R. Li, H. Zhang, X. Shang, T. Gong, G. Ning, K. Zen and C. Y. Zhang: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18(10), 997-1006 (2008)
[141]H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee and J. O. Lotvall: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 9(6), 654-9 (2007)
[142]L. Fang, A. H. Ellims, X. L. Moore, D. A. White, A. J. Taylor, J. Chin-Dusting and A. M. Dart: Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med, 13, 314 (2015)
[143]A. A. Derda, S. Thum, J. M. Lorenzen, U. Bavendiek, J. Heineke, B. Keyser, M. Stuhrmann, R. C. Givens, P. J. Kennel, P. C. Schulze, J. D. Widder, J. Bauersachs and T. Thum: Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int J Cardiol, 196, 115-22 (2015)
[144]A. Ucar, S. K. Gupta, J. Fiedler, E. Erikci, M. Kardasinski, S. Batkai, S. Dangwal, R. Kumarswamy, C. Bang, A. Holzmann, J. Remke, M. Caprio, C. Jentzsch, S. Engelhardt, S. Geisendorf, C. Glas, T. G. Hofmann, M. Nessling, K. Richter, M. Schiffer, L. Carrier, L. C. Napp, J. Bauersachs, K. Chowdhury and T. Thum: The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun, 3, 1078 (2012)
[145]T. Thum, C. Gross, J. Fiedler, T. Fischer, S. Kissler, M. Bussen, P. Galuppo, S. Just, W. Rottbauer, S. Frantz, M. Castoldi, J. Soutschek, V. Koteliansky, A. Rosenwald, M. A. Basson, J. D. Licht, J. T. Pena, S. H. Rouhanifard, M. U. Muckenthaler, T. Tuschl, G. R. Martin, J. Bauersachs and S. Engelhardt: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980-4 (2008)
[146]P. V. Baptista: Gold nanobeacons: a potential nanotheranostics platform. Nanomedicine (Lond), 9(15), 2247-50 (2014) 147. E. van Rooij and S. Kauppinen: Development of microRNA therapeutics is coming of age. EMBO Mol Med, 6(7), 851-64 (2014)
[148]I. Karakikes, A. H. Chaanine, S. Kang, B. N. Mukete, D. Jeong, S. Zhang, R. J. Hajjar and D. Lebeche: Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc, 2(2), e000078 (2013)
[149]C. Bang, S. Batkai, S. Dangwal, S. K. Gupta, A. Foinquinos, A. Holzmann, A. Just, J. Remke, K. Zimmer, A. Zeug, E. Ponimaskin, A. Schmiedl, X. Yin, M. Mayr, R. Halder, A. Fischer, S. Engelhardt, Y. Wei, A. Schober, J. Fiedler and T. Thum: Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest, 124(5), 2136-46 (2014)
[150]R. S. Nagalingam, N. R. Sundaresan, M. Noor, M. P. Gupta, R. J. Solaro and M. Gupta: Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor beta (TGFbeta1)-dependent paracrine mechanism. J Biol Chem, 289(39), 27199-214 (2014)
[151]B. C. Bernardo, S. S. Nguyen, C. E. Winbanks, X. M. Gao, E. J. Boey, Y. K. Tham, H. Kiriazis, J. Y. Ooi, E. R. Porrello, S. Igoor, C. J. Thomas, P. Gregorevic, R. C. Lin, X. J. Du and J. R. McMullen: Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J, 28(12), 5097-110 (2014)
[152]E. van Rooij, L. B. Sutherland, X. Qi, J. A. Richardson, J. Hill and E. N. Olson: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575-9 (2007)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Theranostic biomarkers in hypertrophic cardiomyopathy: insights in a long road ahead
1 Department of Cardiovascular Diseases, Vita Salute University and San Raffaele Hospital, Milan, Italy
2 Prevention and Rehabilitation Unit, Fondazione Don Gnocchi, Parma, Italy
3 Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan Italy
Abstract
The study of biomarkers and their related signalling pathways has allowed the development of new therapeutic strategies in a range of disorders. However, in hypertrophic cardiomyopathy (HCM), which is the most common hereditary cardiac disease, there are many potential biomarkers described, but their specificity and applicability for HCM remains an open field. The aim of the present review is to provide an overview of molecules that could give some insight into the pathophysiologic mechanisms underlying HCM, especially to those with “theranostic” - a combination of diagnostics and therapy - potential. The clinical and pre-clinical state of the art and theranostic perspectives of this topic is discussed in the present review. The better understanding of this subject would provide an algorithm, to optimize the integration of diagnosis, prognostics and therapeutics findings in HCM, leading to a tailored approach for this pathology.
Keywords
- Hypertrophic Cardiomyopathy
- Primary Cardiomyopathy
- Theragnosis
- Biomarkers
- Genetic
- Epigenetic
- miRNAs
- Review
References
- [1] P. Elliott, B. Andersson, E. Arbustini, Z. Bilinska, F. Cecchi, P. Charron, O. Dubourg, U. Kuhl, B. Maisch, W. J. McKenna, L. Monserrat, S. Pankuweit, C. Rapezzi, P. Seferovic, L. Tavazzi and A. Keren: Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J, 29(2), 270-6 (2008)
- [2] P. M. Elliott, A. Anastasakis, M. A. Borger, M. Borggrefe, F. Cecchi, P. Charron, A. A. Hagege, A. Lafont, G. Limongelli, H. Mahrholdt, W. J. McKenna, J. Mogensen, P. Nihoyannopoulos, S. Nistri, P. G. Pieper, B. Pieske, C. Rapezzi, F. H. Rutten, C. Tillmanns and H. Watkins: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J, 35(39), 2733-79 (2014)
- [3] B. J. Maron, J. M. Gardin, J. M. Flack, S. S. Gidding, T. T. Kurosaki and D. E. Bild: Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation, 92(4), 785-9 (1995)
- [4] I. Olivotto, F. Cecchi, C. Poggesi and M. H. Yacoub: Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail, 5(4), 535-46 (2012)
- [5] P. M. Elliott, J. R. Gimeno, R. Thaman, J. Shah, D. Ward, S. Dickie, M. T. Tome Esteban and W. J. McKenna: Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart, 92(6), 785-91 (2006)
- [6] I. Christiaans, K. van Engelen, I. M. van Langen, E. Birnie, G. J. Bonsel, P. M. Elliott and A. A. Wilde: Risk stratification for sudden cardiac death in hypertrophic cardiomyopathy: systematic review of clinical risk markers. Europace, 12(3), 313-21 (2010)
- [7] M. H. Yacoub, I. Olivotto and F. Cecchi: 'End-stage' hypertrophic cardiomyopathy: from mystery to model. Nat Clin Pract Cardiovasc Med, 4(5), 232-3 (2007)
- [8] I. Olivotto, F. Girolami, S. Nistri, A. Rossi, L. Rega, F. Garbini, C. Grifoni, F. Cecchi and M. H. Yacoub: The many faces of hypertrophic cardiomyopathy: from developmental biology to clinical practice. J Cardiovasc Transl Res, 2(4), 349-67 (2009)
- [9] B. J. Maron and P. Spirito: Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol, 81(11), 1339-44 (1998)
- [10] WHO International Programme on Chemical Safety: Biomarkers in Risk Assessment: Validity and Validation. In, (2011)
- [11] P. Ponikowski, A. A. Voors, S. D. Anker, H. Bueno, J. G. Cleland, A. J. Coats, V. Falk, J. R. Gonzalez-Juanatey, V. P. Harjola, E. A. Jankowska, M. Jessup, C. Linde, P. Nihoyannopoulos, J. T. Parissis, B. Pieske, J. P. Riley, G. M. Rosano, L. M. Ruilope, F. Ruschitzka, F. H. Rutten and P. van der Meer: 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail, 18(8), 891-975 (2016)
- [12] D. Lazzeroni, O. Rimoldi and P. G. Camici: From Left Ventricular Hypertrophy to Dysfunction and Failure. Circ J, 80(3), 555-64 (2016)
- [13] I. Olivotto, R. Gistri, P. Petrone, E. Pedemonte, D. Vargiu and F. Cecchi: Maximum left ventricular thickness and risk of sudden death in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol, 41(2), 315-21 (2003) 14. S. Nistri, I. Olivotto, S. Betocchi, M. A. Losi, G. Valsecchi, B. Pinamonti, M. R. Conte, F. Casazza, M. Galderisi, B. J. Maron and F. Cecchi: Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). Am J Cardiol, 98(7), 960-5 (2006)
- [15] L. Choudhury, H. Mahrholdt, A. Wagner, K. M. Choi, M. D. Elliott, F. J. Klocke, R. O. Bonow, R. M. Judd and R. J. Kim: Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol, 40(12), 2156-64 (2002)
- [16] R. H. Chan, B. J. Maron, I. Olivotto, M. J. Pencina, G. E. Assenza, T. Haas, J. R. Lesser, C. Gruner, A. M. Crean, H. Rakowski, J. E. Udelson, E. Rowin, M. Lombardi, F. Cecchi, B. Tomberli, P. Spirito, F. Formisano, E. Biagini, C. Rapezzi, C. N. De Cecco, C. Autore, E. F. Cook, S. N. Hong, C. M. Gibson, W. J. Manning, E. Appelbaum and M. S. Maron: Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation, 130(6), 484-95 (2014)
- [17] S. L. Friedman, D. Sheppard, J. S. Duffield and S. Violette: Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med, 5(167), 167sr1 (2013)
- [18] L. C. Afonso, J. Bernal, J. J. Bax and T. P. Abraham: Echocardiography in hypertrophic cardiomyopathy: the role of conventional and emerging technologies. JACC Cardiovasc Imaging, 1(6), 787-800 (2008)
- [19] M. S. Maron, I. Olivotto, A. G. Zenovich, M. S. Link, N. G. Pandian, J. T. Kuvin, S. Nistri, F. Cecchi, J. E. Udelson and B. J. Maron: Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation, 114(21), 2232-9 (2006)
- [20] S. R. Ommen, P. M. Shah and A. J. Tajik: Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: past, present and future. Heart, 94(10), 1276-81 (2008)
- [21] P. G. Camici and F. Crea: Coronary microvascular dysfunction. N Engl J Med, 356(8), 830-40 (2007)
- [22] C. Basso, G. Thiene, D. Corrado, G. Buja, P. Melacini and A. Nava: Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol, 31(8), 988-98 (2000)
- [23] I. Olivotto, F. Cecchi, R. Gistri, R. Lorenzoni, G. Chiriatti, F. Girolami, F. Torricelli and P. G. Camici: Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol, 47(5), 1043-8 (2006)
- [24] F. Cecchi, I. Olivotto, R. Gistri, R. Lorenzoni, G. Chiriatti and P. G. Camici: Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med, 349(11), 1027-35 (2003)
- [25] Q. Ciampi, I. Olivotto, C. Gardini, F. Mori, J. Peteiro, L. Monserrat, X. Fernandez, L. Cortigiani, F. Rigo, L. R. Lopes, I. Cruz, C. Cotrim, M. Losi, S. Betocchi, B. Beleslin, M. Tesic, A. D. Dikic, E. Lazzeroni, D. Lazzeroni, R. Sicari and E. Picano: Prognostic role of stress echocardiography in hypertrophic cardiomyopathy: The International Stress Echo Registry. Int J Cardiol, 219, 331-8 (2016)
- [26] E. Lazzeroni, E. Picano, L. Morozzi, A. R. Maurizio, G. Palma, R. Ceriati, E. Iori and A. Barilli: Dipyridamole-induced ischemia as a prognostic marker of future adverse cardiac events in adult patients with hypertrophic cardiomyopathy. Echo Persantine Italian Cooperative (EPIC) Study Group, Subproject Hypertrophic Cardiomyopathy. Circulation, 96(12), 4268-72 (1997)
- [27] E. Ammirati, R. Contri, R. Coppini, F. Cecchi, M. Frigerio and I. Olivotto: Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur J Heart Fail, 18(9), 1106-18 (2016)
- [28] M. Schafers, D. Dutka, C. G. Rhodes, A. A. Lammertsma, F. Hermansen, O. Schober and P. G. Camici: Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res, 82(1), 57-62 (1998)
- [29] C. Hall: Essential biochemistry and physiology of (NT-pro)BNP. Eur J Heart Fail, 6(3), 257-60 (2004)
- [30] D. A. Morrow, J. A. de Lemos, M. S. Sabatine, S. A. Murphy, L. A. Demopoulos, P. M. DiBattiste, C. H. McCabe, C. M. Gibson, C. P. Cannon and E. Braunwald: Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol, 41(8), 1264-72 (2003)
- [31] A. S. Maisel, P. Krishnaswamy, R. M. Nowak, J. McCord, J. E. Hollander, P. Duc, T. Omland, A. B. Storrow, W. T. Abraham, A. H. Wu, P. Clopton, P. G. Steg, A. Westheim, C. W. Knudsen, A. Perez, R. Kazanegra, H. C. Herrmann and P. A. McCullough: Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med, 347(3), 161-7 (2002)
- [32] R. W. Troughton, C. M. Frampton, T. G. Yandle, E. A. Espiner, M. G. Nicholls and A. M. Richards: Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet, 355(9210), 1126-30 (2000)
- [33] D. Brito, J. S. Matias, L. Sargento, M. J. Cabral and H. C. Madeira: Plasma N-terminal pro-brain natriuretic peptide: a marker of left ventricular hypertrophy in hypertrophic cardiomyopathy. Rev Port Cardiol, 23(12), 1557-82 (2004)
- [34] G. J. Fahy, C. J. McCreery, F. O'Sullivan, A. K. Keenan, P. J. Quigley and B. J. Maurer: Plasma atrial natriuretic peptide is elevated in patients with hypertrophic cardiomyopathy. Int J Cardiol, 55(2), 149-55 (1996)
- [35] B. J. Maron, V. N. Tholakanahalli, A. G. Zenovich, S. A. Casey, D. Duprez, D. M. Aeppli and J. N. Cohn: Usefulness of B-type natriuretic peptide assay in the assessment of symptomatic state in hypertrophic cardiomyopathy. Circulation, 109(8), 984-9 (2004)
- [36] E. Arteaga, A. Q. Araujo, P. Buck, B. M. Ianni, R. Rabello and C. Mady: Plasma amino-terminal pro-B-type natriuretic peptide quantification in hypertrophic cardiomyopathy. Am Heart J, 150(6), 1228-32 (2005)
- [37] R. Thaman, M. T. Esteban, S. Barnes, J. R. Gimeno, B. Mist, R. Murphy, P. O. Collinson, W. J. McKenna and P. M. Elliott: Usefulness of N-terminal pro-B-type natriuretic peptide levels to predict exercise capacity in hypertrophic cardiomyopathy. Am J Cardiol, 98(4), 515-9 (2006)
- [38] K. Hasegawa, H. Fujiwara, K. Doyama, M. Miyamae, T. Fujiwara, S. Suga, M. Mukoyama, K. Nakao, H. Imura and S. Sasayama: Ventricular expression of brain natriuretic peptide in hypertrophic cardiomyopathy. Circulation, 88(2), 372-80 (1993)
- [39] K. Nishigaki, M. Tomita, K. Kagawa, T. Noda, S. Minatoguchi, H. Oda, S. Watanabe, N. Morita, K. Nakao and H. Fujiwara: Marked expression of plasma brain natriuretic peptide is a special feature of hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol, 28(5), 1234-42 (1996)
- [40] E. Paya, F. Marin, J. Gonzalez, J. R. Gimeno, E. Feliu, A. Romero, F. Ruiz-Espejo, V. Roldan, V. Climent, G. de la Morena and M. Valdes: Variables associated with contrast-enhanced cardiovascular magnetic resonance in hypertrophic cardiomyopathy: clinical implications. J Card Fail, 14(5), 414-9 (2008)
- [41] B. Mutlu, F. Bayrak, G. Kahveci, M. Degertekin, E. Eroglu and Y. Basaran: Usefulness of N-terminal pro-B-type natriuretic peptide to predict clinical course in patients with hypertrophic cardiomyopathy. Am J Cardiol, 98(11), 1504-6 (2006)
- [42] H. Kitaoka, N. Hitomi, T. Yabe, T. Furuno and Y. L. Doi: Cardiovascular events and plasma atrial natriuretic peptide level in patients with hypertrophic cardiomyopathy. Am J Cardiol, 87(11), 1318-20 (2001)
- [43] J. B. Geske, P. M. McKie, S. R. Ommen and P. Sorajja: B-type natriuretic peptide and survival in hypertrophic cardiomyopathy. J Am Coll Cardiol, 61(24), 2456-60 (2013)
- [44] Y. Sato, T. Yamada, R. Taniguchi, K. Nagai, T. Makiyama, H. Okada, K. Kataoka, H. Ito, A. Matsumori, S. Sasayama and Y. Takatsu: Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation, 103(3), 369-74 (2001)
- [45] T. B. Horwich, J. Patel, W. R. MacLellan and G. C. Fonarow: Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation, 108(7), 833-8 (2003)
- [46] C. Kawahara, T. Tsutamoto, H. Sakai, K. Nishiyama, M. Yamaji, M. Fujii, T. Yamamoto and M. Horie: Prognostic value of serial measurements of highly sensitive cardiac troponin I in stable outpatients with nonischemic chronic heart failure. Am Heart J, 162(4), 639-45 (2011)
- [47] R. Spoladore, A. Fisicaro, A. Faccini and P. G. Camici: Coronary microvascular dysfunction in primary cardiomyopathies. Heart, 100(10), 806-13 (2014)
- [48] I. Olivotto, F. Girolami, R. Sciagra, M. J. Ackerman, B. Sotgia, J. M. Bos, S. Nistri, A. Sgalambro, C. Grifoni, F. Torricelli, P. G. Camici and F. Cecchi: Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol, 58(8), 839-48 (2011)
- [49] Y. Sato, R. Taniguchi, K. Nagai, T. Makiyama, H. Okada, T. Yamada, A. Matsumori and Y. Takatsu: Measurements of cardiac troponin T in patients with hypertrophic cardiomyopathy. Heart, 89(6), 659-60 (2003)
- [50] T. Kubo, H. Kitaoka, S. Yamanaka, T. Hirota, Y. Baba, K. Hayashi, T. Iiyama, N. Kumagai, K. Tanioka, N. Yamasaki, Y. Matsumura, T. Furuno, T. Sugiura and Y. L. Doi: Significance of high-sensitivity cardiac troponin T in hypertrophic cardiomyopathy. J Am Coll Cardiol, 62(14), 1252-9 (2013)
- [51] T. Kubo, H. Kitaoka, M. Okawa, S. Yamanaka, T. Hirota, Y. Baba, K. Hayato, N. Yamasaki, Y. Matsumura, N. Yasuda, T. Sugiura and Y. L. Doi: Combined measurements of cardiac troponin I and brain natriuretic peptide are useful for predicting adverse outcomes in hypertrophic cardiomyopathy. Circ J, 75(4), 919-26 (2011)
- [52] F. Cambronero, F. Marin, V. Roldan, D. Hernandez-Romero, M. Valdes and G. Y. Lip: Biomarkers of pathophysiology in hypertrophic cardiomyopathy: implications for clinical management and prognosis. Eur Heart J, 30(2), 139-51 (2009)
- [53] K. Zen, H. Irie, T. Doue, M. Takamiya, T. Yamano, T. Sawada, A. Azuma and H. Matsubara: Analysis of circulating apoptosis mediators and proinflammatory cytokines in patients with idiopathic hypertrophic cardiomyopathy: comparison between nonobstructive and dilated-phase hypertrophic cardiomyopathy. Int Heart J, 46(2), 231-44 (2005) 54. J. P. Zachariah, S. D. Colan, P. Lang, J. K. Triedman, M. E. Alexander, E. P. Walsh, C. I. Berul and F. Cecchin: Circulating matrix metalloproteinases in adolescents with hypertrophic cardiomyopathy and ventricular arrhythmia. Circ Heart Fail, 5(4), 462-6 (2012)
- [55] B. J. Maron, M. S. Maron and C. Semsarian: Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol, 60(8), 705-15 (2012)
- [56] H. Watkins, H. Ashrafian and C. Redwood: Inherited cardiomyopathies. N Engl J Med, 364(17), 1643-56 (2011) 57. L. Thierfelder, H. Watkins, C. MacRae, R. Lamas, W. McKenna, H. P. Vosberg, J. G. Seidman and C. E. Seidman: Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell, 77(5), 701-12 (1994)
- [58] L. R. Lopes, A. Zekavati, P. Syrris, M. Hubank, C. Giambartolomei, C. Dalageorgou, S. Jenkins, W. McKenna, V. Plagnol and P. M. Elliott: Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet, 50(4), 228-39 (2013)
- [59] A. J. Marian, L. Salek and S. Lutucuta: Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. Minerva Med, 92(6), 435-51 (2001)
- [60] J. D. Marsiglia, F. L. Credidio, T. G. de Oliveira, R. F. Reis, O. Antunes Mde, A. Q. de Araujo, R. P. Pedrosa, J. M. Barbosa-Ferreira, C. Mady, J. E. Krieger, E. Arteaga-Fernandez and C. Pereira Ada: Screening of MYH7, MYBPC3, and TNNT2 genes in Brazilian patients with hypertrophic cardiomyopathy. Am Heart J, 166(4), 775-82 (2013)
- [61] H. Otsuka, T. Arimura, T. Abe, H. Kawai, Y. Aizawa, T. Kubo, H. Kitaoka, H. Nakamura, K. Nakamura, H. Okamoto, F. Ichida, M. Ayusawa, S. Nunoda, M. Isobe, M. Matsuzaki, Y. L. Doi, K. Fukuda, T. Sasaoka, T. Izumi, N. Ashizawa and A. Kimura: Prevalence and distribution of sarcomeric gene mutations in Japanese patients with familial hypertrophic cardiomyopathy. Circ J, 76(2), 453-61 (2012)
- [62] J. D. Marsiglia and A. C. Pereira: Hypertrophic cardiomyopathy: how do mutations lead to disease? Arq Bras Cardiol, 102(3), 295-304 (2014)
- [63] J. M. Bos and M. J. Ackerman: Z-disc genes in hypertrophic cardiomyopathy: stretching the cardiomyopathies? J Am Coll Cardiol, 55(11), 1136-8 (2010)
- [64] C. Chiu, R. D. Bagnall, J. Ingles, L. Yeates, M. Kennerson, J. A. Donald, M. Jormakka, J. M. Lind and C. Semsarian: Mutations in Alpha-Actinin-2 Cause Hypertrophic Cardiomyopathy A Genome-Wide Analysis. Journal of the American College of Cardiology, 55(11), 1127-1135 (2010)
- [65] A. P. Landstrom, B. A. Adekola, J. M. Bos, S. R. Ommen and M. J. Ackerman: PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: summary of the literature and implications for genetic testing. Am Heart J, 161(1), 165-71 (2011)
- [66] A. P. Landstrom, N. Weisleder, K. B. Batalden, J. M. Bos, D. J. Tester, S. R. Ommen, X. H. Wehrens, W. C. Claycomb, J. K. Ko, M. Hwang, Z. Pan, J. Ma and M. J. Ackerman: Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J Mol Cell Cardiol, 42(6), 1026-35 (2007)
- [67] C. Chiu, M. Tebo, J. Ingles, L. Yeates, J. W. Arthur, J. M. Lind and C. Semsarian: Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J Mol Cell Cardiol, 43(3), 337-43 (2007)
- [68] A. Keren, P. Syrris and W. J. McKenna: Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med, 5(3), 158-68 (2008)
- [69] A. P. Landstrom and M. J. Ackerman: Beyond the cardiac myofilament: hypertrophic cardiomyopathy- associated mutations in genes that encode calcium-handling proteins. Curr Mol Med, 12(5), 507-18 (2012)
- [70] J. Yang, W. W. Xu and S. J. Hu: Heart failure: advanced development in genetics and epigenetics. Biomed Res Int, 2015, 352734 (2015)
- [71] N. Frey, M. Luedde and H. A. Katus: Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol, 9(2), 91-100 (2012)
- [72] R. Coppini, C. Y. Ho, E. Ashley, S. Day, C. Ferrantini, F. Girolami, B. Tomberli, S. Bardi, F. Torricelli, F. Cecchi, A. Mugelli, C. Poggesi, J. Tardiff and I. Olivotto: Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J Am Coll Cardiol, 64(24), 2589-600 (2014)
- [73] T. Tsoutsman, R. D. Bagnall and C. Semsarian: Impact of multiple gene mutations in determining the severity of cardiomyopathy and heart failure. Clin Exp Pharmacol Physiol, 35(11), 1349-57 (2008)
- [74] A. J. Marian: Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol, 17(3), 242-52 (2002)
- [75] M. J. Perkins, S. L. Van Driest, E. G. Ellsworth, M. L. Will, B. J. Gersh, S. R. Ommen and M. J. Ackerman: Gene-specific modifying effects of pro-LVH polymorphisms involving the renin-angiotensin-aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur Heart J, 26(22), 2457-62 (2005)
- [76] J. R. Ortlepp, H. P. Vosberg, S. Reith, F. Ohme, N. G. Mahon, D. Schroder, H. G. Klues, P. Hanrath and W. J. McKenna: Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart, 87(3), 270-5 (2002)
- [77] I. Olivotto, M. S. Maron, A. S. Adabag, S. A. Casey, D. Vargiu, M. S. Link, J. E. Udelson, F. Cecchi and B. J. Maron: Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J Am Coll Cardiol, 46(3), 480-7 (2005)
- [78] J. M. Lind, C. Chiu, J. Ingles, L. Yeates, S. E. Humphries, A. K. Heather and C. Semsarian: Sex hormone receptor gene variation associated with phenotype in male hypertrophic cardiomyopathy patients. J Mol Cell Cardiol, 45(2), 217-22 (2008)
- [79] J. Ingles and C. Semsarian: The value of cardiac genetic testing. Trends Cardiovasc Med, 24(6), 217-24 (2014)
- [80] B. Gray, J. Ingles and C. Semsarian: Natural history of genotype positive-phenotype negative patients with hypertrophic cardiomyopathy. Int J Cardiol, 152(2), 258-9 (2011)
- [81] C. Semsarian, J. Ingles, M. S. Maron and B. J. Maron: New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol, 65(12), 1249-54 (2015)
- [82] Clinical Trials.gov: Hypertrophic Cardiomyopathy. In, (2015)
- [83] EU Clinical Trials Register: Hypertrophic Cardiomyopathy. In, (1995-2016)
- [84] C. Y. Ho, N. K. Lakdawala, A. L. Cirino, S. E. Lipshultz, E. Sparks, S. A. Abbasi, R. Y. Kwong, E. M. Antman, C. Semsarian, A. Gonzalez, B. Lopez, J. Diez, E. J. Orav, S. D. Colan and C. E. Seidman: Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail, 3(2), 180-8 (2015)
- [85] A. A. Geisterfer-Lowrance, M. Christe, D. A. Conner, J. S. Ingwall, F. J. Schoen, C. E. Seidman and J. G. Seidman: A mouse model of familial hypertrophic cardiomyopathy. Science, 272(5262), 731-4 (1996)
- [86] A. J. Marian, Y. Wu, D. S. Lim, M. McCluggage, K. Youker, Q. T. Yu, R. Brugada, F. DeMayo, M. Quinones and R. Roberts: A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest, 104(12), 1683-92 (1999)
- [87] J. C. Tardiff, T. E. Hewett, B. M. Palmer, C. Olsson, S. M. Factor, R. L. Moore, J. Robbins and L. A. Leinwand: Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest, 104(4), 469-81 (1999)
- [88] D. S. Lim, S. Lutucuta, P. Bachireddy, K. Youker, A. Evans, M. Entman, R. Roberts and A. J. Marian: Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation, 103(6), 789-91 (2001)
- [89] N. Tsybouleva, L. Zhang, S. Chen, R. Patel, S. Lutucuta, S. Nemoto, G. DeFreitas, M. Entman, B. A. Carabello, R. Roberts and A. J. Marian: Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation, 109(10), 1284-91 (2004)
- [90] V. Senthil, S. N. Chen, N. Tsybouleva, T. Halder, S. F. Nagueh, J. T. Willerson, R. Roberts and A. J. Marian: Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circ Res, 97(3), 285-92 (2005)
- [91] R. Patel, S. F. Nagueh, N. Tsybouleva, M. Abdellatif, S. Lutucuta, H. A. Kopelen, M. A. Quinones, W. A. Zoghbi, M. L. Entman, R. Roberts and A. J. Marian: Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 104(3), 317-24 (2001)
- [92] J. Bauersachs, S. Stork, M. Kung, C. Waller, F. Fidler, C. Hoyer, S. Frantz, F. Weidemann, G. Ertl and C. E. Angermann: HMG CoA reductase inhibition and left ventricular mass in hypertrophic cardiomyopathy: a randomized placebo-controlled pilot study. Eur J Clin Invest, 37(11), 852-9 (2007)
- [93] F. Lan, J. Liu, K. H. Narsinh, S. Hu, L. Han, A. S. Lee, M. Karow, P. K. Nguyen, D. Nag, M. P. Calos, R. C. Robbins and J. C. Wu: Safe genetic modification of cardiac stem cells using a site-specific integration technique. Circulation, 126(11 Suppl 1), S20-8 (2012)
- [94] F. Lan, A. S. Lee, P. Liang, V. Sanchez-Freire, P. K. Nguyen, L. Wang, L. Han, M. Yen, Y. Wang, N. Sun, O. J. Abilez, S. Hu, A. D. Ebert, E. G. Navarrete, C. S. Simmons, M. Wheeler, B. Pruitt, R. Lewis, Y. Yamaguchi, E. A. Ashley, D. M. Bers, R. C. Robbins, M. T. Longaker and J. C. Wu: Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell, 12(1), 101-13 (2013)
- [95] L. Han, Y. Li, J. Tchao, A. D. Kaplan, B. Lin, J. Mich-Basso, A. Lis, N. Hassan, B. London, G. C. Bett, K. Tobita, R. L. Rasmusson and L. Yang: Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc Res, 104(2), 258-69 (2014)
- [96] Stem Cell Theranostics: Stem Cell Theranostics Receives a Phase 1 SBIR Grant from the National Science Foundation to Develop a Novel Drug Discovery Platform for Genetic Heart Disease. In, (2015)
- [97] Icahn School of Medicine at Mount Sinai: In, (2016)
- [98] G. Mearini, D. Stimpel, B. Geertz, F. Weinberger, E. Kramer, S. Schlossarek, J. Mourot-Filiatre, A. Stoehr, A. Dutsch, P. J. Wijnker, I. Braren, H. A. Katus, O. J. Muller, T. Voit, T. Eschenhagen and L. Carrier: Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice. Nat Commun, 5, 5515 (2014)
- [99] E. M. Green, H. Wakimoto, R. L. Anderson, M. J. Evanchik, J. M. Gorham, B. C. Harrison, M. Henze, R. Kawas, J. D. Oslob, H. M. Rodriguez, Y. Song, W. Wan, L. A. Leinwand, J. A. Spudich, R. S. McDowell, J. G. Seidman and C. E. Seidman: A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science, 351(6273), 617-21 (2016)
- [100] Cardiomyopathy UK: Myokardia. In: Trials begin on gene therapy for hypertrophic cardiomyopathy. (2015)
- [101] C. Fiorillo, G. Astrea, M. Savarese, D. Cassandrini, G. Brisca, F. Trucco, M. Pedemonte, R. Trovato, L. Ruggiero, L. Vercelli, A. D'Amico, G. Tasca, M. Pane, M. Fanin, L. Bello, P. Broda, O. Musumeci, C. Rodolico, S. Messina, G. L. Vita, M. Sframeli, S. Gibertini, L. Morandi, M. Mora, L. Maggi, A. Petrucci, R. Massa, M. Grandis, A. Toscano, E. Pegoraro, E. Mercuri, E. Bertini, T. Mongini, L. Santoro, V. Nigro, C. Minetti, F. M. Santorelli and C. Bruno: MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis, 11(1), 91 (2016)
- [102] J. van der Velden, C. Y. Ho, J. C. Tardiff, I. Olivotto, B. C. Knollmann and L. Carrier: Research priorities in sarcomeric cardiomyopathies. Cardiovasc Res, 105(4), 449-56 (2015)
- [103] H. Kook, J. J. Lepore, A. D. Gitler, M. M. Lu, W. Wing-Man Yung, J. Mackay, R. Zhou, V. Ferrari, P. Gruber and J. A. Epstein: Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest, 112(6), 863-71 (2003)
- [104] C. L. Zhang, T. A. McKinsey, S. Chang, C. L. Antos, J. A. Hill and E. N. Olson: Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 110(4), 479-88 (2002)
- [105] G. H. Eom, Y. S. Nam, J. G. Oh, N. Choe, H. K. Min, E. K. Yoo, G. Kang, V. H. Nguyen, J. J. Min, J. K. Kim, I. K. Lee, R. Bassel-Duby, E. N. Olson, W. J. Park and H. Kook: Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res, 114(7), 1133-43 (2014)
- [106] T. Yanazume, K. Hasegawa, T. Morimoto, T. Kawamura, H. Wada, A. Matsumori, Y. Kawase, M. Hirai and T. Kita: Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol, 23(10), 3593-606 (2003)
- [107] C. T. Hang, J. Yang, P. Han, H. L. Cheng, C. Shang, E. Ashley, B. Zhou and C. P. Chang: Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature, 466(7302), 62-7 (2010)
- [108] L. G. D'Cruz, C. Baboonian, H. E. Phillimore, R. Taylor, P. M. Elliott, A. Varnava, F. Davison, W. J. McKenna and N. D. Carter: Cytosine methylation confers instability on the cardiac troponin T gene in hypertrophic cardiomyopathy. J Med Genet, 37(9), E18 (2000)
- [109] K. M. Meurs and M. Kuan: Differential methylation of CpG sites in two isoforms of myosin binding protein C, an important hypertrophic cardiomyopathy gene. Environ Mol Mutagen, 52(2), 161-4 (2011)
- [110] X. Fang, J. Robinson, J. Wang-Hu, L. Jiang, D. A. Freeman, S. A. Rivkees and C. C. Wendler: cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. Am J Physiol Cell Physiol, 309(6), C425-36 (2015)
- [111] Q. J. Zhang, H. Z. Chen, L. Wang, D. P. Liu, J. A. Hill and Z. P. Liu: The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest, 121(6), 2447-56 (2011)
- [112] Q. Duan, H. Chen, M. Costa and W. Dai: Phosphorylation of H3S10 blocks the access of H3K9 by specific antibodies and histone methyltransferase. Implication in regulating chromatin dynamics and epigenetic inheritance during mitosis. J Biol Chem, 283(48), 33585-90 (2008)
- [113] M. Liu, Y. Li and R. Chen: CaMKII: do not work too hard in the failing heart. J Pathol, 235(5), 669-71 (2015) 114. T. Zhang and J. H. Brown: Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res, 63(3), 476-86 (2004)
- [115] S. Awad, K. M. Al-Haffar, Q. Marashly, P. Quijada, M. Kunhi, N. Al-Yacoub, F. S. Wade, S. F. Mohammed, F. Al-Dayel, G. Sutherland, A. Assiri, M. Sussman, D. Bers, W. Al-Habeeb and C. Poizat: Control of histone H3 phosphorylation by CaMKIIdelta in response to haemodynamic cardiac stress. J Pathol, 235(4), 606-18 (2015)
- [116] S. Awad, M. Kunhi, G. H. Little, Y. Bai, W. An, D. Bers, L. Kedes and C. Poizat: Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res, 41(16), 7656-72 (2013)
- [117] R. Coppini, C. Ferrantini, L. Yao, P. Fan, M. Del Lungo, F. Stillitano, L. Sartiani, B. Tosi, S. Suffredini, C. Tesi, M. Yacoub, I. Olivotto, L. Belardinelli, C. Poggesi, E. Cerbai and A. Mugelli: Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation, 127(5), 575-84 (2013)
- [118] C. Roma-Rodrigues, L. R. Raposo and A. R. Fernandes: MicroRNAs Based Therapy of Hypertrophic Cardiomyopathy: The Road Traveled So Far. Biomed Res Int, 2015, 983290 (2015)
- [119] E. van Rooij and E. N. Olson: MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest, 117(9), 2369-76 (2007)
- [120] R. D. Bagnall, T. Tsoutsman, R. E. Shephard, W. Ritchie and C. Semsarian: Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLoS One, 7(9), e44744 (2012)
- [121] H. J. Feng, W. Ouyang, J. H. Liu, Y. G. Sun, R. Hu, L. H. Huang, J. L. Xian, C. F. Jing and M. J. Zhou: Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy. Braz J Med Biol Res, 47(5), 361-8 (2014) 122. L. Song, M. Su, S. Wang, Y. Zou, X. Wang, Y. Wang, H. Cui, P. Zhao, R. Hui and J. Wang: MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med, 18(11), 2266-74 (2014) doi:10.1111/jcmm.12380
- [123] M. Palacin, J. R. Reguero, M. Martin, B. Diaz Molina, C. Moris, V. Alvarez and E. Coto: Profile of microRNAs differentially produced in hearts from patients with hypertrophic cardiomyopathy and sarcomeric mutations. Clin Chem, 57(11), 1614-6 (2011)
- [124] R. Roncarati, C. Viviani Anselmi, M. A. Losi, L. Papa, E. Cavarretta, P. Da Costa Martins, C. Contaldi, G. Saccani Jotti, A. Franzone, L. Galastri, M. V. Latronico, M. Imbriaco, G. Esposito, L. De Windt, S. Betocchi and G. Condorelli: Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol, 63(9), 920-7 (2014)
- [125] A. Care, D. Catalucci, F. Felicetti, D. Bonci, A. Addario, P. Gallo, M. L. Bang, P. Segnalini, Y. Gu, N. D. Dalton, L. Elia, M. V. Latronico, M. Hoydal, C. Autore, M. A. Russo, G. W. Dorn, 2nd, O. Ellingsen, P. Ruiz-Lozano, K. L. Peterson, C. M. Croce, C. Peschle and G. Condorelli: MicroRNA-133 controls cardiac hypertrophy. Nat Med, 13(5), 613-8 (2007)
- [126] C. Liebetrau, H. Mollmann, O. Dorr, S. Szardien, C. Troidl, M. Willmer, S. Voss, L. Gaede, J. Rixe, A. Rolf, C. Hamm and H. Nef: Release kinetics of circulating muscle-enriched microRNAs in patients undergoing transcoronary ablation of septal hypertrophy. J Am Coll Cardiol, 62(11), 992-8 (2013)
- [127] M. Palacin, E. Coto, J. R. Reguero, C. Moris and V. Alvarez: Profile of microRNAs in the plasma of hypertrophic cardiomyopathy patients compared to healthy controls. Int J Cardiol, 167(6), 3075-6 (2013)
- [128] L. Cannon, Z. Y. Yu, T. Marciniec, A. J. Waardenberg, S. E. Iismaa, V. Nikolova-Krstevski, E. Neist, M. Ohanian, M. R. Qiu, S. Rainer, R. P. Harvey, M. P. Feneley, R. M. Graham and D. Fatkin: Irreversible triggers for hypertrophic cardiomyopathy are established in the early postnatal period. J Am Coll Cardiol, 65(6), 560-9 (2015)
- [129] E. van Rooij, L. B. Sutherland, N. Liu, A. H. Williams, J. McAnally, R. D. Gerard, J. A. Richardson and E. N. Olson: A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A, 103(48), 18255-60 (2006)
- [130] C. Wang, S. Wang, P. Zhao, X. Wang, J. Wang, Y. Wang, L. Song, Y. Zou and R. Hui: MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J Cell Biochem, 113(6), 2040-6 (2012)
- [131] D. W. Kuster, J. Mulders, F. J. Ten Cate, M. Michels, C. G. Dos Remedios, P. A. da Costa Martins, J. van der Velden and C. B. Oudejans: MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J Mol Cell Cardiol, 65, 59-66 (2013)
- [132] S. J. van Dijk, E. R. Paalberends, A. Najafi, M. Michels, S. Sadayappan, L. Carrier, N. M. Boontje, D. W. Kuster, M. van Slegtenhorst, D. Dooijes, C. dos Remedios, F. J. ten Cate, G. J. Stienen and J. van der Velden: Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function. Circ Heart Fail, 5(1), 36-46 (2012)
- [133] D. W. Kuster, A. C. Bawazeer, R. Zaremba, M. Goebel, N. M. Boontje and J. van der Velden: Cardiac myosin binding protein C phosphorylation in cardiac disease. J Muscle Res Cell Motil, 33(1), 43-52 (2012)
- [134] E. van Rooij, D. Quiat, B. A. Johnson, L. B. Sutherland, X. Qi, J. A. Richardson, R. J. Kelm, Jr. and E. N. Olson: A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell, 17(5), 662-73 (2009)
- [135] T. E. Callis, K. Pandya, H. Y. Seok, R. H. Tang, M. Tatsuguchi, Z. P. Huang, J. F. Chen, Z. Deng, B. Gunn, J. Shumate, M. S. Willis, C. H. Selzman and D. Z. Wang: MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest, 119(9), 2772-86 (2009)
- [136] R. L. Montgomery, T. G. Hullinger, H. M. Semus, B. A. Dickinson, A. G. Seto, J. M. Lynch, C. Stack, P. A. Latimer, E. N. Olson and E. van Rooij: Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation, 124(14), 1537-47 (2011)
- [137] A. J. Tijsen, E. E. Creemers, P. D. Moerland, L. J. de Windt, A. C. van der Wal, W. E. Kok and Y. M. Pinto: MiR423-5p as a circulating biomarker for heart failure. Circ Res, 106(6), 1035-9 (2010)
- [138] S. J. Matkovich, Y. Hu, W. H. Eschenbacher, L. E. Dorn and G. W. Dorn, 2nd: Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy. Circ Res, 111(5), 521-31 (2012)
- [139] A. Etheridge, I. Lee, L. Hood, D. Galas and K. Wang: Extracellular microRNA: a new source of biomarkers. Mutat Res, 717(1-2), 85-90 (2011)
- [140] X. Chen, Y. Ba, L. Ma, X. Cai, Y. Yin, K. Wang, J. Guo, Y. Zhang, J. Chen, X. Guo, Q. Li, X. Li, W. Wang, J. Wang, X. Jiang, Y. Xiang, C. Xu, P. Zheng, J. Zhang, R. Li, H. Zhang, X. Shang, T. Gong, G. Ning, K. Zen and C. Y. Zhang: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 18(10), 997-1006 (2008)
- [141] H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee and J. O. Lotvall: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 9(6), 654-9 (2007)
- [142] L. Fang, A. H. Ellims, X. L. Moore, D. A. White, A. J. Taylor, J. Chin-Dusting and A. M. Dart: Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J Transl Med, 13, 314 (2015)
- [143] A. A. Derda, S. Thum, J. M. Lorenzen, U. Bavendiek, J. Heineke, B. Keyser, M. Stuhrmann, R. C. Givens, P. J. Kennel, P. C. Schulze, J. D. Widder, J. Bauersachs and T. Thum: Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int J Cardiol, 196, 115-22 (2015)
- [144] A. Ucar, S. K. Gupta, J. Fiedler, E. Erikci, M. Kardasinski, S. Batkai, S. Dangwal, R. Kumarswamy, C. Bang, A. Holzmann, J. Remke, M. Caprio, C. Jentzsch, S. Engelhardt, S. Geisendorf, C. Glas, T. G. Hofmann, M. Nessling, K. Richter, M. Schiffer, L. Carrier, L. C. Napp, J. Bauersachs, K. Chowdhury and T. Thum: The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun, 3, 1078 (2012)
- [145] T. Thum, C. Gross, J. Fiedler, T. Fischer, S. Kissler, M. Bussen, P. Galuppo, S. Just, W. Rottbauer, S. Frantz, M. Castoldi, J. Soutschek, V. Koteliansky, A. Rosenwald, M. A. Basson, J. D. Licht, J. T. Pena, S. H. Rouhanifard, M. U. Muckenthaler, T. Tuschl, G. R. Martin, J. Bauersachs and S. Engelhardt: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980-4 (2008)
- [146] P. V. Baptista: Gold nanobeacons: a potential nanotheranostics platform. Nanomedicine (Lond), 9(15), 2247-50 (2014) 147. E. van Rooij and S. Kauppinen: Development of microRNA therapeutics is coming of age. EMBO Mol Med, 6(7), 851-64 (2014)
- [148] I. Karakikes, A. H. Chaanine, S. Kang, B. N. Mukete, D. Jeong, S. Zhang, R. J. Hajjar and D. Lebeche: Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc, 2(2), e000078 (2013)
- [149] C. Bang, S. Batkai, S. Dangwal, S. K. Gupta, A. Foinquinos, A. Holzmann, A. Just, J. Remke, K. Zimmer, A. Zeug, E. Ponimaskin, A. Schmiedl, X. Yin, M. Mayr, R. Halder, A. Fischer, S. Engelhardt, Y. Wei, A. Schober, J. Fiedler and T. Thum: Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest, 124(5), 2136-46 (2014)
- [150] R. S. Nagalingam, N. R. Sundaresan, M. Noor, M. P. Gupta, R. J. Solaro and M. Gupta: Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor beta (TGFbeta1)-dependent paracrine mechanism. J Biol Chem, 289(39), 27199-214 (2014)
- [151] B. C. Bernardo, S. S. Nguyen, C. E. Winbanks, X. M. Gao, E. J. Boey, Y. K. Tham, H. Kiriazis, J. Y. Ooi, E. R. Porrello, S. Igoor, C. J. Thomas, P. Gregorevic, R. C. Lin, X. J. Du and J. R. McMullen: Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J, 28(12), 5097-110 (2014)
- [152] E. van Rooij, L. B. Sutherland, X. Qi, J. A. Richardson, J. Hill and E. N. Olson: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 316(5824), 575-9 (2007)
