Information
References
Contents
Download
[1]P. T. James, R. Leach, E. Kalamara and M. Shayeghi: The worldwide obesity epidemic. Obes Res, 9 Suppl 4, 228S-233S (2001)
[2]P. G. Kopelman: Obesity as a medical problem. Nature, 404(6778), 635-43 (2000)
[3]S. J. Olshansky, D. J. Passaro, R. C. Hershow, J. Layden, B. A. Carnes, J. Brody, L. Hayflick, R. N. Butler, D. B. Allison and D. S. Ludwig: A potential decline in life expectancy in the United States in the 21st century. N Engl J Med, 352(11), 1138-45 (2005)
[4]W. H. O. WHO: WHO Global Health Observatory Data Repository. Geneva (2013)<
[5]M. Hopkins and J. E. Blundell: Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci (Lond), 130(18), 1615-28 (2016)
[6]S. J. van Dijk, P. L. Molloy, H. Varinli, J. L. Morrison, B. S. Muhlhausler and S. Members of Epi: Epigenetics and human obesity. Int J Obes (Lond), 39(1), 85-97 (2015)
[7]W. H. O. WHO: Global action plan for the prevention and control of noncommunicable diseases 2013-2020. . WHO Document Production Services, Geneva, Switzerland, (2013)<
[8]G. Biomarkers Definitions Working: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 69(3), 89-95 (2001)
[9]U. J. Jung and M. S. Choi: Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci, 15(4), 6184-223 (2014)
[10]Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser, 854, 1-452 (1995)<
[11]C. J. Lavie, A. Sharma, M. A. Alpert, A. De Schutter, F. Lopez-Jimenez, R. V. Milani and H. O. Ventura: Update on Obesity and Obesity Paradox in Heart Failure. Prog Cardiovasc Dis, 58(4), 393-400 (2016)
[12]G. Peltz, M. T. Aguirre, M. Sanderson and M. K. Fadden: The role of fat mass index in determining obesity. Am J Hum Biol, 22(5), 639-47 (2010)
[13]R. Barazzoni, V. Silva and P. Singer: Clinical biomarkers in metabolic syndrome. Nutr Clin Pract, 29(2), 215-21 (2014)
[14]M. D. Jensen: Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab, 93(11 Suppl 1), S57-63 (2008)
[15]C. M. Phillips, A. C. Tierney, P. Perez-Martinez, C. Defoort, E. E. Blaak, I. M. Gjelstad, J. Lopez-Miranda, M. Kiec-Klimczak, M. Malczewska-Malec, C. A. Drevon, W. Hall, J. A. Lovegrove, B. Karlstrom, U. Riserus and H. M. Roche: Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype. Obesity (Silver Spring), 21(1), E154-61 (2013)
[16]S. Zhu, Z. Wang, S. Heshka, M. Heo, M. S. Faith and S. B. Heymsfield: Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr, 76(4), 743-9 (2002) PMID:12324286<
[17]H. Bays: Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes, 21(5), 345-51 (2014)
[18]S. Czernichow, A. P. Kengne, R. R. Huxley, G. D. Batty, B. de Galan, D. Grobbee, A. Pillai, S. Zoungas, M. Marre, M. Woodward, B. Neal, J. Chalmers and A. C. Group: Comparison of waist-to-hip ratio and other obesity indices as predictors of cardiovascular disease risk in people with type-2 diabetes: a prospective cohort study from ADVANCE. Eur J Cardiovasc Prev Rehabil, 18(2), 312-9 (2011)
[19]c. RoaWe: Waist circumference and waist–hip ratio. . World Health Organization, 39 (2011)<
[20]J. R. Sowers: Obesity as a cardiovascular risk factor. Am J Med, 115 Suppl 8A, 37S-41S (2003)<
[21]M. Ashwell, P. Gunn and S. Gibson: Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev, 13(3), 275-86 (2012)
[22]L. M. Browning, S. D. Hsieh and M. Ashwell: A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev, 23(2), 247-69 (2010)
[23]M. M. Swarbrick and P. J. Havel: Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans. Metab Syndr Relat Disord, 6(2), 87-102 (2008)
[24]M. Matsuda and I. Shimomura: Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev Endocr Metab Disord, 15(1), 1-10 (2014)
[25]D. C. Lau, B. Dhillon, H. Yan, P. E. Szmitko and S. Verma: Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol, 288(5), H2031-41 (2005)
[26]A. Y. Kim, Y. J. Park, X. Pan, K. C. Shin, S. H. Kwak, A. F. Bassas, R. M. Sallam, K. S. Park, A. A. Alfadda, A. Xu and J. B. Kim: Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun, 6, 7585 (2015)
[27]T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki and K. Tobe: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest, 116(7), 1784-92 (2006)
[28]Z. J. Wu, Y. J. Cheng, W. J. Gu and L. H. Aung: Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metabolism, 63(9), 1157-66 (2014)
[29]J. K. Elmquist, C. F. Elias and C. B. Saper: From lesions to leptin: hypothalamic control of food intake and body weight. Neuron, 22(2), 221-32 (1999)<
[30]A. J. Kennedy, K. L. Ellacott, V. L. King and A. H. Hasty: Mouse models of the metabolic syndrome. Dis Model Mech, 3(3-4), 156-66 (2010)
[31]H. Shimizu, Y. Shimomura, R. Hayashi, K. Ohtani, N. Sato, T. Futawatari and M. Mori: Serum leptin concentration is associated with total body fat mass, but not abdominal fat distribution. Int J Obes Relat Metab Disord, 21(7), 536-41 (1997)<
[32]N. Sainz, J. Barrenetxe, M. J. Moreno-Aliaga and J. A. Martinez: Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism, 64(1), 35-46 (2015)
[33]N. Rajkovic, M. Zamaklar, K. Lalic, A. Jotic, L. Lukic, T. Milicic, S. Singh, L. Stosic and N. M. Lalic: Relationship between obesity, adipocytokines and inflammatory markers in type 2 diabetes: relevance for cardiovascular risk prevention. Int J Environ Res Public Health, 11(4), 4049-65 (2014)
[34]M. S. Jamaluddin, S. M. Weakley, Q. Yao and C. Chen: Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol, 165(3), 622-32 (2012)
[35]P. Codoner-Franch and E. Alonso-Iglesias: Resistin: insulin resistance to malignancy. Clin Chim Acta, 438, 46-54 (2015)
[36]L. Patel, A. C. Buckels, I. J. Kinghorn, P. R. Murdock, J. D. Holbrook, C. Plumpton, C. H. Macphee and S. A. Smith: Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun, 300(2), 472-6 (2003)<
[37]R. Z. Yang, M. J. Lee, H. Hu, J. Pray, H. B. Wu, B. C. Hansen, A. R. Shuldiner, S. K. Fried, J. C. McLenithan and D. W. Gong: Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab, 290(6), E1253-61 (2006)
[38]H. Yamawaki, J. Kuramoto, S. Kameshima, T. Usui, M. Okada and Y. Hara: Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun, 408(2), 339-43 (2011)
[39]J. Oswiecimska, A. Suwala, E. Swietochowska, Z. Ostrowska, P. Gorczyca, K. Ziora-Jakutowicz, E. Machura, M. Szczepanska, M. Kukla, M. Stojewska, D. Ziora and K. Ziora: Serum omentin levels in adolescent girls with anorexia nervosa and obesity. Physiol Res, 64(5), 701-9 (2015)<
[40]I. Juhan-Vague, P. E. Morange, C. Frere, M. F. Aillaud, M. C. Alessi, E. Hawe, S. Boquist, P. Tornvall, J. S. Yudkin, E. Tremoli, M. Margaglione, G. Di Minno, A. Hamsten, S. E. Humphries and H. S. Group: The plasminogen activator inhibitor-1 -675 4G/5G genotype influences the risk of myocardial infarction associated with elevated plasma proinsulin and insulin concentrations in men from Europe: the HIFMECH study. J Thromb Haemost, 1(11), 2322-9 (2003)<
[41]K. Srikanthan, A. Feyh, H. Visweshwar, J. I. Shapiro and K. Sodhi: Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int J Med Sci, 13(1), 25-38 (2016)
[42]B. Zahorska-Markiewicz, J. Janowska, M. Olszanecka-Glinianowicz and A. Zurakowski: Serum concentrations of TNF-alpha and soluble TNF-alpha receptors in obesity. Int J Obes Relat Metab Disord, 24(11), 1392-5 (2000)<
[43]G. Cildir, S. C. Akincilar and V. Tergaonkar: Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med, 19(8), 487-500 (2013)
[44]Sadashiv, S. Tiwari, V. Gupta, B. N. Paul, S. Kumar, A. Chandra, S. Dhananjai, M. P. Negi and A. Ghatak: IL-6 gene expression in adipose tissue of postmenopausal women and its association with metabolic risk factors. Mol Cell Endocrinol, 399, 87-94 (2015)
[45]V. Mohamed-Ali, S. Goodrick, A. Rawesh, D. R. Katz, J. M. Miles, J. S. Yudkin, S. Klein and S. W. Coppack: Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab, 82(12), 4196-200 (1997)
[46]A. D. Pradhan, J. E. Manson, N. Rifai, J. E. Buring and P. M. Ridker: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 286(3), 327-34 (2001)<
[47]P. M. Ridker: A Test in Context: High-Sensitivity C-Reactive Protein. J Am Coll Cardiol, 67(6), 712-23 (2016)
[48]C. P. Moran and F. Shanahan: Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol, 28(4), 585-97 (2014)
[49]A. Woting and M. Blaut: The Intestinal Microbiota in Metabolic Disease. Nutrients, 8(4), 202 (2016)
[50]J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J. M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Dore, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, H. I. T. C. Meta, P. Bork, S. D. Ehrlich and J. Wang: A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65 (2010)
[51]Y. K. Chan, M. Estaki and D. L. Gibson: Clinical consequences of diet-induced dysbiosis. Ann Nutr Metab, 63 Suppl 2, 28-40 (2013)
[52]P. J. Turnbaugh, M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan, R. E. Ley, M. L. Sogin, W. J. Jones, B. A. Roe, J. P. Affourtit, M. Egholm, B. Henrissat, A. C. Heath, R. Knight and J. I. Gordon: A core gut microbiome in obese and lean twins. Nature, 457(7228), 480-4 (2009)
[53]A. Andoh, A. Nishida, K. Takahashi, O. Inatomi, H. Imaeda, S. Bamba, K. Kito, M. Sugimoto and T. Kobayashi: Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr, 59(1), 65-70 (2016)
[54]R. E. Ley, P. J. Turnbaugh, S. Klein and J. I. Gordon: Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122), 1022-3 (2006)
[55]M. Derrien, E. E. Vaughan, C. M. Plugge and W. M. de Vos: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 54(Pt 5), 1469-76 (2004)
[56]C. Belzer and W. M. de Vos: Microbes inside--from diversity to function: the case of Akkermansia. ISME J, 6(8), 1449-58 (2012)
[57]A. Santacruz, M. C. Collado, L. Garcia-Valdes, M. T. Segura, J. A. Martin-Lagos, T. Anjos, M. Marti-Romero, R. M. Lopez, J. Florido, C. Campoy and Y. Sanz: Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr, 104(1), 83-92 (2010)
[58]M. C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E. O. Verger, B. D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M. I.-O. Consortium, M. E. Dumas, S. W. Rizkalla, J. Dore, P. D. Cani and K. Clement: Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 65(3), 426-36 (2016)
[59]V. Tremaroli and F. Backhed: Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242-9 (2012)
[60]K. F. Petersen, S. Dufour, D. Befroy, R. Garcia and G. I. Shulman: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med, 350(7), 664-71 (2004)
[61]J. P. Furet, L. C. Kong, J. Tap, C. Poitou, A. Basdevant, J. L. Bouillot, D. Mariat, G. Corthier, J. Dore, C. Henegar, S. Rizkalla and K. Clement: Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 59(12), 3049-57 (2010)
[62]F. De Vadder, P. Kovatcheva-Datchary, C. Zitoun, A. Duchampt, F. Backhed and G. Mithieux: Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab, 24(1), 151-7 (2016)
[63]C. C. Scheifinger and M. J. Wolin: Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol, 26(5), 789-95 (1973)<
[64]F. Delaere, A. Duchampt, L. Mounien, P. Seyer, C. Duraffourd, C. Zitoun, B. Thorens and G. Mithieux: The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab, 2(1), 47-53 (2012)
[65]M. Potvin Kent and A. Wanless: The influence of the Children's Food and Beverage Advertising Initiative: change in children's exposure to food advertising on television in Canada between 2006-2009. Int J Obes (Lond), 38(4), 558-62 (2014)
[66]N. I. McNeil: The contribution of the large intestine to energy supplies in man. Am J Clin Nutr, 39(2), 338-42 (1984)<
[67]P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis and J. I. Gordon: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-31 (2006)
[68]J. H. Cummings, E. W. Pomare, W. J. Branch, C. P. Naylor and G. T. Macfarlane: Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28(10), 1221-7 (1987)<
[69]P. D. Cani, J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, A. Waget, E. Delmee, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrieres, J. F. Tanti, G. R. Gibson, L. Casteilla, N. M. Delzenne, M. C. Alessi and R. Burcelin: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-72 (2007)
[70]B. Jayashree, Y. S. Bibin, D. Prabhu, C. S. Shanthirani, K. Gokulakrishnan, B. S. Lakshmi, V. Mohan and M. Balasubramanyam: Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem, 388(1-2), 203-10 (2014)
[71]P. D. Cani: Gut microbiota: Changes in gut microbes and host metabolism: squaring the circle? Nat Rev Gastroenterol Hepatol, 13(10), 563-4 (2016)
[72]CL Lafortuna, A Liuzzi: Physiological Bases of Physical Limitations During Exercise. Disabling Obesity - From Determinants to Health Care Models. (2013)<
[73]M. Hulens, G. Vansant, R. Lysens, A. L. Claessens, E. Muls and S. Brumagne: Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes Relat Metab Disord, 25(5), 676-81 (2001)
[74]C. L. Lafortuna, N. A. Maffiuletti, F. Agosti and A. Sartorio: Gender variations of body composition, muscle strength and power output in morbid obesity. Int J Obes (Lond), 29(7), 833-41 (2005)
[75]N. A. Maffiuletti, M. Jubeau, U. Munzinger, M. Bizzini, F. Agosti, A. De Col, C. L. Lafortuna and A. Sartorio: Differences in quadriceps muscle strength and fatigue between lean and obese subjects. Eur J Appl Physiol, 101(1), 51-9 (2007)
[76]N. A. Maffiuletti, M. Jubeau, F. Agosti, A. De Col and A. Sartorio: Quadriceps muscle function characteristics in severely obese and nonobese adolescents. Eur J Appl Physiol, 103(4), 481-4 (2008)
[77]C. L. Lafortuna, D. Tresoldi and G. Rizzo: Influence of body adiposity on structural characteristics of skeletal muscle in men and women. Clin Physiol Funct Imaging, 34(1), 47-55 (2014)
[78]D. J. Tomlinson, R. M. Erskine, K. Winwood, C. I. Morse and G. L. Onambele: The impact of obesity on skeletal muscle architecture in untrained young vs. old women. J Anat, 225(6), 675-84 (2014)
[79]F. Rastelli, P. Capodaglio, S. Orgiu, C. Santovito, M. Caramenti, M. Cadioli, A. Falini, G. Rizzo and C. L. Lafortuna: Effects of muscle composition and architecture on specific strength in obese older women. Exp Physiol, 100(10), 1159-67 (2015)
[80]R. L. Lieber and J. Friden: Functional and clinical significance of skeletal muscle architecture. Muscle Nerve, 23(11), 1647-66 (2000)<
[81]S. Ikegawa, K. Funato, N. Tsunoda, H. Kanehisa, T. Fukunaga and Y. Kawakami: Muscle force per cross-sectional area is inversely related with pennation angle in strength trained athletes. J Strength Cond Res, 22(1), 128-31 (2008)
[82]J. Oudeman, A. J. Nederveen, G. J. Strijkers, M. Maas, P. R. Luijten and M. Froeling: Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging, 43(4), 773-88 (2016)
[83]B. M. Damon, Z. Ding, A. W. Anderson, A. S. Freyer and J. C. Gore: Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med, 48(1), 97-104 (2002)
[84]D. A. Lansdown, Z. Ding, M. Wadington, J. L. Hornberger and B. M. Damon: Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle. J Appl Physiol (1985), 103(2), 673-81 (2007)
[85]J. Qi, N. J. Olsen, R. R. Price, J. A. Winston and J. H. Park: Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging, 27(1), 212-7 (2008)
[86]S. E. Williams, A. M. Heemskerk, E. B. Welch, K. Li, B. M. Damon and J. H. Park: Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging, 38(5), 1292-7 (2013)
[87]B. H. Goodpaster, D. E. Kelley, F. L. Thaete, J. He and R. Ross: Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985), 89(1), 104-10 (2000)<
[88]D. E. Kelley, B. S. Slasky and J. Janosky: Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am J Clin Nutr, 54(3), 509-15 (1991)<
[89]B. H. Goodpaster, F. L. Thaete, J. A. Simoneau and D. E. Kelley: Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes, 46(10), 1579-85 (1997)<
[90]B. H. Goodpaster, C. L. Carlson, M. Visser, D. E. Kelley, A. Scherzinger, T. B. Harris, E. Stamm and A. B. Newman: Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985), 90(6), 2157-65 (2001)<
[91]V. Hainer, H. Toplak and A. Mitrakou: Treatment modalities of obesity: what fits whom? Diabetes Care, 31 Suppl 2, S269-77 (2008)
[92]A. C. Tsai, A. Sandretto and Y. C. Chung: Dieting is more effective in reducing weight but exercise is more effective in reducing fat during the early phase of a weight-reducing program in healthy humans. J Nutr Biochem, 14(9), 541-9 (2003)<
[93]G. R. Hunter, N. M. Byrne, B. Sirikul, J. R. Fernandez, P. A. Zuckerman, B. E. Darnell and B. A. Gower: Resistance training conserves fat-free mass and resting energy expenditure following weight loss. Obesity (Silver Spring), 16(5), 1045-51 (2008)
[94]S. B. R. Network: Letter to the editor: standardized use of the terms "sedentary" and "sedentary behaviours". Appl Physiol Nutr Metab., 37(3), 540-2 (2012)
[95]G. N. Healy, K. Wijndaele, D. W. Dunstan, J. E. Shaw, J. Salmon, P. Z. Zimmet and N. Owen: Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care, 31(2), 369-71 (2008)
[96]A. A. Thorp, N. Owen, M. Neuhaus and D. W. Dunstan: Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-2011. Am J Prev Med, 41(2), 207-15 (2011)
[97]M. T. Hamilton, D. G. Hamilton and T. W. Zderic: Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes, 56(11), 2655-67 (2007)
[98]J. N. Morris, J. A. Heady, P. A. Raffle, C. G. Roberts and J. W. Parks: Coronary heart-disease and physical activity of work. Lancet, 265(6796), 1111-20; concl (1953)<
[99]W. L. Haskell, E. L. Alderman, J. M. Fair, D. J. Maron, S. F. Mackey, H. R. Superko, P. T. Williams, I. M. Johnstone, M. A. Champagne, R. M. Krauss and et al.: Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease. The Stanford Coronary Risk Intervention Project (SCRIP). Circulation, 89(3), 975-90 (1994)<
[100]A. Grontved and F. B. Hu: Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA, 305(23), 2448-55 (2011)
[101]E. G. Wilmot, C. L. Edwardson, F. A. Achana, M. J. Davies, T. Gorely, L. J. Gray, K. Khunti, T. Yates and S. J. Biddle: Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia, 55(11), 2895-905 (2012)
[102]L. Bey and M. T. Hamilton: Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol, 551(Pt 2), 673-82 (2003)
[103]G. N. Healy, C. E. Matthews, D. W. Dunstan, E. A. Winkler and N. Owen: Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J, 32(5), 590-7 (2011)
[104]D. E. Warburton, C. W. Nicol and S. S. Bredin: Health benefits of physical activity: the evidence. CMAJ, 174(6), 801-9 (2006)
[105]P. D. Loprinzi and G. Pariser: Physical activity intensity and biological markers among adults with diabetes: considerations by age and gender. J Diabetes Complications, 27(2), 134-40 (2013)
[106]K. Bakrania, C. L. Edwardson, D. H. Bodicoat, D. W. Esliger, J. M. Gill, A. Kazi, L. Velayudhan, A. J. Sinclair, N. Sattar, S. J. Biddle, K. Khunti, M. Davies and T. Yates: Associations of mutually exclusive categories of physical activity and sedentary time with markers of cardiometabolic health in English adults: a cross-sectional analysis of the Health Survey for England. BMC Public Health, 16, 25 (2016)
[107]G. N. Healy, D. W. Dunstan, J. Salmon, E. Cerin, J. E. Shaw, P. Z. Zimmet and N. Owen: Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care, 31(4), 661-6 (2008)
[108]T. L. Hart, B. E. Ainsworth and C. Tudor-Locke: Objective and subjective measures of sedentary behavior and physical activity. Med Sci Sports Exerc, 43(3), 449-56 (2011)
[109]K. Lyden, S. L. Kozey Keadle, J. W. Staudenmayer and P. S. Freedson: Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc, 44(11), 2243-52 (2012)
[110]E. K. Olander, H. Fletcher, S. Williams, L. Atkinson, A. Turner and D. P. French: What are the most effective techniques in changing obese individuals' physical activity self-efficacy and behaviour: a systematic review and meta-analysis. Int J Behav Nutr Phys Act, 10, 29 (2013)
[111]C. J. Murray, A. D. Lopez and S. Wibulpolprasert: Monitoring global health: time for new solutions. BMJ, 329(7474), 1096-100 (2004)
[112]J. P. Hamilton: Epigenetics: principles and practice. Dig Dis, 29(2), 130-5 (2011)
[113]K. J. Dick, C. P. Nelson, L. Tsaprouni, J. K. Sandling, D. Aissi, S. Wahl, E. Meduri, P. E. Morange, F. Gagnon, H. Grallert, M. Waldenberger, A. Peters, J. Erdmann, C. Hengstenberg, F. Cambien, A. H. Goodall, W. H. Ouwehand, H. Schunkert, J. R. Thompson, T. D. Spector, C. Gieger, D. A. Tregouet, P. Deloukas and N. J. Samani: DNA methylation and body-mass index: a genome-wide analysis. Lancet, 383(9933), 1990-8 (2014)
[114]Y. S. Park, A. E. David, Y. Huang, J. B. Park, H. He, Y. Byun and V. C. Yang: In vivo delivery of cell-permeable antisense hypoxia-inducible factor 1alpha oligonucleotide to adipose tissue reduces adiposity in obese mice. J Control Release, 161(1), 1-9 (2012)
[115]C. Jiang, A. Qu, T. Matsubara, T. Chanturiya, W. Jou, O. Gavrilova, Y. M. Shah and F. J. Gonzalez: Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes, 60(10), 2484-95 (2011)
[116]R. C. Richmond, G. C. Sharp, M. E. Ward, A. Fraser, O. Lyttleton, W. L. McArdle, S. M. Ring, T. R. Gaunt, D. A. Lawlor, G. Davey Smith and C. L. Relton: DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework. Diabetes, 65(5), 1231-44 (2016)
[117]E. J. Kwon, H. A. Lee, Y. A. You, H. Park, S. J. Cho, E. H. Ha and Y. J. Kim: DNA methylations of MC4R and HNF4alpha are associated with increased triglyceride levels in cord blood of preterm infants. Medicine (Baltimore), 95(35), e4590 (2016)
[118]K. A. Evensen, S. Steinshamn, A. E. Tjonna, T. Stolen, M. A. Hoydal, U. Wisloff, A. M. Brubakk and T. Vik: Effects of preterm birth and fetal growth retardation on cardiovascular risk factors in young adulthood. Early Hum Dev, 85(4), 239-45 (2009)
[119]A. Singhal, M. Fewtrell, T. J. Cole and A. Lucas: Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet, 361(9363), 1089-97 (2003)
[120]M. Esteller: Epigenetics in cancer. N Engl J Med, 358(11), 1148-59 (2008)
[121]E. R. Gibney and C. M. Nolan: Epigenetics and gene expression. Heredity (Edinb), 105(1), 4-13 (2010)
[122]Q. Tong, G. Dalgin, H. Xu, C. N. Ting, J. M. Leiden and G. S. Hotamisligil: Function of GATA transcription factors in preadipocyte-adipocyte transition. Science, 290(5489), 134-8 (2000)<
[123]Z. Wu and S. Wang: Role of kruppel-like transcription factors in adipogenesis. Dev Biol, 373(2), 235-43 (2013)
[124]T. Mori, H. Sakaue, H. Iguchi, H. Gomi, Y. Okada, Y. Takashima, K. Nakamura, T. Nakamura, T. Yamauchi, N. Kubota, T. Kadowaki, Y. Matsuki, W. Ogawa, R. Hiramatsu and M. Kasuga: Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem, 280(13), 12867-75 (2005)
[125]M. Okamura, T. Inagaki, T. Tanaka and J. Sakai: Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis, 6(1), 24-32 (2010)<
[126]Y. Okada, K. Tateishi and Y. Zhang: Histone demethylase JHDM2A is involved in male infertility and obesity. J Androl, 31(1), 75-8 (2010)
[127]R. A. Koza, L. Nikonova, J. Hogan, J. S. Rim, T. Mendoza, C. Faulk, J. Skaf and L. P. Kozak: Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet, 2(5), e81 (2006)
[128]T. Inagaki, M. Tachibana, K. Magoori, H. Kudo, T. Tanaka, M. Okamura, M. Naito, T. Kodama, Y. Shinkai and J. Sakai: Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells, 14(8), 991-1001 (2009)
[129]D. P. Bartel: MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-33 (2009)
[130]G. Bertoli, C. Cava and I. Castiglioni: MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics, 5(10), 1122-43 (2015)
[131]C. Cava, G. Bertoli, M. Ripamonti, G. Mauri, I. Zoppis, P. A. Della Rosa, M. C. Gilardi and I. Castiglioni: Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One, 9(5), e97681 (2014)
[132]G. Bertoli, C. Cava and I. Castiglioni: MicroRNAs as Biomarkers for Diagnosis, Prognosis and Theranostics in Prostate Cancer. Int J Mol Sci, 17(3), 421 (2016)
[133]K. Y. Lee, S. J. Russell, S. Ussar, J. Boucher, C. Vernochet, M. A. Mori, G. Smyth, M. Rourk, C. Cederquist, E. D. Rosen, B. B. Kahn and C. R. Kahn: Lessons on conditional gene targeting in mouse adipose tissue. Diabetes, 62(3), 864-74 (2013)
[134]M. A. Mori, T. Thomou, J. Boucher, K. Y. Lee, S. Lallukka, J. K. Kim, M. Torriani, H. Yki-Jarvinen, S. K. Grinspoon, A. M. Cypess and C. R. Kahn: Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J Clin Invest, 124(8), 3339-51 (2014)
[135]P. Xu, S. Y. Vernooy, M. Guo and B. A. Hay: The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 13(9), 790-5 (2003)<
[136]M. I. Lefterova and M. A. Lazar: New developments in adipogenesis. Trends Endocrinol Metab, 20(3), 107-14 (2009)
[137]S. W. Qian, X. Li, Y. Y. Zhang, H. Y. Huang, Y. Liu, X. Sun and Q. Q. Tang: Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow. BMC Dev Biol, 10, 47 (2010)
[138]C. Esau, X. Kang, E. Peralta, E. Hanson, E. G. Marcusson, L. V. Ravichandran, Y. Sun, S. Koo, R. J. Perera, R. Jain, N. M. Dean, S. M. Freier, C. F. Bennett, B. Lollo and R. Griffey: MicroRNA-143 regulates adipocyte differentiation. J Biol Chem, 279(50), 52361-5 (2004)
[139]F. Sun, J. Wang, Q. Pan, Y. Yu, Y. Zhang, Y. Wan, J. Wang, X. Li and A. Hong: Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun, 380(3), 660-5 (2009)
[140]Z. Yang, C. Bian, H. Zhou, S. Huang, S. Wang, L. Liao and R. C. Zhao: MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev, 20(2), 259-67 (2011)
[141]L. E. Zaragosi, B. Wdziekonski, K. L. Brigand, P. Villageois, B. Mari, R. Waldmann, C. Dani and P. Barbry: Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol, 12(7), R64 (2011)
[142]N. Kloting, S. Berthold, P. Kovacs, M. R. Schon, M. Fasshauer, K. Ruschke, M. Stumvoll and M. Bluher: MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 4(3), e4699 (2009)
[143]H. Xie, B. Lim and H. F. Lodish: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 58(5), 1050-7 (2009)
[144]R. Martinelli, C. Nardelli, V. Pilone, T. Buonomo, R. Liguori, I. Castano, P. Buono, S. Masone, G. Persico, P. Forestieri, L. Pastore and L. Sacchetti: miR-519d overexpression is associated with human obesity. Obesity (Silver Spring), 18(11), 2170-6 (2010)
[145]J. A. Weber, D. H. Baxter, S. Zhang, D. Y. Huang, K. H. Huang, M. J. Lee, D. J. Galas and K. Wang: The microRNA spectrum in 12 body fluids. Clin Chem, 56(11), 1733-41 (2010)
[146]H. M. Heneghan, N. Miller, O. J. McAnena, T. O'Brien and M. J. Kerin: Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab, 96(5), E846-50 (2011)
[147]F. J. Ortega, J. M. Mercader, V. Catalan, J. M. Moreno-Navarrete, N. Pueyo, M. Sabater, J. Gomez-Ambrosi, R. Anglada, J. A. Fernandez-Formoso, W. Ricart, G. Fruhbeck and J. M. Fernandez-Real: Targeting the circulating microRNA signature of obesity. Clin Chem, 59(5), 781-92 (2013)
[148]A. Prats-Puig, F. J. Ortega, J. M. Mercader, J. M. Moreno-Navarrete, M. Moreno, N. Bonet, W. Ricart, A. Lopez-Bermejo and J. M. Fernandez-Real: Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab, 98(10), E1655-60 (2013)
[149]C. Nardelli, L. Iaffaldano, M. Ferrigno, G. Labruna, G. M. Maruotti, F. Quaglia, V. Capobianco, R. Di Noto, L. Del Vecchio, P. Martinelli, L. Pastore and L. Sacchetti: Characterization and predicted role of the microRNA expression profile in amnion from obese pregnant women. Int J Obes (Lond), 38(3), 466-9 (2014)
[150]T. Sun, M. Fu, A. L. Bookout, S. A. Kliewer and D. J. Mangelsdorf: MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol, 23(6), 925-31 (2009)
[151]J. Wei, H. Li, S. Wang, T. Li, J. Fan, X. Liang, J. Li, Q. Han, L. Zhu, L. Fan and R. C. Zhao: let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev, 23(13), 1452-63 (2014)
[152]B. M. Herrera, H. E. Lockstone, J. M. Taylor, M. Ria, A. Barrett, S. Collins, P. Kaisaki, K. Argoud, C. Fernandez, M. E. Travers, J. P. Grew, J. C. Randall, A. L. Gloyn, D. Gauguier, M. I. McCarthy and C. M. Lindgren: Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 53(6), 1099-109 (2010)
[153]D. V. Chartoumpekis, A. Zaravinos, P. G. Ziros, R. P. Iskrenova, A. I. Psyrogiannis, V. E. Kyriazopoulou and I. G. Habeos: Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One, 7(4), e34872 (2012)
[154]Z. Shi, C. Zhao, X. Guo, H. Ding, Y. Cui, R. Shen and J. Liu: Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERalpha expression in estrogen-induced insulin resistance. Endocrinology, 155(5), 1982-90 (2014)
[155]W. W. Chou, Y. T. Wang, Y. C. Liao, S. C. Chuang, S. N. Wang and S. H. Juo: Decreased microRNA-221 is associated with high levels of TNF-alpha in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell Physiol Biochem, 32(1), 127-37 (2013)
[156]F. J. Ortega, J. M. Mercader, J. M. Moreno-Navarrete, O. Rovira, E. Guerra, E. Esteve, G. Xifra, C. Martinez, W. Ricart, J. Rieusset, S. Rome, M. Karczewska-Kupczewska, M. Straczkowski and J. M. Fernandez-Real: Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care, 37(5), 1375-83 (2014)
[157]K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek and A. T. Remaley: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol, 13(4), 423-33 (2011)
[158]G. Zhuang, C. Meng, X. Guo, P. S. Cheruku, L. Shi, H. Xu, H. Li, G. Wang, A. R. Evans, S. Safe, C. Wu and B. Zhou: A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation, 125(23), 2892-903 (2012)
[159]A. Zampetaki, S. Kiechl, I. Drozdov, P. Willeit, U. Mayr, M. Prokopi, A. Mayr, S. Weger, F. Oberhollenzer, E. Bonora, A. Shah, J. Willeit and M. Mayr: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res, 107(6), 810-7 (2010)
[160]H. Peng, M. Zhong, W. Zhao, C. Wang, J. Zhang, X. Liu, Y. Li, S. D. Paudel, Q. Wang and T. Lou: Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PLoS One, 8(12), e82607 (2013)
[161]H. Y. Ling, G. B. Wen, S. D. Feng, Q. H. Tuo, H. S. Ou, C. H. Yao, B. Y. Zhu, Z. P. Gao, L. Zhang and D. F. Liao: MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol, 38(4), 239-46 (2011)
[162]L. Kong, J. Zhu, W. Han, X. Jiang, M. Xu, Y. Zhao, Q. Dong, Z. Pang, Q. Guan, L. Gao, J. Zhao and L. Zhao: Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol, 48(1), 61-9 (2011)
[163]C. Higuchi, A. Nakatsuka, J. Eguchi, S. Teshigawara, M. Kanzaki, A. Katayama, S. Yamaguchi, N. Takahashi, K. Murakami, D. Ogawa, S. Sasaki, H. Makino and J. Wada: Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism, 64(4), 489-97 (2015)
[164]F. J. Ortega, J. M. Moreno-Navarrete, G. Pardo, M. Sabater, M. Hummel, A. Ferrer, J. I. Rodriguez-Hermosa, B. Ruiz, W. Ricart, B. Peral and J. M. Fernandez-Real: MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One, 5(2), e9022 (2010)
[165]T. J. Schulz and Y. H. Tseng: Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 20(5-6), 523-31 (2009)
[166]X. F. Man, S. W. Tan, H. N. Tang, Y. Guo, C. Y. Tang, J. Tang, C. L. Zhou and H. D. Zhou: MiR-503 inhibits adipogenesis by targeting bone morphogenetic protein receptor 1a. Am J Transl Res, 8(6), 2727-37 (2016)<
[167]S. Bacon, B. Engelbrecht, J. Schmid, S. Pfeiffer, R. Gallagher, A. McCarthy, M. Burke, C. Concannon, J. H. Prehn and M. M. Byrne: MicroRNA-224 is Readily Detectable in Urine of Individuals with Diabetes Mellitus and is a Potential Indicator of Beta-Cell Demise. Genes (Basel), 6(2), 399-416 (2015)
[168]A. F. Christopher, R. P. Kaur, G. Kaur, A. Kaur, V. Gupta and P. Bansal: MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res, 7(2), 68-74 (2016)
[169]A. L. Jackson and A. A. Levin: Developing microRNA therapeutics: approaching the unique complexities. Nucleic Acid Ther, 22(4), 213-25 (2012)
[170]E. van Rooij, A. L. Purcell and A. A. Levin: Developing microRNA therapeutics. Circ Res, 110(3), 496-507 (2012)
[171]X. Li: MiR-375, a microRNA related to diabetes. Gene, 533(1), 1-4 (2014)
[172]J. Elmen, M. Lindow, S. Schutz, M. Lawrence, A. Petri, S. Obad, M. Lindholm, M. Hedtjarn, H. F. Hansen, U. Berger, S. Gullans, P. Kearney, P. Sarnow, E. M. Straarup and S. Kauppinen: LNA-mediated microRNA silencing in non-human primates. Nature, 452(7189), 896-9 (2008)
[173]M. B. Backe, G. W. Novotny, D. P. Christensen, L. G. Grunnet and T. Mandrup-Poulsen: Altering beta-cell number through stable alteration of miR-21 and miR-34a expression. Islets, 6(1), e27754 (2014)
[174]J. Y. Lai, J. Luo, C. O'Connor, X. Jing, V. Nair, W. Ju, A. Randolph, I. Z. Ben-Dov, R. N. Matar, D. Briskin, J. Zavadil, R. G. Nelson, T. Tuschl, F. C. Brosius, 3rd, M. Kretzler and M. Bitzer: MicroRNA-21 in glomerular injury. J Am Soc Nephrol, 26(4), 805-16 (2015)
[175]T. Seeger, A. Fischer, M. Muhly-Reinholz, A. M. Zeiher and S. Dimmeler: Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity (Silver Spring), 22(11), 2352-60 (2014)
[176]L. Sun, H. Xie, M. A. Mori, R. Alexander, B. Yuan, S. M. Hattangadi, Q. Liu, C. R. Kahn and H. F. Lodish: Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol, 13(8), 958-65 (2011)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Clinical, functional, behavioural and epigenomic biomarkers of obesity
1 Istituto di Bioimmagini e Fisiologia Molecolare del Consiglio Nazionale delle Ricerche, Segrate, Milano, Italy
2 Departmento de Fisiologia de la Nutricion, Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Mexico D.F., Mexico
3 Departement de Medecine, Universite de Fribourg, Fribourg, Suisse, Switzerland
Abstract
Overweight and obesity are highly prevalent conditions worldwide, linked to an increased risk for death, disability and disease due to metabolic and biochemical abnormalities affecting the biological human system throughout different domains. Biomarkers, defined as indicators of biological processes in health and disease, relevant for body mass excess management have been identified according to different criteria, including anthropometric and molecular indexes, as well as physiological and behavioural aspects. Analysing these different biomarkers, we identified their potential role in diagnosis, prognosis and treatment. Epigenetic biomarkers, cellular mediators of inflammation and factors related to microbiota-host interactions may be considered to have a theranostic value. Though, the molecular processes responsible for the biological phenomenology detected by the other analysed markers, is not clear yet. Nevertheless, these biomarkers possess valuable diagnostic and prognostic power. A new frontier for theranostic biomarkers can be foreseen in the exploitation of parameters defining behaviours and lifestyles linked to the risk of obesity, capable to describe the effects of interventions for obesity prevention and treatment which include also behaviour change strategies.
Keywords
- Clinical biomarkers
- Muscle impairment
- Sedentary behaviours
- miRNAs
- Review
References
- [1] P. T. James, R. Leach, E. Kalamara and M. Shayeghi: The worldwide obesity epidemic. Obes Res, 9 Suppl 4, 228S-233S (2001)
- [2] P. G. Kopelman: Obesity as a medical problem. Nature, 404(6778), 635-43 (2000)
- [3] S. J. Olshansky, D. J. Passaro, R. C. Hershow, J. Layden, B. A. Carnes, J. Brody, L. Hayflick, R. N. Butler, D. B. Allison and D. S. Ludwig: A potential decline in life expectancy in the United States in the 21st century. N Engl J Med, 352(11), 1138-45 (2005)
- [4] W. H. O. WHO: WHO Global Health Observatory Data Repository. Geneva (2013)<
- [5] M. Hopkins and J. E. Blundell: Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci (Lond), 130(18), 1615-28 (2016)
- [6] S. J. van Dijk, P. L. Molloy, H. Varinli, J. L. Morrison, B. S. Muhlhausler and S. Members of Epi: Epigenetics and human obesity. Int J Obes (Lond), 39(1), 85-97 (2015)
- [7] W. H. O. WHO: Global action plan for the prevention and control of noncommunicable diseases 2013-2020. . WHO Document Production Services, Geneva, Switzerland, (2013)<
- [8] G. Biomarkers Definitions Working: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 69(3), 89-95 (2001)
- [9] U. J. Jung and M. S. Choi: Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci, 15(4), 6184-223 (2014)
- [10] Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser, 854, 1-452 (1995)<
- [11] C. J. Lavie, A. Sharma, M. A. Alpert, A. De Schutter, F. Lopez-Jimenez, R. V. Milani and H. O. Ventura: Update on Obesity and Obesity Paradox in Heart Failure. Prog Cardiovasc Dis, 58(4), 393-400 (2016)
- [12] G. Peltz, M. T. Aguirre, M. Sanderson and M. K. Fadden: The role of fat mass index in determining obesity. Am J Hum Biol, 22(5), 639-47 (2010)
- [13] R. Barazzoni, V. Silva and P. Singer: Clinical biomarkers in metabolic syndrome. Nutr Clin Pract, 29(2), 215-21 (2014)
- [14] M. D. Jensen: Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab, 93(11 Suppl 1), S57-63 (2008)
- [15] C. M. Phillips, A. C. Tierney, P. Perez-Martinez, C. Defoort, E. E. Blaak, I. M. Gjelstad, J. Lopez-Miranda, M. Kiec-Klimczak, M. Malczewska-Malec, C. A. Drevon, W. Hall, J. A. Lovegrove, B. Karlstrom, U. Riserus and H. M. Roche: Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype. Obesity (Silver Spring), 21(1), E154-61 (2013)
- [16] S. Zhu, Z. Wang, S. Heshka, M. Heo, M. S. Faith and S. B. Heymsfield: Waist circumference and obesity-associated risk factors among whites in the third National Health and Nutrition Examination Survey: clinical action thresholds. Am J Clin Nutr, 76(4), 743-9 (2002) PMID:12324286<
- [17] H. Bays: Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes, 21(5), 345-51 (2014)
- [18] S. Czernichow, A. P. Kengne, R. R. Huxley, G. D. Batty, B. de Galan, D. Grobbee, A. Pillai, S. Zoungas, M. Marre, M. Woodward, B. Neal, J. Chalmers and A. C. Group: Comparison of waist-to-hip ratio and other obesity indices as predictors of cardiovascular disease risk in people with type-2 diabetes: a prospective cohort study from ADVANCE. Eur J Cardiovasc Prev Rehabil, 18(2), 312-9 (2011)
- [19] c. RoaWe: Waist circumference and waist–hip ratio. . World Health Organization, 39 (2011)<
- [20] J. R. Sowers: Obesity as a cardiovascular risk factor. Am J Med, 115 Suppl 8A, 37S-41S (2003)<
- [21] M. Ashwell, P. Gunn and S. Gibson: Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev, 13(3), 275-86 (2012)
- [22] L. M. Browning, S. D. Hsieh and M. Ashwell: A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr Res Rev, 23(2), 247-69 (2010)
- [23] M. M. Swarbrick and P. J. Havel: Physiological, pharmacological, and nutritional regulation of circulating adiponectin concentrations in humans. Metab Syndr Relat Disord, 6(2), 87-102 (2008)
- [24] M. Matsuda and I. Shimomura: Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev Endocr Metab Disord, 15(1), 1-10 (2014)
- [25] D. C. Lau, B. Dhillon, H. Yan, P. E. Szmitko and S. Verma: Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol, 288(5), H2031-41 (2005)
- [26] A. Y. Kim, Y. J. Park, X. Pan, K. C. Shin, S. H. Kwak, A. F. Bassas, R. M. Sallam, K. S. Park, A. A. Alfadda, A. Xu and J. B. Kim: Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun, 6, 7585 (2015)
- [27] T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki and K. Tobe: Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest, 116(7), 1784-92 (2006)
- [28] Z. J. Wu, Y. J. Cheng, W. J. Gu and L. H. Aung: Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metabolism, 63(9), 1157-66 (2014)
- [29] J. K. Elmquist, C. F. Elias and C. B. Saper: From lesions to leptin: hypothalamic control of food intake and body weight. Neuron, 22(2), 221-32 (1999)<
- [30] A. J. Kennedy, K. L. Ellacott, V. L. King and A. H. Hasty: Mouse models of the metabolic syndrome. Dis Model Mech, 3(3-4), 156-66 (2010)
- [31] H. Shimizu, Y. Shimomura, R. Hayashi, K. Ohtani, N. Sato, T. Futawatari and M. Mori: Serum leptin concentration is associated with total body fat mass, but not abdominal fat distribution. Int J Obes Relat Metab Disord, 21(7), 536-41 (1997)<
- [32] N. Sainz, J. Barrenetxe, M. J. Moreno-Aliaga and J. A. Martinez: Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism, 64(1), 35-46 (2015)
- [33] N. Rajkovic, M. Zamaklar, K. Lalic, A. Jotic, L. Lukic, T. Milicic, S. Singh, L. Stosic and N. M. Lalic: Relationship between obesity, adipocytokines and inflammatory markers in type 2 diabetes: relevance for cardiovascular risk prevention. Int J Environ Res Public Health, 11(4), 4049-65 (2014)
- [34] M. S. Jamaluddin, S. M. Weakley, Q. Yao and C. Chen: Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol, 165(3), 622-32 (2012)
- [35] P. Codoner-Franch and E. Alonso-Iglesias: Resistin: insulin resistance to malignancy. Clin Chim Acta, 438, 46-54 (2015)
- [36] L. Patel, A. C. Buckels, I. J. Kinghorn, P. R. Murdock, J. D. Holbrook, C. Plumpton, C. H. Macphee and S. A. Smith: Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun, 300(2), 472-6 (2003)<
- [37] R. Z. Yang, M. J. Lee, H. Hu, J. Pray, H. B. Wu, B. C. Hansen, A. R. Shuldiner, S. K. Fried, J. C. McLenithan and D. W. Gong: Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab, 290(6), E1253-61 (2006)
- [38] H. Yamawaki, J. Kuramoto, S. Kameshima, T. Usui, M. Okada and Y. Hara: Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun, 408(2), 339-43 (2011)
- [39] J. Oswiecimska, A. Suwala, E. Swietochowska, Z. Ostrowska, P. Gorczyca, K. Ziora-Jakutowicz, E. Machura, M. Szczepanska, M. Kukla, M. Stojewska, D. Ziora and K. Ziora: Serum omentin levels in adolescent girls with anorexia nervosa and obesity. Physiol Res, 64(5), 701-9 (2015)<
- [40] I. Juhan-Vague, P. E. Morange, C. Frere, M. F. Aillaud, M. C. Alessi, E. Hawe, S. Boquist, P. Tornvall, J. S. Yudkin, E. Tremoli, M. Margaglione, G. Di Minno, A. Hamsten, S. E. Humphries and H. S. Group: The plasminogen activator inhibitor-1 -675 4G/5G genotype influences the risk of myocardial infarction associated with elevated plasma proinsulin and insulin concentrations in men from Europe: the HIFMECH study. J Thromb Haemost, 1(11), 2322-9 (2003)<
- [41] K. Srikanthan, A. Feyh, H. Visweshwar, J. I. Shapiro and K. Sodhi: Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int J Med Sci, 13(1), 25-38 (2016)
- [42] B. Zahorska-Markiewicz, J. Janowska, M. Olszanecka-Glinianowicz and A. Zurakowski: Serum concentrations of TNF-alpha and soluble TNF-alpha receptors in obesity. Int J Obes Relat Metab Disord, 24(11), 1392-5 (2000)<
- [43] G. Cildir, S. C. Akincilar and V. Tergaonkar: Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med, 19(8), 487-500 (2013)
- [44] Sadashiv, S. Tiwari, V. Gupta, B. N. Paul, S. Kumar, A. Chandra, S. Dhananjai, M. P. Negi and A. Ghatak: IL-6 gene expression in adipose tissue of postmenopausal women and its association with metabolic risk factors. Mol Cell Endocrinol, 399, 87-94 (2015)
- [45] V. Mohamed-Ali, S. Goodrick, A. Rawesh, D. R. Katz, J. M. Miles, J. S. Yudkin, S. Klein and S. W. Coppack: Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab, 82(12), 4196-200 (1997)
- [46] A. D. Pradhan, J. E. Manson, N. Rifai, J. E. Buring and P. M. Ridker: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 286(3), 327-34 (2001)<
- [47] P. M. Ridker: A Test in Context: High-Sensitivity C-Reactive Protein. J Am Coll Cardiol, 67(6), 712-23 (2016)
- [48] C. P. Moran and F. Shanahan: Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol, 28(4), 585-97 (2014)
- [49] A. Woting and M. Blaut: The Intestinal Microbiota in Metabolic Disease. Nutrients, 8(4), 202 (2016)
- [50] J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D. R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J. M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H. B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Dore, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, H. I. T. C. Meta, P. Bork, S. D. Ehrlich and J. Wang: A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65 (2010)
- [51] Y. K. Chan, M. Estaki and D. L. Gibson: Clinical consequences of diet-induced dysbiosis. Ann Nutr Metab, 63 Suppl 2, 28-40 (2013)
- [52] P. J. Turnbaugh, M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan, R. E. Ley, M. L. Sogin, W. J. Jones, B. A. Roe, J. P. Affourtit, M. Egholm, B. Henrissat, A. C. Heath, R. Knight and J. I. Gordon: A core gut microbiome in obese and lean twins. Nature, 457(7228), 480-4 (2009)
- [53] A. Andoh, A. Nishida, K. Takahashi, O. Inatomi, H. Imaeda, S. Bamba, K. Kito, M. Sugimoto and T. Kobayashi: Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. J Clin Biochem Nutr, 59(1), 65-70 (2016)
- [54] R. E. Ley, P. J. Turnbaugh, S. Klein and J. I. Gordon: Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122), 1022-3 (2006)
- [55] M. Derrien, E. E. Vaughan, C. M. Plugge and W. M. de Vos: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 54(Pt 5), 1469-76 (2004)
- [56] C. Belzer and W. M. de Vos: Microbes inside--from diversity to function: the case of Akkermansia. ISME J, 6(8), 1449-58 (2012)
- [57] A. Santacruz, M. C. Collado, L. Garcia-Valdes, M. T. Segura, J. A. Martin-Lagos, T. Anjos, M. Marti-Romero, R. M. Lopez, J. Florido, C. Campoy and Y. Sanz: Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr, 104(1), 83-92 (2010)
- [58] M. C. Dao, A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E. O. Verger, B. D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M. I.-O. Consortium, M. E. Dumas, S. W. Rizkalla, J. Dore, P. D. Cani and K. Clement: Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 65(3), 426-36 (2016)
- [59] V. Tremaroli and F. Backhed: Functional interactions between the gut microbiota and host metabolism. Nature, 489(7415), 242-9 (2012)
- [60] K. F. Petersen, S. Dufour, D. Befroy, R. Garcia and G. I. Shulman: Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med, 350(7), 664-71 (2004)
- [61] J. P. Furet, L. C. Kong, J. Tap, C. Poitou, A. Basdevant, J. L. Bouillot, D. Mariat, G. Corthier, J. Dore, C. Henegar, S. Rizkalla and K. Clement: Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes, 59(12), 3049-57 (2010)
- [62] F. De Vadder, P. Kovatcheva-Datchary, C. Zitoun, A. Duchampt, F. Backhed and G. Mithieux: Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab, 24(1), 151-7 (2016)
- [63] C. C. Scheifinger and M. J. Wolin: Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl Microbiol, 26(5), 789-95 (1973)<
- [64] F. Delaere, A. Duchampt, L. Mounien, P. Seyer, C. Duraffourd, C. Zitoun, B. Thorens and G. Mithieux: The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing. Mol Metab, 2(1), 47-53 (2012)
- [65] M. Potvin Kent and A. Wanless: The influence of the Children's Food and Beverage Advertising Initiative: change in children's exposure to food advertising on television in Canada between 2006-2009. Int J Obes (Lond), 38(4), 558-62 (2014)
- [66] N. I. McNeil: The contribution of the large intestine to energy supplies in man. Am J Clin Nutr, 39(2), 338-42 (1984)<
- [67] P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis and J. I. Gordon: An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-31 (2006)
- [68] J. H. Cummings, E. W. Pomare, W. J. Branch, C. P. Naylor and G. T. Macfarlane: Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 28(10), 1221-7 (1987)<
- [69] P. D. Cani, J. Amar, M. A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A. M. Neyrinck, F. Fava, K. M. Tuohy, C. Chabo, A. Waget, E. Delmee, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrieres, J. F. Tanti, G. R. Gibson, L. Casteilla, N. M. Delzenne, M. C. Alessi and R. Burcelin: Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-72 (2007)
- [70] B. Jayashree, Y. S. Bibin, D. Prabhu, C. S. Shanthirani, K. Gokulakrishnan, B. S. Lakshmi, V. Mohan and M. Balasubramanyam: Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem, 388(1-2), 203-10 (2014)
- [71] P. D. Cani: Gut microbiota: Changes in gut microbes and host metabolism: squaring the circle? Nat Rev Gastroenterol Hepatol, 13(10), 563-4 (2016)
- [72] CL Lafortuna, A Liuzzi: Physiological Bases of Physical Limitations During Exercise. Disabling Obesity - From Determinants to Health Care Models. (2013)<
- [73] M. Hulens, G. Vansant, R. Lysens, A. L. Claessens, E. Muls and S. Brumagne: Study of differences in peripheral muscle strength of lean versus obese women: an allometric approach. Int J Obes Relat Metab Disord, 25(5), 676-81 (2001)
- [74] C. L. Lafortuna, N. A. Maffiuletti, F. Agosti and A. Sartorio: Gender variations of body composition, muscle strength and power output in morbid obesity. Int J Obes (Lond), 29(7), 833-41 (2005)
- [75] N. A. Maffiuletti, M. Jubeau, U. Munzinger, M. Bizzini, F. Agosti, A. De Col, C. L. Lafortuna and A. Sartorio: Differences in quadriceps muscle strength and fatigue between lean and obese subjects. Eur J Appl Physiol, 101(1), 51-9 (2007)
- [76] N. A. Maffiuletti, M. Jubeau, F. Agosti, A. De Col and A. Sartorio: Quadriceps muscle function characteristics in severely obese and nonobese adolescents. Eur J Appl Physiol, 103(4), 481-4 (2008)
- [77] C. L. Lafortuna, D. Tresoldi and G. Rizzo: Influence of body adiposity on structural characteristics of skeletal muscle in men and women. Clin Physiol Funct Imaging, 34(1), 47-55 (2014)
- [78] D. J. Tomlinson, R. M. Erskine, K. Winwood, C. I. Morse and G. L. Onambele: The impact of obesity on skeletal muscle architecture in untrained young vs. old women. J Anat, 225(6), 675-84 (2014)
- [79] F. Rastelli, P. Capodaglio, S. Orgiu, C. Santovito, M. Caramenti, M. Cadioli, A. Falini, G. Rizzo and C. L. Lafortuna: Effects of muscle composition and architecture on specific strength in obese older women. Exp Physiol, 100(10), 1159-67 (2015)
- [80] R. L. Lieber and J. Friden: Functional and clinical significance of skeletal muscle architecture. Muscle Nerve, 23(11), 1647-66 (2000)<
- [81] S. Ikegawa, K. Funato, N. Tsunoda, H. Kanehisa, T. Fukunaga and Y. Kawakami: Muscle force per cross-sectional area is inversely related with pennation angle in strength trained athletes. J Strength Cond Res, 22(1), 128-31 (2008)
- [82] J. Oudeman, A. J. Nederveen, G. J. Strijkers, M. Maas, P. R. Luijten and M. Froeling: Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging, 43(4), 773-88 (2016)
- [83] B. M. Damon, Z. Ding, A. W. Anderson, A. S. Freyer and J. C. Gore: Validation of diffusion tensor MRI-based muscle fiber tracking. Magn Reson Med, 48(1), 97-104 (2002)
- [84] D. A. Lansdown, Z. Ding, M. Wadington, J. L. Hornberger and B. M. Damon: Quantitative diffusion tensor MRI-based fiber tracking of human skeletal muscle. J Appl Physiol (1985), 103(2), 673-81 (2007)
- [85] J. Qi, N. J. Olsen, R. R. Price, J. A. Winston and J. H. Park: Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging, 27(1), 212-7 (2008)
- [86] S. E. Williams, A. M. Heemskerk, E. B. Welch, K. Li, B. M. Damon and J. H. Park: Quantitative effects of inclusion of fat on muscle diffusion tensor MRI measurements. J Magn Reson Imaging, 38(5), 1292-7 (2013)
- [87] B. H. Goodpaster, D. E. Kelley, F. L. Thaete, J. He and R. Ross: Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985), 89(1), 104-10 (2000)<
- [88] D. E. Kelley, B. S. Slasky and J. Janosky: Skeletal muscle density: effects of obesity and non-insulin-dependent diabetes mellitus. Am J Clin Nutr, 54(3), 509-15 (1991)<
- [89] B. H. Goodpaster, F. L. Thaete, J. A. Simoneau and D. E. Kelley: Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat. Diabetes, 46(10), 1579-85 (1997)<
- [90] B. H. Goodpaster, C. L. Carlson, M. Visser, D. E. Kelley, A. Scherzinger, T. B. Harris, E. Stamm and A. B. Newman: Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985), 90(6), 2157-65 (2001)<
- [91] V. Hainer, H. Toplak and A. Mitrakou: Treatment modalities of obesity: what fits whom? Diabetes Care, 31 Suppl 2, S269-77 (2008)
- [92] A. C. Tsai, A. Sandretto and Y. C. Chung: Dieting is more effective in reducing weight but exercise is more effective in reducing fat during the early phase of a weight-reducing program in healthy humans. J Nutr Biochem, 14(9), 541-9 (2003)<
- [93] G. R. Hunter, N. M. Byrne, B. Sirikul, J. R. Fernandez, P. A. Zuckerman, B. E. Darnell and B. A. Gower: Resistance training conserves fat-free mass and resting energy expenditure following weight loss. Obesity (Silver Spring), 16(5), 1045-51 (2008)
- [94] S. B. R. Network: Letter to the editor: standardized use of the terms "sedentary" and "sedentary behaviours". Appl Physiol Nutr Metab., 37(3), 540-2 (2012)
- [95] G. N. Healy, K. Wijndaele, D. W. Dunstan, J. E. Shaw, J. Salmon, P. Z. Zimmet and N. Owen: Objectively measured sedentary time, physical activity, and metabolic risk: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care, 31(2), 369-71 (2008)
- [96] A. A. Thorp, N. Owen, M. Neuhaus and D. W. Dunstan: Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-2011. Am J Prev Med, 41(2), 207-15 (2011)
- [97] M. T. Hamilton, D. G. Hamilton and T. W. Zderic: Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes, 56(11), 2655-67 (2007)
- [98] J. N. Morris, J. A. Heady, P. A. Raffle, C. G. Roberts and J. W. Parks: Coronary heart-disease and physical activity of work. Lancet, 265(6796), 1111-20; concl (1953)<
- [99] W. L. Haskell, E. L. Alderman, J. M. Fair, D. J. Maron, S. F. Mackey, H. R. Superko, P. T. Williams, I. M. Johnstone, M. A. Champagne, R. M. Krauss and et al.: Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease. The Stanford Coronary Risk Intervention Project (SCRIP). Circulation, 89(3), 975-90 (1994)<
- [100] A. Grontved and F. B. Hu: Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA, 305(23), 2448-55 (2011)
- [101] E. G. Wilmot, C. L. Edwardson, F. A. Achana, M. J. Davies, T. Gorely, L. J. Gray, K. Khunti, T. Yates and S. J. Biddle: Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia, 55(11), 2895-905 (2012)
- [102] L. Bey and M. T. Hamilton: Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. J Physiol, 551(Pt 2), 673-82 (2003)
- [103] G. N. Healy, C. E. Matthews, D. W. Dunstan, E. A. Winkler and N. Owen: Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J, 32(5), 590-7 (2011)
- [104] D. E. Warburton, C. W. Nicol and S. S. Bredin: Health benefits of physical activity: the evidence. CMAJ, 174(6), 801-9 (2006)
- [105] P. D. Loprinzi and G. Pariser: Physical activity intensity and biological markers among adults with diabetes: considerations by age and gender. J Diabetes Complications, 27(2), 134-40 (2013)
- [106] K. Bakrania, C. L. Edwardson, D. H. Bodicoat, D. W. Esliger, J. M. Gill, A. Kazi, L. Velayudhan, A. J. Sinclair, N. Sattar, S. J. Biddle, K. Khunti, M. Davies and T. Yates: Associations of mutually exclusive categories of physical activity and sedentary time with markers of cardiometabolic health in English adults: a cross-sectional analysis of the Health Survey for England. BMC Public Health, 16, 25 (2016)
- [107] G. N. Healy, D. W. Dunstan, J. Salmon, E. Cerin, J. E. Shaw, P. Z. Zimmet and N. Owen: Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care, 31(4), 661-6 (2008)
- [108] T. L. Hart, B. E. Ainsworth and C. Tudor-Locke: Objective and subjective measures of sedentary behavior and physical activity. Med Sci Sports Exerc, 43(3), 449-56 (2011)
- [109] K. Lyden, S. L. Kozey Keadle, J. W. Staudenmayer and P. S. Freedson: Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc, 44(11), 2243-52 (2012)
- [110] E. K. Olander, H. Fletcher, S. Williams, L. Atkinson, A. Turner and D. P. French: What are the most effective techniques in changing obese individuals' physical activity self-efficacy and behaviour: a systematic review and meta-analysis. Int J Behav Nutr Phys Act, 10, 29 (2013)
- [111] C. J. Murray, A. D. Lopez and S. Wibulpolprasert: Monitoring global health: time for new solutions. BMJ, 329(7474), 1096-100 (2004)
- [112] J. P. Hamilton: Epigenetics: principles and practice. Dig Dis, 29(2), 130-5 (2011)
- [113] K. J. Dick, C. P. Nelson, L. Tsaprouni, J. K. Sandling, D. Aissi, S. Wahl, E. Meduri, P. E. Morange, F. Gagnon, H. Grallert, M. Waldenberger, A. Peters, J. Erdmann, C. Hengstenberg, F. Cambien, A. H. Goodall, W. H. Ouwehand, H. Schunkert, J. R. Thompson, T. D. Spector, C. Gieger, D. A. Tregouet, P. Deloukas and N. J. Samani: DNA methylation and body-mass index: a genome-wide analysis. Lancet, 383(9933), 1990-8 (2014)
- [114] Y. S. Park, A. E. David, Y. Huang, J. B. Park, H. He, Y. Byun and V. C. Yang: In vivo delivery of cell-permeable antisense hypoxia-inducible factor 1alpha oligonucleotide to adipose tissue reduces adiposity in obese mice. J Control Release, 161(1), 1-9 (2012)
- [115] C. Jiang, A. Qu, T. Matsubara, T. Chanturiya, W. Jou, O. Gavrilova, Y. M. Shah and F. J. Gonzalez: Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes, 60(10), 2484-95 (2011)
- [116] R. C. Richmond, G. C. Sharp, M. E. Ward, A. Fraser, O. Lyttleton, W. L. McArdle, S. M. Ring, T. R. Gaunt, D. A. Lawlor, G. Davey Smith and C. L. Relton: DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework. Diabetes, 65(5), 1231-44 (2016)
- [117] E. J. Kwon, H. A. Lee, Y. A. You, H. Park, S. J. Cho, E. H. Ha and Y. J. Kim: DNA methylations of MC4R and HNF4alpha are associated with increased triglyceride levels in cord blood of preterm infants. Medicine (Baltimore), 95(35), e4590 (2016)
- [118] K. A. Evensen, S. Steinshamn, A. E. Tjonna, T. Stolen, M. A. Hoydal, U. Wisloff, A. M. Brubakk and T. Vik: Effects of preterm birth and fetal growth retardation on cardiovascular risk factors in young adulthood. Early Hum Dev, 85(4), 239-45 (2009)
- [119] A. Singhal, M. Fewtrell, T. J. Cole and A. Lucas: Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet, 361(9363), 1089-97 (2003)
- [120] M. Esteller: Epigenetics in cancer. N Engl J Med, 358(11), 1148-59 (2008)
- [121] E. R. Gibney and C. M. Nolan: Epigenetics and gene expression. Heredity (Edinb), 105(1), 4-13 (2010)
- [122] Q. Tong, G. Dalgin, H. Xu, C. N. Ting, J. M. Leiden and G. S. Hotamisligil: Function of GATA transcription factors in preadipocyte-adipocyte transition. Science, 290(5489), 134-8 (2000)<
- [123] Z. Wu and S. Wang: Role of kruppel-like transcription factors in adipogenesis. Dev Biol, 373(2), 235-43 (2013)
- [124] T. Mori, H. Sakaue, H. Iguchi, H. Gomi, Y. Okada, Y. Takashima, K. Nakamura, T. Nakamura, T. Yamauchi, N. Kubota, T. Kadowaki, Y. Matsuki, W. Ogawa, R. Hiramatsu and M. Kasuga: Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem, 280(13), 12867-75 (2005)
- [125] M. Okamura, T. Inagaki, T. Tanaka and J. Sakai: Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis, 6(1), 24-32 (2010)<
- [126] Y. Okada, K. Tateishi and Y. Zhang: Histone demethylase JHDM2A is involved in male infertility and obesity. J Androl, 31(1), 75-8 (2010)
- [127] R. A. Koza, L. Nikonova, J. Hogan, J. S. Rim, T. Mendoza, C. Faulk, J. Skaf and L. P. Kozak: Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet, 2(5), e81 (2006)
- [128] T. Inagaki, M. Tachibana, K. Magoori, H. Kudo, T. Tanaka, M. Okamura, M. Naito, T. Kodama, Y. Shinkai and J. Sakai: Obesity and metabolic syndrome in histone demethylase JHDM2a-deficient mice. Genes Cells, 14(8), 991-1001 (2009)
- [129] D. P. Bartel: MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-33 (2009)
- [130] G. Bertoli, C. Cava and I. Castiglioni: MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics, 5(10), 1122-43 (2015)
- [131] C. Cava, G. Bertoli, M. Ripamonti, G. Mauri, I. Zoppis, P. A. Della Rosa, M. C. Gilardi and I. Castiglioni: Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One, 9(5), e97681 (2014)
- [132] G. Bertoli, C. Cava and I. Castiglioni: MicroRNAs as Biomarkers for Diagnosis, Prognosis and Theranostics in Prostate Cancer. Int J Mol Sci, 17(3), 421 (2016)
- [133] K. Y. Lee, S. J. Russell, S. Ussar, J. Boucher, C. Vernochet, M. A. Mori, G. Smyth, M. Rourk, C. Cederquist, E. D. Rosen, B. B. Kahn and C. R. Kahn: Lessons on conditional gene targeting in mouse adipose tissue. Diabetes, 62(3), 864-74 (2013)
- [134] M. A. Mori, T. Thomou, J. Boucher, K. Y. Lee, S. Lallukka, J. K. Kim, M. Torriani, H. Yki-Jarvinen, S. K. Grinspoon, A. M. Cypess and C. R. Kahn: Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J Clin Invest, 124(8), 3339-51 (2014)
- [135] P. Xu, S. Y. Vernooy, M. Guo and B. A. Hay: The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol, 13(9), 790-5 (2003)<
- [136] M. I. Lefterova and M. A. Lazar: New developments in adipogenesis. Trends Endocrinol Metab, 20(3), 107-14 (2009)
- [137] S. W. Qian, X. Li, Y. Y. Zhang, H. Y. Huang, Y. Liu, X. Sun and Q. Q. Tang: Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow. BMC Dev Biol, 10, 47 (2010)
- [138] C. Esau, X. Kang, E. Peralta, E. Hanson, E. G. Marcusson, L. V. Ravichandran, Y. Sun, S. Koo, R. J. Perera, R. Jain, N. M. Dean, S. M. Freier, C. F. Bennett, B. Lollo and R. Griffey: MicroRNA-143 regulates adipocyte differentiation. J Biol Chem, 279(50), 52361-5 (2004)
- [139] F. Sun, J. Wang, Q. Pan, Y. Yu, Y. Zhang, Y. Wan, J. Wang, X. Li and A. Hong: Characterization of function and regulation of miR-24-1 and miR-31. Biochem Biophys Res Commun, 380(3), 660-5 (2009)
- [140] Z. Yang, C. Bian, H. Zhou, S. Huang, S. Wang, L. Liao and R. C. Zhao: MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev, 20(2), 259-67 (2011)
- [141] L. E. Zaragosi, B. Wdziekonski, K. L. Brigand, P. Villageois, B. Mari, R. Waldmann, C. Dani and P. Barbry: Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol, 12(7), R64 (2011)
- [142] N. Kloting, S. Berthold, P. Kovacs, M. R. Schon, M. Fasshauer, K. Ruschke, M. Stumvoll and M. Bluher: MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 4(3), e4699 (2009)
- [143] H. Xie, B. Lim and H. F. Lodish: MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes, 58(5), 1050-7 (2009)
- [144] R. Martinelli, C. Nardelli, V. Pilone, T. Buonomo, R. Liguori, I. Castano, P. Buono, S. Masone, G. Persico, P. Forestieri, L. Pastore and L. Sacchetti: miR-519d overexpression is associated with human obesity. Obesity (Silver Spring), 18(11), 2170-6 (2010)
- [145] J. A. Weber, D. H. Baxter, S. Zhang, D. Y. Huang, K. H. Huang, M. J. Lee, D. J. Galas and K. Wang: The microRNA spectrum in 12 body fluids. Clin Chem, 56(11), 1733-41 (2010)
- [146] H. M. Heneghan, N. Miller, O. J. McAnena, T. O'Brien and M. J. Kerin: Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab, 96(5), E846-50 (2011)
- [147] F. J. Ortega, J. M. Mercader, V. Catalan, J. M. Moreno-Navarrete, N. Pueyo, M. Sabater, J. Gomez-Ambrosi, R. Anglada, J. A. Fernandez-Formoso, W. Ricart, G. Fruhbeck and J. M. Fernandez-Real: Targeting the circulating microRNA signature of obesity. Clin Chem, 59(5), 781-92 (2013)
- [148] A. Prats-Puig, F. J. Ortega, J. M. Mercader, J. M. Moreno-Navarrete, M. Moreno, N. Bonet, W. Ricart, A. Lopez-Bermejo and J. M. Fernandez-Real: Changes in circulating microRNAs are associated with childhood obesity. J Clin Endocrinol Metab, 98(10), E1655-60 (2013)
- [149] C. Nardelli, L. Iaffaldano, M. Ferrigno, G. Labruna, G. M. Maruotti, F. Quaglia, V. Capobianco, R. Di Noto, L. Del Vecchio, P. Martinelli, L. Pastore and L. Sacchetti: Characterization and predicted role of the microRNA expression profile in amnion from obese pregnant women. Int J Obes (Lond), 38(3), 466-9 (2014)
- [150] T. Sun, M. Fu, A. L. Bookout, S. A. Kliewer and D. J. Mangelsdorf: MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol, 23(6), 925-31 (2009)
- [151] J. Wei, H. Li, S. Wang, T. Li, J. Fan, X. Liang, J. Li, Q. Han, L. Zhu, L. Fan and R. C. Zhao: let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev, 23(13), 1452-63 (2014)
- [152] B. M. Herrera, H. E. Lockstone, J. M. Taylor, M. Ria, A. Barrett, S. Collins, P. Kaisaki, K. Argoud, C. Fernandez, M. E. Travers, J. P. Grew, J. C. Randall, A. L. Gloyn, D. Gauguier, M. I. McCarthy and C. M. Lindgren: Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 53(6), 1099-109 (2010)
- [153] D. V. Chartoumpekis, A. Zaravinos, P. G. Ziros, R. P. Iskrenova, A. I. Psyrogiannis, V. E. Kyriazopoulou and I. G. Habeos: Differential expression of microRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One, 7(4), e34872 (2012)
- [154] Z. Shi, C. Zhao, X. Guo, H. Ding, Y. Cui, R. Shen and J. Liu: Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERalpha expression in estrogen-induced insulin resistance. Endocrinology, 155(5), 1982-90 (2014)
- [155] W. W. Chou, Y. T. Wang, Y. C. Liao, S. C. Chuang, S. N. Wang and S. H. Juo: Decreased microRNA-221 is associated with high levels of TNF-alpha in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell Physiol Biochem, 32(1), 127-37 (2013)
- [156] F. J. Ortega, J. M. Mercader, J. M. Moreno-Navarrete, O. Rovira, E. Guerra, E. Esteve, G. Xifra, C. Martinez, W. Ricart, J. Rieusset, S. Rome, M. Karczewska-Kupczewska, M. Straczkowski and J. M. Fernandez-Real: Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care, 37(5), 1375-83 (2014)
- [157] K. C. Vickers, B. T. Palmisano, B. M. Shoucri, R. D. Shamburek and A. T. Remaley: MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol, 13(4), 423-33 (2011)
- [158] G. Zhuang, C. Meng, X. Guo, P. S. Cheruku, L. Shi, H. Xu, H. Li, G. Wang, A. R. Evans, S. Safe, C. Wu and B. Zhou: A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation, 125(23), 2892-903 (2012)
- [159] A. Zampetaki, S. Kiechl, I. Drozdov, P. Willeit, U. Mayr, M. Prokopi, A. Mayr, S. Weger, F. Oberhollenzer, E. Bonora, A. Shah, J. Willeit and M. Mayr: Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res, 107(6), 810-7 (2010)
- [160] H. Peng, M. Zhong, W. Zhao, C. Wang, J. Zhang, X. Liu, Y. Li, S. D. Paudel, Q. Wang and T. Lou: Urinary miR-29 correlates with albuminuria and carotid intima-media thickness in type 2 diabetes patients. PLoS One, 8(12), e82607 (2013)
- [161] H. Y. Ling, G. B. Wen, S. D. Feng, Q. H. Tuo, H. S. Ou, C. H. Yao, B. Y. Zhu, Z. P. Gao, L. Zhang and D. F. Liao: MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol, 38(4), 239-46 (2011)
- [162] L. Kong, J. Zhu, W. Han, X. Jiang, M. Xu, Y. Zhao, Q. Dong, Z. Pang, Q. Guan, L. Gao, J. Zhao and L. Zhao: Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol, 48(1), 61-9 (2011)
- [163] C. Higuchi, A. Nakatsuka, J. Eguchi, S. Teshigawara, M. Kanzaki, A. Katayama, S. Yamaguchi, N. Takahashi, K. Murakami, D. Ogawa, S. Sasaki, H. Makino and J. Wada: Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism, 64(4), 489-97 (2015)
- [164] F. J. Ortega, J. M. Moreno-Navarrete, G. Pardo, M. Sabater, M. Hummel, A. Ferrer, J. I. Rodriguez-Hermosa, B. Ruiz, W. Ricart, B. Peral and J. M. Fernandez-Real: MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One, 5(2), e9022 (2010)
- [165] T. J. Schulz and Y. H. Tseng: Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 20(5-6), 523-31 (2009)
- [166] X. F. Man, S. W. Tan, H. N. Tang, Y. Guo, C. Y. Tang, J. Tang, C. L. Zhou and H. D. Zhou: MiR-503 inhibits adipogenesis by targeting bone morphogenetic protein receptor 1a. Am J Transl Res, 8(6), 2727-37 (2016)<
- [167] S. Bacon, B. Engelbrecht, J. Schmid, S. Pfeiffer, R. Gallagher, A. McCarthy, M. Burke, C. Concannon, J. H. Prehn and M. M. Byrne: MicroRNA-224 is Readily Detectable in Urine of Individuals with Diabetes Mellitus and is a Potential Indicator of Beta-Cell Demise. Genes (Basel), 6(2), 399-416 (2015)
- [168] A. F. Christopher, R. P. Kaur, G. Kaur, A. Kaur, V. Gupta and P. Bansal: MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res, 7(2), 68-74 (2016)
- [169] A. L. Jackson and A. A. Levin: Developing microRNA therapeutics: approaching the unique complexities. Nucleic Acid Ther, 22(4), 213-25 (2012)
- [170] E. van Rooij, A. L. Purcell and A. A. Levin: Developing microRNA therapeutics. Circ Res, 110(3), 496-507 (2012)
- [171] X. Li: MiR-375, a microRNA related to diabetes. Gene, 533(1), 1-4 (2014)
- [172] J. Elmen, M. Lindow, S. Schutz, M. Lawrence, A. Petri, S. Obad, M. Lindholm, M. Hedtjarn, H. F. Hansen, U. Berger, S. Gullans, P. Kearney, P. Sarnow, E. M. Straarup and S. Kauppinen: LNA-mediated microRNA silencing in non-human primates. Nature, 452(7189), 896-9 (2008)
- [173] M. B. Backe, G. W. Novotny, D. P. Christensen, L. G. Grunnet and T. Mandrup-Poulsen: Altering beta-cell number through stable alteration of miR-21 and miR-34a expression. Islets, 6(1), e27754 (2014)
- [174] J. Y. Lai, J. Luo, C. O'Connor, X. Jing, V. Nair, W. Ju, A. Randolph, I. Z. Ben-Dov, R. N. Matar, D. Briskin, J. Zavadil, R. G. Nelson, T. Tuschl, F. C. Brosius, 3rd, M. Kretzler and M. Bitzer: MicroRNA-21 in glomerular injury. J Am Soc Nephrol, 26(4), 805-16 (2015)
- [175] T. Seeger, A. Fischer, M. Muhly-Reinholz, A. M. Zeiher and S. Dimmeler: Long-term inhibition of miR-21 leads to reduction of obesity in db/db mice. Obesity (Silver Spring), 22(11), 2352-60 (2014)
- [176] L. Sun, H. Xie, M. A. Mori, R. Alexander, B. Yuan, S. M. Hattangadi, Q. Liu, C. R. Kahn and H. F. Lodish: Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol, 13(8), 958-65 (2011)
