Information
References
Contents
Download
[1]R. Nusse and H. E. Varmus: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31(1), 99-109 (1982)
[2]A. R. Moser, H. C. Pitot and W. F. Dove: A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science, 247(4940), 322-4 (1990)
[3]L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould and W. F. Dove: Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science, 256(5057), 668-70 (1992)
[4]C. Y. Janda, D. Waghray, A. M. Levin, C. Thomas and K. C. Garcia: Structural basis of Wnt recognition by Frizzled. Science, 337(6090), 59-64 (2012)
[5]R. Takada, Y. Satomi, T. Kurata, N. Ueno, S. Norioka, H. Kondoh, T. Takao and S. Takada: Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Developmental cell, 11(6), 791-801 (2006)
[6]R. van Amerongen: Alternative Wnt pathways and receptors. Cold Spring Harbor perspectives in biology, 4(10) (2012)
[7]A. J. Mikels and R. Nusse: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS biology, 4(4), e115 (2006)
[8]B. T. MacDonald and X. He: Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harbor perspectives in biology, 4(12) (2012)
[9]B. Del Valle-Perez, O. Arques, M. Vinyoles, A. G. de Herreros and M. Dunach: Coordinated action of CK1 isoforms in canonical Wnt signaling. Molecular and cellular biology, 31(14), 2877-88 (2011)
[10]H. Clevers and R. Nusse: Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-205 (2012)
[11]K. Tamai, X. Zeng, C. Liu, X. Zhang, Y. Harada, Z. Chang and X. He: A mechanism for Wnt coreceptor activation. Molecular cell, 13(1), 149-56 (2004)
[12]K. M. Cadigan and M. L. Waterman: TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harbor perspectives in biology, 4(11) (2012)
[13]S. Correa, R. Binato, B. Du Rocher, M. T. Castelo-Branco, L. Pizzatti and E. Abdelhay: Wnt/beta-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC cancer, 12, 303 (2012)
[14]E. H. Jho, T. Zhang, C. Domon, C. K. Joo, J. N. Freund and F. Costantini: Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and cellular biology, 22(4), 1172-83 (2002)
[15]G. S. Yochum, R. Cleland and R. H. Goodman: A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Molecular and cellular biology, 28(24), 7368-79 (2008)
[16]K. Schlessinger, A. Hall and N. Tolwinski: Wnt signaling pathways meet Rho GTPases. Genes & development, 23(3), 265-77 (2009)
[17]M. Saxena, S. S. Dykes, S. Malyarchuk, A. E. Wang, J. A. Cardelli and K. Pruitt: The sirtuins promote Dishevelled-1 scaffolding of TIAM1, Rac activation and cell migration. Oncogene, 34(2), 188-98 (2015)
[18]L. D’Amato, C. Dell’Aversana, M. Conte, A. Ciotta, L. Scisciola, A. Carissimo, A. Nebbioso and L. Altucci: ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias. Epigenetics, 10(1), 6-18 (2015)
[19]R. Habas, I. B. Dawid and X. He: Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes & development, 17(2), 295-309 (2003)
[20]Y. Zhu, Y. Tian, J. Du, Z. Hu, L. Yang, J. Liu and L. Gu: Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PloS one, 7(5), e37823 (2012)
[21]V. Sanz-Moreno, G. Gadea, J. Ahn, H. Paterson, P. Marra, S. Pinner, E. Sahai and C. J. Marshall: Rac activation and inactivation control plasticity of tumor cell movement. Cell, 135(3), 510-23 (2008)
[22]H. Gon, K. Fumoto, Y. Ku, S. Matsumoto and A. Kikuchi: Wnt5a signaling promotes apical and basolateral polarization of single epithelial cells. Molecular biology of the cell, 24(23), 3764-74 (2013)
[23]T. R. Stankiewicz, S. A. Ramaswami, R. J. Bouchard, K. Aktories and D. A. Linseman: Neuronal apoptosis induced by selective inhibition of Rac GTPase versus global suppression of Rho family GTPases is mediated by alterations in distinct mitogen-activated protein kinase signaling cascades. The Journal of biological chemistry, 290(15), 9363-76 (2015)
[24]Z. Zhang, X. Liang, L. Gao, H. Ma, X. Liu, Y. Pan, W. Yan, H. Shan, Z. Wang, Y. H. Chen and C. Ma: TIPE1 induces apoptosis by negatively regulating Rac1 activation in hepatocellular carcinoma cells. Oncogene, 34(20), 2566-74 (2015)
[25]A. Archibald, C. Mihai, I. G. Macara and L. McCaffrey: Oncogenic suppression of apoptosis uncovers a Rac1/JNK proliferation pathway activated by loss of Par3. Oncogene, 34(24), 3199-206 (2015)
[26]P. G. Hogan, L. Chen, J. Nardone and A. Rao: Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & development, 17(18), 2205-32 (2003)
[27]M. Kuhl, L. C. Sheldahl, C. C. Malbon and R. T. Moon: Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. The Journal of biological chemistry, 275(17), 12701-11 (2000)
[28]E. J. Ann, H. Y. Kim, M. S. Seo, J. S. Mo, M. Y. Kim, J. H. Yoon, J. S. Ahn and H. S. Park: Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein. The Journal of biological chemistry, 287(44), 36814-29 (2012)
[29]L. Ciani, K. A. Boyle, E. Dickins, M. Sahores, D. Anane, D. M. Lopes, A. J. Gibb and P. C. Salinas: Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca(2)(+)/Calmodulin-dependent protein kinase II. Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10732-7 (2011)
[30]C. A. Ohmstede, K. F. Jensen and N. E. Sahyoun: Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. The Journal of biological chemistry, 264(10), 5866-75(1989)
[31]R. Sugimura, X. C. He, A. Venkatraman, F. Arai, A. Box, C. Semerad, J. S. Haug, L. Peng, X. B. Zhong, T. Suda and L. Li: Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell, 150(2), 351-65 (2012)
[32]T. Ishitani, S. Kishida, J. Hyodo-Miura, N. Ueno, J. Yasuda, M. Waterman, H. Shibuya, R. T. Moon, J. Ninomiya-Tsuji and K. Matsumoto: The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Molecular and cellular biology, 23(1), 131-9 (2003)
[33]T. Ishitani, J. Ninomiya-Tsuji, S. Nagai, M. Nishita, M. Meneghini, N. Barker, M. Waterman, B. Bowerman, H. Clevers, H. Shibuya and K. Matsumoto: The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 399(6738), 798-802 (1999)
[34]T. Kurahashi, T. Nomura, C. Kanei-Ishii, Y. Shinkai and S. Ishii: The Wnt-NLK signaling pathway inhibits A-Myb activity by inhibiting the association with coactivator CBP and methylating histone H3. Molecular biology of the cell, 16(10), 4705-13 (2005)
[35]A. D. Kohn and R. T. Moon: Wnt and calcium signaling: beta-catenin-independent pathways. Cell calcium, 38(3-4), 439-46 (2005)
[36]M. Simonetti, N. Agarwal, S. Stosser, K. K. Bali, E. Karaulanov, R. Kamble, B. Pospisilova, M. Kurejova, W. Birchmeier, C. Niehrs, P. Heppenstall and R. Kuner: Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron, 83(1), 104-21 (2014)
[37]N. A. Clipstone and G. R. Crabtree: Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature, 357(6380), 695-7 (1992)
[38]J. Jain, P. G. McCaffrey, Z. Miner, T. K. Kerppola, J. N. Lambert, G. L. Verdine, T. Curran and A. Rao: The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature, 365(6444), 352-5 (1993)
[39]C. B. Klee, H. Ren and X. Wang: Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. The Journal of biological chemistry, 273(22), 13367-70 (1998)
[40]T. Saneyoshi, S. Kume, Y. Amasaki and K. Mikoshiba: The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature, 417(6886), 295-9 (2002)
[41]H. Griesmann, S. Ripka, M. Pralle, V. Ellenrieder, S. Baumgart, M. Buchholz, C. Pilarsky, D. Aust, T. M. Gress and P. Michl: WNT5A-NFAT signaling mediates resistance to apoptosis in pancreatic cancer. Neoplasia, 15(1), 11-22 (2013)
[42]J. A. Stefater, 3rd, S. Rao, K. Bezold, A. C. Aplin, R. F. Nicosia, J. W. Pollard, N. Ferrara and R. A. Lang: Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood, 121(13), 2574-8 (2013)
[43]S. F. Burn, A. Webb, R. L. Berry, J. A. Davies, A. Ferrer-Vaquer, A. K. Hadjantonakis, N. D. Hastie and P. Hohenstein: Calcium/NFAT signalling promotes early nephrogenesis. Developmental biology, 352(2), 288-98 (2011)
[44]D. Demozay, S. Tsunekawa, I. Briaud, R. Shah and C. J. Rhodes: Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet beta-cells. Diabetes, 60(11), 2892-902 (2011)
[45]T. Hisamitsu, T. Y. Nakamura and S. Wakabayashi: Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy. Molecular and cellular biology, 32(16), 3265-80 (2012)
[46]Z. Chen, J. Li, Q. S. Li, J. Q. Fan, X. M. Dong, J. P. Xu, X. M. Wang, G. W. Yang, P. Yan, G. Z. Wen, Y. T. Zhang, R. G. Niu, P. H. Nan, J. He and H. M. Zhou: Suppression of PPN/MG61 attenuates Wnt/beta-catenin signaling pathway and induces apoptosis in human lung cancer. Oncogene, 27(24), 3483-8 (2008)
[47]M. E. Dodge, J. Moon, R. Tuladhar, J. Lu, L. S. Jacob, L. S. Zhang, H. Shi, X. Wang, E. Moro, A. Mongera, F. Argenton, C. M. Karner, T. J. Carroll, C. Chen, J. F. Amatruda and L. Lum: Diverse chemical scaffolds support direct inhibition of the membrane-bound O-acyltransferase porcupine. The Journal of biological chemistry, 287(27), 23246-54 (2012)
[48]K. D. Proffitt, B. Madan, Z. Ke, V. Pendharkar, L. Ding, M. A. Lee, R. N. Hannoush and D. M. Virshup: Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer research, 73(2), 502-7 (2013)
[49]X. Jiang, H. X. Hao, J. D. Growney, S. Woolfenden, C. Bottiglio, N. Ng, B. Lu, M. H. Hsieh, L. Bagdasarian, R. Meyer, T. R. Smith, M. Avello, O. Charlat, Y. Xie, J. A. Porter, S. Pan, J. Liu, M. E. McLaughlin and F. Cong: Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12649-54 (2013)
[50]J. Liu, S. Pan, M. H. Hsieh, N. Ng, F. Sun, T. Wang, S. Kasibhatla, A. G. Schuller, A. G. Li, D. Cheng, J. Li, C. Tompkins, A. Pferdekamper, A. Steffy, J. Cheng, C. Kowal, V. Phung, G. Guo, Y. Wang, M. P. Graham, S. Flynn, J. C. Brenner, C. Li, M. C. Villarroel, P. G. Schultz, X. Wu, P. McNamara, W. R. Sellers, L. Petruzzelli, A. L. Boral, H. M. Seidel, M. E. McLaughlin, J. Che, T. E. Carey, G. Vanasse and J. L. Harris: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20224-9 (2013)
[51]B. K. Koo, J. H. van Es, M. van den Born and H. Clevers: Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7548-50 (2015)
[52]M. Genander, P. J. Cook, D. Ramskold, B. E. Keyes, A. F. Mertz, R. Sandberg and E. Fuchs: BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell stem cell, 15(5), 619-33 (2014)
[53]N. Bengoa-Vergniory, I. Gorrono-Etxebarria, I. Gonzalez-Salazar and R. M. Kypta: A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Stem cells, 32(12), 3196-208 (2014)
[54]H. Xu, K. S. Tsang, Y. Wang, J. C. Chan, G. Xu and W. Q. Gao: Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and beta-catenin signaling. The Journal of biological chemistry, 289(38), 26290-301 (2014)
[55]M. D. Arensman, A. N. Kovochich, R. M. Kulikauskas, A. R. Lay, P. T. Yang, X. Li, T. Donahue, M. B. Major, R. T. Moon, A. J. Chien and D. W. Dawson: WNT7B mediates autocrine Wnt/beta-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene, 33(7), 899-908 (2014)
[56]H. Yamamoto, H. Komekado and A. Kikuchi: Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Developmental cell, 11(2), 213-23 (2006)
[57]G. H. Kim, J. H. Her and J. K. Han: Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. The Journal of cell biology, 182(6), 1073-82 (2008)
[58]F. Port, M. Kuster, P. Herr, E. Furger, C. Banziger, G. Hausmann and K. Basler: Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nature cell biology, 10(2), 178-85 (2008)
[59]C. C. Liu, T. Kanekiyo, B. Roth and G. Bu: Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/beta-catenin pathway signaling. The Journal of biological chemistry, 289(40), 27562-70 (2014)
[60]J. T. Blitzer and R. Nusse: A critical role for endocytosis in Wnt signaling. BMC cell biology, 7, 28 (2006)
[61]I. Kim, W. Pan, S. A. Jones, Y. Zhang, X. Zhuang and D. Wu: Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. The Journal of cell biology, 200(4), 419-28 (2013)
[62]M. Chen, J. Wang, J. Lu, M. C. Bond, X. R. Ren, H. K. Lyerly, L. S. Barak and W. Chen: The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry, 48(43), 10267-74 (2009)
[63]T. Osada, M. Chen, X. Y. Yang, I. Spasojevic, J. B. Vandeusen, D. Hsu, B. M. Clary, T. M. Clay, W. Chen, M. A. Morse and H. K. Lyerly: Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer research, 71(12), 4172-82 (2011)
[64]M. L. King, M. E. Lindberg, G. R. Stodden, H. Okuda, S. D. Ebers, A. Johnson, A. Montag, E. Lengyel, J. A. MacLean Ii and K. Hayashi: WNT7A/beta-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer. Oncogene, 34(26), 3452-62 (2015)
[65]R. A. Mook, Jr., J. Wang, X. R. Ren, M. Chen, I. Spasojevic, L. S. Barak, H. K. Lyerly and W. Chen: Structure-activity studies of Wnt/beta-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure. Bioorganic & medicinal chemistry, 23(17), 5829-38 (2015)
[66]T. Haikarainen, S. Krauss and L. Lehtio: Tankyrases: structure, function and therapeutic implications in cancer. Current pharmaceutical design, 20(41), 6472-88 (2014)
[67]J. L. Riffell, C. J. Lord and A. Ashworth: Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nature reviews. Drug discovery, 11(12), 923-36 (2012)
[68]Y. Zhang, S. Liu, C. Mickanin, Y. Feng, O. Charlat, G. A. Michaud, M. Schirle, X. Shi, M. Hild, A. Bauer, V. E. Myer, P. M. Finan, J. A. Porter, S. M. Huang and F. Cong: RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nature cell biology, 13(5), 623-9 (2011)
[69]S. M. Huang, Y. M. Mishina, S. Liu, A. Cheung, F. Stegmeier, G. A. Michaud, O. Charlat, E. Wiellette, Y. Zhang, S. Wiessner, M. Hild, X. Shi, C. J. Wilson, C. Mickanin, V. Myer, A. Fazal, R. Tomlinson, F. Serluca, W. Shao, H. Cheng, M. Shultz, C. Rau, M. Schirle, J. Schlegl, S. Ghidelli, S. Fawell, C. Lu, D. Curtis, M. W. Kirschner, C. Lengauer, P. M. Finan, J. A. Tallarico, T. Bouwmeester, J. A. Porter, A. Bauer and F. Cong: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 461(7264), 614-20 (2009)
[70]J. Lu, Z. Ma, J. C. Hsieh, C. W. Fan, B. Chen, J. C. Longgood, N. S. Williams, J. F. Amatruda, L. Lum and C. Chen: Structure-activity relationship studies of small-molecule inhibitors of Wnt response. Bioorganic & medicinal chemistry letters, 19(14), 3825-7 (2009)
[71]M. Narwal, H. Venkannagari and L. Lehtio: Structural basis of selective inhibition of human tankyrases. Journal of medicinal chemistry, 55(3), 1360-7 (2012)
[72]M. Ghaedi, E. A. Calle, J. J. Mendez, A. L. Gard, J. Balestrini, A. Booth, P. F. Bove, L. Gui, E. S. White and L. E. Niklason: Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. The Journal of clinical investigation, 123(11), 4950-62 (2013)
[73]J. Tchao, L. Han, B. Lin, L. Yang and K. Tobita: Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Scientific reports, 4, 6614 (2014)
[74]C. A. Thorne, A. J. Hanson, J. Schneider, E. Tahinci, D. Orton, C. S. Cselenyi, K. K. Jernigan, K. C. Meyers, B. I. Hang, A. G. Waterson, K. Kim, B. Melancon, V. P. Ghidu, G. A. Sulikowski, B. LaFleur, A. Salic, L. A. Lee, D. M. Miller, 3rd and E. Lee: Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature chemical biology, 6(11), 829-36 (2010)
[75]S. K. Singh, C. Venugopal, R. Hallett, P. Vora, B. Manoranjan, S. Mahendram, M. Qazi, N. McFarlane, M. Subapanditha, S. Nolte, M. Singh, D. Bakhshinyan, N. Garg, T. Vijayakumar, B. Lach, J. P. Provias, K. Reddy, N. Murty, B. Doble, M. Bhatia and J. A. Hassell: Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells. Clinical cancer research: an official journal of the American Association for Cancer Research (2015)
[76]W. Xu, L. Lacerda, B. G. Debeb, R. L. Atkinson, T. N. Solley, L. Li, D. Orton, J. S. McMurray, B. I. Hang, E. Lee, A. H. Klopp, N. T. Ueno, J. M. Reuben, S. Krishnamurthy and W. A. Woodward: The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer. PloS one, 8(8), e71508 (2013)
[77]H. Li, F. Ban, K. Dalal, E. Leblanc, K. Frewin, D. Ma, H. Adomat, P. S. Rennie and A. Cherkasov: Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. Journal of medicinal chemistry, 57(15), 6458-67 (2014)
[78]J. O. Jones, E. C. Bolton, Y. Huang, C. Feau, R. K. Guy, K. R. Yamamoto, B. Hann and M. I. Diamond: Non-competitive androgen receptor inhibition in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7233-8 (2009)
[79]M. Lim, M. Otto-Duessel, M. He, L. Su, D. Nguyen, E. Chin, T. Alliston and J. O. Jones: Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium. ACS chemical biology, 9(3), 692-702 (2014)
[80]C. M. Cruciat: Casein kinase 1 and Wnt/beta-catenin signaling. Current opinion in cell biology, 31, 46-55 (2014)
[81]K. H. Emami, C. Nguyen, H. Ma, D. H. Kim, K. W. Jeong, M. Eguchi, R. T. Moon, J. L. Teo, H. Y. Kim, S. H. Moon, J. R. Ha and M. Kahn: A small molecule inhibitor of beta-catenin/CREB-binding protein transcription (corrected). Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12682-7 (2004)
[82]B. Zhou, Y. Liu, M. Kahn, D. K. Ann, A. Han, H. Wang, C. Nguyen, P. Flodby, Q. Zhong, M. S. Krishnaveni, J. M. Liebler, P. Minoo, E. D. Crandall and Z. Borok: Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). The Journal of biological chemistry, 287(10), 7026-38 (2012)
[83]E. J. Gang, Y. T. Hsieh, J. Pham, Y. Zhao, C. Nguyen, S. Huantes, E. Park, K. Naing, L. Klemm, S. Swaminathan, E. M. Conway, L. M. Pelus, J. Crispino, C. G. Mullighan, M. McMillan, M. Muschen, M. Kahn and Y. M. Kim: Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene, 33(17), 2169-78 (2014)
[84]L. Boulter, R. V. Guest, T. J. Kendall, D. H. Wilson, D. Wojtacha, A. J. Robson, R. A. Ridgway, K. Samuel, N. Van Rooijen, S. T. Barry, S. J. Wigmore, O. J. Sansom and S. J. Forbes: WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. The Journal of clinical investigation, 125(3), 1269-85 (2015)
[85]A. Hammitzsch, C. Tallant, O. Fedorov, A. O’Mahony, P. E. Brennan, D. A. Hay, F. O. Martinez, M. H. Al-Mossawi, J. de Wit, M. Vecellio, C. Wells, P. Wordsworth, S. Muller, S. Knapp and P. Bowness: CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10768-73 (2015)
[86]S. Picaud, O. Fedorov, A. Thanasopoulou, K. Leonards, K. Jones, J. Meier, H. Olzscha, O. Monteiro, S. Martin, M. Philpott, A. Tumber, P. Filippakopoulos, C. Yapp, C. Wells, K. Hing Che, A. Bannister, S. Robson, U. Kumar, N. Parr, K. Lee, D. Lugo, P. Jeffrey, S. Taylor, M. L. Vecellio, C. Bountra, P. Brennan, A. O’Mahony, S. Velichko, S. Muller, D. Hay, D. L. Daniels, M. Urh, N. B. La Thangue, T. Kouzarides, R. Prinjha, J. Schwaller and S. Knapp: Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for leukemia therapy. Cancer research (2015)
[87]Y. Higuchi, C. Nguyen, S. Y. Yasuda, M. McMillan, K. Hasegawa and M. Kahn: Specific Direct Small Molecule p300/beta-Catenin Antagonists Maintain Stem Cell Potency. Current molecular pharmacology (2015)
[88]G. Giotopoulos, W. I. Chan, S. J. Horton, D. Ruau, P. Gallipoli, A. Fowler, C. Crawley, E. Papaemmanuil, P. J. Campbell, B. Gottgens, J. M. Van Deursen, P. A. Cole and B. J. Huntly: The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene (2015)
[89]A. V. Smrcka: G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cellular and molecular life sciences: CMLS, 65(14), 2191-214 (2008)
[90]C. Locht, L. Coutte and N. Mielcarek: The ins and outs of pertussis toxin. The FEBS journal, 278(23), 4668-82 (2011)
[91]P. Sebo, R. Osicka and J. Masin: Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert review of vaccines, 13(10), 1215-27 (2014)
[92]D. C. Slusarski, V. G. Corces and R. T. Moon: Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658), 410-3 (1997)
[93]Y. S. Jung, H. Y. Lee, S. D. Kim, J. S. Park, J. K. Kim, P. G. Suh and Y. S. Bae: Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils. Experimental & molecular medicine, 45, e27 (2013)
[94]A. Schmidt, L. Hennighausen and U. Siebenlist: Inducible nuclear factor binding to the kappa B elements of the human immunodeficiency virus enhancer in T cells can be blocked by cyclosporin A in a signal-dependent manner. Journal of virology, 64(8), 4037-41(1990)
[95]E. V. Schaible, J. Windschugl, W. Bobkiewicz, Y. Kaburov, L. Dangel, T. Kramer, C. Huang, A. Sebastiani, C. Luh, C. Werner, K. Engelhard, S. C. Thal and M. K. Schafer: 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1alpha response after traumatic brain injury in mice. Journal of neurochemistry, 129(6), 940-54 (2014)
[96]S. H. Choi, Z. Y. Hong, J. K. Nam, H. J. Lee, J. Jang, R. J. Yoo, Y. J. Lee, C. Y. Lee, K. H. Kim, S. Park, Y. H. Ji, Y. S. Lee and J. Cho: A Hypoxia-Induced Vascular Endothelial-to-Mesenchymal Transition in Development of Radiation-Induced Pulmonary Fibrosis. Clinical cancer research: an official journal of the American Association for Cancer Research (2015)
[97]F. Wimbauer, C. Yang, K. L. Shogren, M. Zhang, R. Goyal, S. M. Riester, M. J. Yaszemski and A. Maran: Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells. BMC cancer, 12, 93 (2012)
[98]A. Maran, M. Zhang, A. M. Kennedy, J. D. Sibonga, D. J. Rickard, T. C. Spelsberg and R. T. Turner: 2-methoxyestradiol induces interferon gene expression and apoptosis in osteosarcoma cells. Bone, 30(2), 393-8 (2002)
[99]I. S. Song, Y. J. Jeong, S. H. Jeong, H. J. Heo, H. K. Kim, S. R. Lee, T. H. Ko, J. B. Youm, N. Kim, K. S. Ko, B. D. Rhee and J. Han: Combination treatment with 2-methoxyestradiol overcomes bortezomib resistance of multiple myeloma cells. Experimental & molecular medicine, 45, e50 (2013)
[100]L. Zhou, J. Hou, W. Fu, D. Wang, Z. Yuan and H. Jiang: Arsenic trioxide and 2-methoxyestradiol reduce beta-catenin accumulation after proteasome inhibition and enhance the sensitivity of myeloma cells to Bortezomib. Leukemia research, 32(11), 1674-83 (2008)
[101]S. Reumann, K. L. Shogren, M. J. Yaszemski and A. Maran: Inhibition of Autophagy Increases 2-Methoxyestradiol-Induced Cytotoxicity in SW1353 Chondrosarcoma Cells. Journal of cellular biochemistry (2015)
[102]S. Sarkar, D. L. Brautigan, S. J. Parsons and J. M. Larner: Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene, 33(1), 26-33 (2014)
[103]R. S. Tarapore, I. A. Siddiqui and H. Mukhtar: Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis, 33(3), 483-91 (2012)
[104]S. Park and J. Choi: Inhibition of beta-catenin/Tcf signaling by flavonoids. Journal of cellular biochemistry, 110(6), 1376-85 (2010)
[105]N. G. Amado, B. F. Fonseca, D. M. Cerqueira, A. H. Reis, A. B. Simas, R. M. Kuster, F. A. Mendes and J. G. Abreu: Effects of natural compounds on Xenopus embryogenesis: a potential read out for functional drug discovery targeting Wnt/beta-catenin signaling. Current topics in medicinal chemistry, 12(19), 2103-13 (2012)
[106]B. E. Shan, M. X. Wang and R. Q. Li: Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer investigation, 27(6), 604-12 (2009)
[107]N. G. Amado, D. Predes, B. F. Fonseca, D. M. Cerqueira, A. H. Reis, A. C. Dudenhoeffer, H. L. Borges, F. A. Mendes and J. G. Abreu: Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/beta-catenin signaling pathway. The Journal of biological chemistry, 289(51), 35456-67 (2014)
[108]M. Mojsin, J. M. Vicentic, M. Schwirtlich, V. Topalovic and M. Stevanovic: Quercetin reduces pluripotency, migration and adhesion of human teratocarcinoma cell line NT2/D1 by inhibiting Wnt/beta-catenin signaling. Food & function, 5(10), 2564-73 (2014)
[109]H. Kim, E. M. Seo, A. R. Sharma, B. Ganbold, J. Park, G. Sharma, Y. H. Kang, D. K. Song, S. S. Lee and J. S. Nam: Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. International journal of oncology, 43(4), 1319-25 (2013)
[110]M. C. Novo, L. Osugui, V. O. dos Reis, I. M. Longo-Maugeri, M. Mariano and A. F. Popi: Blockage of Wnt/beta-catenin signaling by quercetin reduces survival and proliferation of B-1 cells in vitro. Immunobiology, 220(1), 60-7 (2015)
[111]A. Wada: GSK-3 inhibitors and insulin receptor signaling in health, disease, and therapeutics. Frontiers in bioscience, 14, 1558-70 (2009)
[112]R. V. Bhat, S. L. Budd Haeberlein and J. Avila: Glycogen synthase kinase 3: a drug target for CNS therapies. Journal of neurochemistry, 89(6), 1313-7 (2004)
[113]H. Cheng, J. Woodgett, M. Maamari and T. Force: Targeting GSK-3 family members in the heart: a very sharp double-edged sword. Journal of molecular and cellular cardiology, 51(4), 607-13 (2011)
[114]J. A. McCubrey, L. S. Steelman, F. E. Bertrand, N. M. Davis, S. L. Abrams, G. Montalto, A. B. D’Assoro, M. Libra, F. Nicoletti, R. Maestro, J. Basecke, L. Cocco, M. Cervello and A. M. Martelli: Multifaceted roles of GSK-3 and Wnt/beta-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia, 28(1), 15-33 (2014)
[115]T. A. Engler, J. R. Henry, S. Malhotra, B. Cunningham, K. Furness, J. Brozinick, T. P. Burkholder, M. P. Clay, J. Clayton, C. Diefenbacher, E. Hawkins, P. W. Iversen, Y. Li, T. D. Lindstrom, A. L. Marquart, J. McLean, D. Mendel, E. Misener, D. Briere, J. C. O’Toole, W. J. Porter, S. Queener, J. K. Reel, R. A. Owens, R. A. Brier, T. E. Eessalu, J. R. Wagner, R. M. Campbell and R. Vaughn: Substituted 3-imidazo(1,2-a)pyridin-3-yl-4-(1,2,3,4-tetrahydro-(1,4)diazepino-(6,7,1-hi)indol-7-yl)pyrrole-2,5-diones as highly selective and potent inhibitors of glycogen synthase kinase-3. Journal of medicinal chemistry, 47(16), 3934-7 (2004)
[116]M. P. Coghlan, A. A. Culbert, D. A. Cross, S. L. Corcoran, J. W. Yates, N. J. Pearce, O. L. Rausch, G. J. Murphy, P. S. Carter, L. Roxbee Cox, D. Mills, M. J. Brown, D. Haigh, R. W. Ward, D. G. Smith, K. J. Murray, A. D. Reith and J. C. Holder: Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chemistry & biology, 7(10), 793-803 (2000)
[117]L. Meijer, A. L. Skaltsounis, P. Magiatis, P. Polychronopoulos, M. Knockaert, M. Leost, X. P. Ryan, C. A. Vonica, A. Brivanlou, R. Dajani, C. Crovace, C. Tarricone, A. Musacchio, S. M. Roe, L. Pearl and P. Greengard: GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chemistry & biology, 10(12), 1255-66 (2003)
[118]S. C. Lee, H. T. Kim, C. H. Park, Y. Lee do, H. J. Chang, S. Park, J. M. Cho, S. Ro and Y. G. Suh: Design, synthesis and biological evaluation of novel imidazopyridines as potential antidiabetic GSK3beta inhibitors. Bioorganic & medicinal chemistry letters, 22(13), 4221-4 (2012)
[119]S. C. Lee, D. Shin, J. M. Cho, S. Ro and Y. G. Suh: Structure-activity relationship of the 7-hydroxy benzimidazole analogs as glycogen synthase kinase 3beta inhibitor. Bioorganic & medicinal chemistry letters, 22(5), 1891-4 (2012)
[120]R. Luna-Medina, M. Cortes-Canteli, S. Sanchez-Galiano, J. A. Morales-Garcia, A. Martinez, A. Santos and A. Perez-Castillo: NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(21), 5766-76 (2007)
[121]J. M. Atkinson, K. B. Rank, Y. Zeng, A. Capen, V. Yadav, J. R. Manro, T. A. Engler and M. Chedid: Activating the Wnt/beta-Catenin Pathway for the Treatment of Melanoma--Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3. PloS one, 10(4), e0125028 (2015)
[122]N. Sato, L. Meijer, L. Skaltsounis, P. Greengard and A. H. Brivanlou: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature medicine, 10(1), 55-63 (2004)
[123]K. Azim, A. Rivera, O. Raineteau and A. M. Butt: GSK3beta regulates oligodendrogenesis in the dorsal microdomain of the subventricular zone via Wnt-beta-catenin signaling. Glia, 62(5), 778-9 (2014)
[124]T. del Ser, K. C. Steinwachs, H. J. Gertz, M. V. Andres, B. Gomez-Carrillo, M. Medina, J. A. Vericat, P. Redondo, D. Fleet and T. Leon: Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. Journal of Alzheimer’s disease: JAD, 33(1), 205-15 (2013)
[125]S. Lovestone, M. Boada, B. Dubois, M. Hull, J. O. Rinne, H. J. Huppertz, M. Calero, M. V. Andres, B. Gomez-Carrillo, T. Leon and T. del Ser: A phase II trial of tideglusib in Alzheimer’s disease. Journal of Alzheimer’s disease: JAD, 45(1), 75-88 (2015)
[126]W. Poewe, P. Mahlknecht and F. Krismer: Therapeutic advances in multiple system atrophy and progressive supranuclear palsy. Movement disorders: official journal of the Movement Disorder Society, 30(11), 1528-38(2015)
[127]O. Marin, V. H. Bustos, L. Cesaro, F. Meggio, M. A. Pagano, M. Antonelli, C. C. Allende, L. A. Pinna and J. E. Allende: A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10193-200(2003)
[128]N. C. Ha, T. Tonozuka, J. L. Stamos, H. J. Choi and W. I. Weis: Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Molecular cell, 15(4), 511-21(2004)
[129]C. Niehrs and J. Shen: Regulation of Lrp6 phosphorylation. Cellular and molecular life sciences: CMLS, 67(15), 2551-62(2010)
[130]O. Bernatik, R. S. Ganji, J. P. Dijksterhuis, P. Konik, I. Cervenka, T. Polonio, P. Krejci, G. Schulte and V. Bryja: Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. The Journal of biological chemistry, 286(12), 10396-410(2011)
[131]B. S. Winkler, F. Oltmer, J. Richter, J. Bischof, P. Xu, T. Burster, F. Leithauser and U. Knippschild: CK1delta in lymphoma: gene expression and mutation analyses and validation of CK1delta kinase activity for therapeutic application. Frontiers in cell and developmental biology, 3, 9(2015)
[132]J. Richter, J. Bischof, M. Zaja, H. Kohlhof, O. Othersen, D. Vitt, V. Alscher, I. Pospiech, B. Garcia-Reyes, S. Berg, J. Leban and U. Knippschild: Difluoro-dioxolo-benzoimidazol-benzamides as potent inhibitors of CK1delta and epsilon with nanomolar inhibitory activity on cancer cell proliferation. Journal of medicinal chemistry, 57(19), 7933-46(2014)
[133]S. Chakraborti, G. Dhar, V. Dwivedi, A. Das, A. Poddar, G. Chakraborti, G. Basu, P. Chakrabarti, A. Surolia and B. Bhattacharyya: Stable and potent analogues derived from the modification of the dicarbonyl moiety of curcumin. Biochemistry, 52(42), 7449-60(2013)
[134]P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal: Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4(6), 807-18(2007)
[135]S. K. Tiwari, S. Agarwal, B. Seth, A. Yadav, S. Nair, P. Bhatnagar, M. Karmakar, M. Kumari, L. K. Chauhan, D. K. Patel, V. Srivastava, D. Singh, S. K. Gupta, A. Tripathi, R. K. Chaturvedi and K. C. Gupta: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS nano, 8(1), 76-103(2014)
[136]J. Singh, R. K. Dubey and C. K. Atal: Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: evidence that piperine lowers the endogeneous UDP-glucuronic acid content. The Journal of pharmacology and experimental therapeutics, 236(2), 488-93(1986)
[137]S. Singh, S. Jamwal and P. Kumar: Piperine Enhances the Protective Effect of Curcumin Against 3-NP Induced Neurotoxicity: Possible Neurotransmitters Modulation Mechanism. Neurochemical research, 40(8), 1758-66(2015)
[138]G. Tripodo, G. Pasut, A. Trapani, A. Mero, F. M. Lasorsa, T. Chlapanidas, G. Trapani and D. Mandracchia: Inulin-D-alpha-tocopherol succinate (INVITE) nanomicelles as a platform for effective intravenous administration of curcumin. Biomacromolecules, 16(2), 550-7(2015)
[139]F. Hao, J. Kang, Y. Cao, S. Fan, H. Yang, Y. An, Y. Pan, L. Tie and X. Li: Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic beta-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis: an international journal on programmed cell death (2015)
[140]A. Jacob, L. Chaves, M. T. Eadon, A. Chang, R. J. Quigg and J. J. Alexander: Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology, 139(3), 328-37(2013)
[141]X. Zhang, Y. Tian, C. Zhang, X. Tian, A. W. Ross, R. D. Moir, H. Sun, R. E. Tanzi, A. Moore and C. Ran: Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 112(31), 9734-9(2015)
[142]L. Cui, X. Jia, Q. Zhou, X. Zhai, Y. Zhou and H. Zhu: Curcumin affects beta-catenin pathway in hepatic stellate cell in vitro and in vivo. The Journal of pharmacy and pharmacology, 66(11), 1615-22(2014)
[143]S. K. Tiwari, S. Agarwal, A. Tripathi and R. K. Chaturvedi: Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway. Molecular neurobiology (2015)
[144]A. S. Jaiswal, B. P. Marlow, N. Gupta and S. Narayan: Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene, 21(55), 8414-27(2002)
[145]S. Bose, A. K. Panda, S. Mukherjee and G. Sa: Curcumin and tumor immune-editing: resurrecting the immune system. Cell division, 10, 6(2015)
[146]S. C. Gupta, S. Patchva and B. B. Aggarwal: Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195-218(2013)
[147]P. S. Klein and D. A. Melton: A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8455-9(1996)
[148]B. T. Livingston and F. H. Wilt: Range and stability of cell fate determination in isolated sea urchin blastomeres. Development, 108(3), 403-10(1990)
[149]A. Fainsod, H. Steinbeisser and E. M. De Robertis: On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. The EMBO journal, 13(21), 5015-25(1994)
[150]C. A. Larabell, M. Torres, B. A. Rowning, C. Yost, J. R. Miller, M. Wu, D. Kimelman and R. T. Moon: Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. The Journal of cell biology, 136(5), 1123-36(1997)
[151]J. K. Rybakowski: Factors associated with lithium efficacy in bipolar disorder. Harvard review of psychiatry, 22(6), 353-7(2014)
[152]M. Zhang, Y. Yan, Y. B. Lim, D. Tang, R. Xie, A. Chen, P. Tai, S. E. Harris, L. Xing, Y. X. Qin and D. Chen: BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. Journal of cellular biochemistry, 108(4), 896-905(2009)
[153]N. Tang, W. X. Song, J. Luo, X. Luo, J. Chen, K. A. Sharff, Y. Bi, B. C. He, J. Y. Huang, G. H. Zhu, Y. X. Su, W. Jiang, M. Tang, Y. He, Y. Wang, L. Chen, G. W. Zuo, J. Shen, X. Pan, R. R. Reid, H. H. Luu, R. C. Haydon and T. C. He: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. Journal of cellular and molecular medicine, 13(8B), 2448-64(2009)
[154]E. Nemoto, Y. Ebe, S. Kanaya, M. Tsuchiya, T. Nakamura, M. Tamura and H. Shimauchi: Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. Biochemical and biophysical research communications, 422(4), 627-32(2012)
[155]N. Kamiya, L. Ye, T. Kobayashi, Y. Mochida, M. Yamauchi, H. M. Kronenberg, J. Q. Feng and Y. Mishina: BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development, 135(22), 3801-11(2008)
[156]G. Han, A. G. Li, Y. Y. Liang, P. Owens, W. He, S. Lu, Y. Yoshimatsu, D. Wang, P. Ten Dijke, X. Lin and X. J. Wang: Smad7-induced beta-catenin degradation alters epidermal appendage development. Developmental cell, 11(3), 301-12(2006)
[157]W. Liu, H. Rui, J. Wang, S. Lin, Y. He, M. Chen, Q. Li, Z. Ye, S. Zhang, S. C. Chan, Y. G. Chen, J. Han and S. C. Lin: Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. The EMBO journal, 25(8), 1646-58(2006)
[158]M. Furuhashi, K. Yagi, H. Yamamoto, Y. Furukawa, S. Shimada, Y. Nakamura, A. Kikuchi, K. Miyazono and M. Kato: Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Molecular and cellular biology, 21(15), 5132-41(2001)
[159]M. S. Rahman, N. Akhtar, H. M. Jamil, R. S. Banik and S. M. Asaduzzaman: TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone research, 3, 15005(2015)
[160]B. Piersma, R. A. Bank and M. Boersema: Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Frontiers in medicine, 2, 59 (2015)
[161]R. Alvarez-Medina, G. Le Dreau, M. Ros and E. Marti: Hedgehog activation is required upstream of Wnt signalling to control neural progenitor proliferation. Development, 136(19), 3301-9 (2009)
[162]G. Rawadi, B. Vayssiere, F. Dunn, R. Baron and S. Roman-Roman: BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 18(10), 1842-53 (2003)
[163]D. M. Gonzalez and D. Medici: Signaling mechanisms of the epithelial-mesenchymal transition. Science signaling, 7(344), re8 (2014)
[164]J. Taipale and P. A. Beachy: The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835), 349-54 (2001)
[165]E. Zoni, G. van der Pluijm, P. C. Gray and M. Kruithof-de Julio: Epithelial Plasticity in Cancer: Unmasking a MicroRNA Network for TGF-beta-, Notch-, and Wnt-Mediated EMT. Journal of oncology, 2015, 198967 (2015)
[166]L. Lum and H. Clevers: Cell biology. The unusual case of Porcupine. Science, 337(6097), 922-3 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Molecular strategies for modulating wnt signaling
1 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55902, USA
2 Department of Orthopaedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55902, USA
3 Department of Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55902, USA
Abstract
The importance of the Wnt signaling cascade in the fields of developmental biology, regenerative medicine, cancer genetics, and neurobiology has fueled a wide search for potent pharmacological agents capable of controlling Wnt signaling. Numerous fields of study have lent assistance to this endeavor, yielding both natural and synthetic compounds that are capable of inducing or inhibiting Wnt at multiple stages within the pathway. Further, there is a large of body research which has investigated endogenous Wnt inducers and inhibitors, namely the secreted Wnts, Dickkof proteins (Dkks), secreted Frizzled-Related Proteins (sFRPs), and Wnt Inhibitory Factor-1 (WIF-1), along with others which may act via indirect means to stimulate or inhibit Wnt (e.g. the Smads, bone morphogenetic proteins, and Hedgehog proteins). This review will summarize the research surrounding currently available small molecules used to target Wnt signaling. These compounds will be classified based upon their ability to stimulate or inhibit Wnt, their derivation (natural or synthetic), and their specific mechanism of action.
Keywords
- Wnt Pathway
- Small Molecule
- Canonical Signaling
- Non-Canonical Signaling
- Beta-catenin
- Review
References
- [1] R. Nusse and H. E. Varmus: Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31(1), 99-109 (1982)
- [2] A. R. Moser, H. C. Pitot and W. F. Dove: A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science, 247(4940), 322-4 (1990)
- [3] L. K. Su, K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould and W. F. Dove: Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science, 256(5057), 668-70 (1992)
- [4] C. Y. Janda, D. Waghray, A. M. Levin, C. Thomas and K. C. Garcia: Structural basis of Wnt recognition by Frizzled. Science, 337(6090), 59-64 (2012)
- [5] R. Takada, Y. Satomi, T. Kurata, N. Ueno, S. Norioka, H. Kondoh, T. Takao and S. Takada: Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Developmental cell, 11(6), 791-801 (2006)
- [6] R. van Amerongen: Alternative Wnt pathways and receptors. Cold Spring Harbor perspectives in biology, 4(10) (2012)
- [7] A. J. Mikels and R. Nusse: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS biology, 4(4), e115 (2006)
- [8] B. T. MacDonald and X. He: Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harbor perspectives in biology, 4(12) (2012)
- [9] B. Del Valle-Perez, O. Arques, M. Vinyoles, A. G. de Herreros and M. Dunach: Coordinated action of CK1 isoforms in canonical Wnt signaling. Molecular and cellular biology, 31(14), 2877-88 (2011)
- [10] H. Clevers and R. Nusse: Wnt/beta-catenin signaling and disease. Cell, 149(6), 1192-205 (2012)
- [11] K. Tamai, X. Zeng, C. Liu, X. Zhang, Y. Harada, Z. Chang and X. He: A mechanism for Wnt coreceptor activation. Molecular cell, 13(1), 149-56 (2004)
- [12] K. M. Cadigan and M. L. Waterman: TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harbor perspectives in biology, 4(11) (2012)
- [13] S. Correa, R. Binato, B. Du Rocher, M. T. Castelo-Branco, L. Pizzatti and E. Abdelhay: Wnt/beta-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC cancer, 12, 303 (2012)
- [14] E. H. Jho, T. Zhang, C. Domon, C. K. Joo, J. N. Freund and F. Costantini: Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and cellular biology, 22(4), 1172-83 (2002)
- [15] G. S. Yochum, R. Cleland and R. H. Goodman: A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression. Molecular and cellular biology, 28(24), 7368-79 (2008)
- [16] K. Schlessinger, A. Hall and N. Tolwinski: Wnt signaling pathways meet Rho GTPases. Genes & development, 23(3), 265-77 (2009)Cited within: 0Google Scholar
- [17] M. Saxena, S. S. Dykes, S. Malyarchuk, A. E. Wang, J. A. Cardelli and K. Pruitt: The sirtuins promote Dishevelled-1 scaffolding of TIAM1, Rac activation and cell migration. Oncogene, 34(2), 188-98 (2015)
- [18] L. D’Amato, C. Dell’Aversana, M. Conte, A. Ciotta, L. Scisciola, A. Carissimo, A. Nebbioso and L. Altucci: ARHGEF3 controls HDACi-induced differentiation via RhoA-dependent pathways in acute myeloid leukemias. Epigenetics, 10(1), 6-18 (2015)
- [19] R. Habas, I. B. Dawid and X. He: Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes & development, 17(2), 295-309 (2003)Cited within: 0Google Scholar
- [20] Y. Zhu, Y. Tian, J. Du, Z. Hu, L. Yang, J. Liu and L. Gu: Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PloS one, 7(5), e37823 (2012)
- [21] V. Sanz-Moreno, G. Gadea, J. Ahn, H. Paterson, P. Marra, S. Pinner, E. Sahai and C. J. Marshall: Rac activation and inactivation control plasticity of tumor cell movement. Cell, 135(3), 510-23 (2008)
- [22] H. Gon, K. Fumoto, Y. Ku, S. Matsumoto and A. Kikuchi: Wnt5a signaling promotes apical and basolateral polarization of single epithelial cells. Molecular biology of the cell, 24(23), 3764-74 (2013)
- [23] T. R. Stankiewicz, S. A. Ramaswami, R. J. Bouchard, K. Aktories and D. A. Linseman: Neuronal apoptosis induced by selective inhibition of Rac GTPase versus global suppression of Rho family GTPases is mediated by alterations in distinct mitogen-activated protein kinase signaling cascades. The Journal of biological chemistry, 290(15), 9363-76 (2015)
- [24] Z. Zhang, X. Liang, L. Gao, H. Ma, X. Liu, Y. Pan, W. Yan, H. Shan, Z. Wang, Y. H. Chen and C. Ma: TIPE1 induces apoptosis by negatively regulating Rac1 activation in hepatocellular carcinoma cells. Oncogene, 34(20), 2566-74 (2015)
- [25] A. Archibald, C. Mihai, I. G. Macara and L. McCaffrey: Oncogenic suppression of apoptosis uncovers a Rac1/JNK proliferation pathway activated by loss of Par3. Oncogene, 34(24), 3199-206 (2015)
- [26] P. G. Hogan, L. Chen, J. Nardone and A. Rao: Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & development, 17(18), 2205-32 (2003)Cited within: 0Google Scholar
- [27] M. Kuhl, L. C. Sheldahl, C. C. Malbon and R. T. Moon: Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. The Journal of biological chemistry, 275(17), 12701-11 (2000)
- [28] E. J. Ann, H. Y. Kim, M. S. Seo, J. S. Mo, M. Y. Kim, J. H. Yoon, J. S. Ahn and H. S. Park: Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein. The Journal of biological chemistry, 287(44), 36814-29 (2012)
- [29] L. Ciani, K. A. Boyle, E. Dickins, M. Sahores, D. Anane, D. M. Lopes, A. J. Gibb and P. C. Salinas: Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca(2)(+)/Calmodulin-dependent protein kinase II. Proceedings of the National Academy of Sciences of the United States of America, 108(26), 10732-7 (2011)
- [30] C. A. Ohmstede, K. F. Jensen and N. E. Sahyoun: Ca2+/calmodulin-dependent protein kinase enriched in cerebellar granule cells. Identification of a novel neuronal calmodulin-dependent protein kinase. The Journal of biological chemistry, 264(10), 5866-75(1989)
- [31] R. Sugimura, X. C. He, A. Venkatraman, F. Arai, A. Box, C. Semerad, J. S. Haug, L. Peng, X. B. Zhong, T. Suda and L. Li: Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell, 150(2), 351-65 (2012)
- [32] T. Ishitani, S. Kishida, J. Hyodo-Miura, N. Ueno, J. Yasuda, M. Waterman, H. Shibuya, R. T. Moon, J. Ninomiya-Tsuji and K. Matsumoto: The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Molecular and cellular biology, 23(1), 131-9 (2003)
- [33] T. Ishitani, J. Ninomiya-Tsuji, S. Nagai, M. Nishita, M. Meneghini, N. Barker, M. Waterman, B. Bowerman, H. Clevers, H. Shibuya and K. Matsumoto: The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature, 399(6738), 798-802 (1999)
- [34] T. Kurahashi, T. Nomura, C. Kanei-Ishii, Y. Shinkai and S. Ishii: The Wnt-NLK signaling pathway inhibits A-Myb activity by inhibiting the association with coactivator CBP and methylating histone H3. Molecular biology of the cell, 16(10), 4705-13 (2005)
- [35] A. D. Kohn and R. T. Moon: Wnt and calcium signaling: beta-catenin-independent pathways. Cell calcium, 38(3-4), 439-46 (2005)
- [36] M. Simonetti, N. Agarwal, S. Stosser, K. K. Bali, E. Karaulanov, R. Kamble, B. Pospisilova, M. Kurejova, W. Birchmeier, C. Niehrs, P. Heppenstall and R. Kuner: Wnt-Fzd signaling sensitizes peripheral sensory neurons via distinct noncanonical pathways. Neuron, 83(1), 104-21 (2014)
- [37] N. A. Clipstone and G. R. Crabtree: Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature, 357(6380), 695-7 (1992)
- [38] J. Jain, P. G. McCaffrey, Z. Miner, T. K. Kerppola, J. N. Lambert, G. L. Verdine, T. Curran and A. Rao: The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature, 365(6444), 352-5 (1993)
- [39] C. B. Klee, H. Ren and X. Wang: Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. The Journal of biological chemistry, 273(22), 13367-70 (1998)
- [40] T. Saneyoshi, S. Kume, Y. Amasaki and K. Mikoshiba: The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature, 417(6886), 295-9 (2002)
- [41] H. Griesmann, S. Ripka, M. Pralle, V. Ellenrieder, S. Baumgart, M. Buchholz, C. Pilarsky, D. Aust, T. M. Gress and P. Michl: WNT5A-NFAT signaling mediates resistance to apoptosis in pancreatic cancer. Neoplasia, 15(1), 11-22 (2013)
- [42] J. A. Stefater, 3rd, S. Rao, K. Bezold, A. C. Aplin, R. F. Nicosia, J. W. Pollard, N. Ferrara and R. A. Lang: Macrophage Wnt-Calcineurin-Flt1 signaling regulates mouse wound angiogenesis and repair. Blood, 121(13), 2574-8 (2013)
- [43] S. F. Burn, A. Webb, R. L. Berry, J. A. Davies, A. Ferrer-Vaquer, A. K. Hadjantonakis, N. D. Hastie and P. Hohenstein: Calcium/NFAT signalling promotes early nephrogenesis. Developmental biology, 352(2), 288-98 (2011)
- [44] D. Demozay, S. Tsunekawa, I. Briaud, R. Shah and C. J. Rhodes: Specific glucose-induced control of insulin receptor substrate-2 expression is mediated via Ca2+-dependent calcineurin/NFAT signaling in primary pancreatic islet beta-cells. Diabetes, 60(11), 2892-902 (2011)
- [45] T. Hisamitsu, T. Y. Nakamura and S. Wakabayashi: Na(+)/H(+) exchanger 1 directly binds to calcineurin A and activates downstream NFAT signaling, leading to cardiomyocyte hypertrophy. Molecular and cellular biology, 32(16), 3265-80 (2012)
- [46] Z. Chen, J. Li, Q. S. Li, J. Q. Fan, X. M. Dong, J. P. Xu, X. M. Wang, G. W. Yang, P. Yan, G. Z. Wen, Y. T. Zhang, R. G. Niu, P. H. Nan, J. He and H. M. Zhou: Suppression of PPN/MG61 attenuates Wnt/beta-catenin signaling pathway and induces apoptosis in human lung cancer. Oncogene, 27(24), 3483-8 (2008)
- [47] M. E. Dodge, J. Moon, R. Tuladhar, J. Lu, L. S. Jacob, L. S. Zhang, H. Shi, X. Wang, E. Moro, A. Mongera, F. Argenton, C. M. Karner, T. J. Carroll, C. Chen, J. F. Amatruda and L. Lum: Diverse chemical scaffolds support direct inhibition of the membrane-bound O-acyltransferase porcupine. The Journal of biological chemistry, 287(27), 23246-54 (2012)
- [48] K. D. Proffitt, B. Madan, Z. Ke, V. Pendharkar, L. Ding, M. A. Lee, R. N. Hannoush and D. M. Virshup: Pharmacological inhibition of the Wnt acyltransferase PORCN prevents growth of WNT-driven mammary cancer. Cancer research, 73(2), 502-7 (2013)
- [49] X. Jiang, H. X. Hao, J. D. Growney, S. Woolfenden, C. Bottiglio, N. Ng, B. Lu, M. H. Hsieh, L. Bagdasarian, R. Meyer, T. R. Smith, M. Avello, O. Charlat, Y. Xie, J. A. Porter, S. Pan, J. Liu, M. E. McLaughlin and F. Cong: Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12649-54 (2013)
- [50] J. Liu, S. Pan, M. H. Hsieh, N. Ng, F. Sun, T. Wang, S. Kasibhatla, A. G. Schuller, A. G. Li, D. Cheng, J. Li, C. Tompkins, A. Pferdekamper, A. Steffy, J. Cheng, C. Kowal, V. Phung, G. Guo, Y. Wang, M. P. Graham, S. Flynn, J. C. Brenner, C. Li, M. C. Villarroel, P. G. Schultz, X. Wu, P. McNamara, W. R. Sellers, L. Petruzzelli, A. L. Boral, H. M. Seidel, M. E. McLaughlin, J. Che, T. E. Carey, G. Vanasse and J. L. Harris: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20224-9 (2013)
- [51] B. K. Koo, J. H. van Es, M. van den Born and H. Clevers: Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7548-50 (2015)
- [52] M. Genander, P. J. Cook, D. Ramskold, B. E. Keyes, A. F. Mertz, R. Sandberg and E. Fuchs: BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell stem cell, 15(5), 619-33 (2014)
- [53] N. Bengoa-Vergniory, I. Gorrono-Etxebarria, I. Gonzalez-Salazar and R. M. Kypta: A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells. Stem cells, 32(12), 3196-208 (2014)
- [54] H. Xu, K. S. Tsang, Y. Wang, J. C. Chan, G. Xu and W. Q. Gao: Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and beta-catenin signaling. The Journal of biological chemistry, 289(38), 26290-301 (2014)
- [55] M. D. Arensman, A. N. Kovochich, R. M. Kulikauskas, A. R. Lay, P. T. Yang, X. Li, T. Donahue, M. B. Major, R. T. Moon, A. J. Chien and D. W. Dawson: WNT7B mediates autocrine Wnt/beta-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene, 33(7), 899-908 (2014)
- [56] H. Yamamoto, H. Komekado and A. Kikuchi: Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Developmental cell, 11(2), 213-23 (2006)
- [57] G. H. Kim, J. H. Her and J. K. Han: Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. The Journal of cell biology, 182(6), 1073-82 (2008)
- [58] F. Port, M. Kuster, P. Herr, E. Furger, C. Banziger, G. Hausmann and K. Basler: Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nature cell biology, 10(2), 178-85 (2008)
- [59] C. C. Liu, T. Kanekiyo, B. Roth and G. Bu: Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/beta-catenin pathway signaling. The Journal of biological chemistry, 289(40), 27562-70 (2014)
- [60] J. T. Blitzer and R. Nusse: A critical role for endocytosis in Wnt signaling. BMC cell biology, 7, 28 (2006)
- [61] I. Kim, W. Pan, S. A. Jones, Y. Zhang, X. Zhuang and D. Wu: Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. The Journal of cell biology, 200(4), 419-28 (2013)
- [62] M. Chen, J. Wang, J. Lu, M. C. Bond, X. R. Ren, H. K. Lyerly, L. S. Barak and W. Chen: The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. Biochemistry, 48(43), 10267-74 (2009)
- [63] T. Osada, M. Chen, X. Y. Yang, I. Spasojevic, J. B. Vandeusen, D. Hsu, B. M. Clary, T. M. Clay, W. Chen, M. A. Morse and H. K. Lyerly: Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer research, 71(12), 4172-82 (2011)
- [64] M. L. King, M. E. Lindberg, G. R. Stodden, H. Okuda, S. D. Ebers, A. Johnson, A. Montag, E. Lengyel, J. A. MacLean Ii and K. Hayashi: WNT7A/beta-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer. Oncogene, 34(26), 3452-62 (2015)
- [65] R. A. Mook, Jr., J. Wang, X. R. Ren, M. Chen, I. Spasojevic, L. S. Barak, H. K. Lyerly and W. Chen: Structure-activity studies of Wnt/beta-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure. Bioorganic & medicinal chemistry, 23(17), 5829-38 (2015)Cited within: 0Google Scholar
- [66] T. Haikarainen, S. Krauss and L. Lehtio: Tankyrases: structure, function and therapeutic implications in cancer. Current pharmaceutical design, 20(41), 6472-88 (2014)
- [67] J. L. Riffell, C. J. Lord and A. Ashworth: Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nature reviews. Drug discovery, 11(12), 923-36 (2012)
- [68] Y. Zhang, S. Liu, C. Mickanin, Y. Feng, O. Charlat, G. A. Michaud, M. Schirle, X. Shi, M. Hild, A. Bauer, V. E. Myer, P. M. Finan, J. A. Porter, S. M. Huang and F. Cong: RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nature cell biology, 13(5), 623-9 (2011)
- [69] S. M. Huang, Y. M. Mishina, S. Liu, A. Cheung, F. Stegmeier, G. A. Michaud, O. Charlat, E. Wiellette, Y. Zhang, S. Wiessner, M. Hild, X. Shi, C. J. Wilson, C. Mickanin, V. Myer, A. Fazal, R. Tomlinson, F. Serluca, W. Shao, H. Cheng, M. Shultz, C. Rau, M. Schirle, J. Schlegl, S. Ghidelli, S. Fawell, C. Lu, D. Curtis, M. W. Kirschner, C. Lengauer, P. M. Finan, J. A. Tallarico, T. Bouwmeester, J. A. Porter, A. Bauer and F. Cong: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 461(7264), 614-20 (2009)
- [70] J. Lu, Z. Ma, J. C. Hsieh, C. W. Fan, B. Chen, J. C. Longgood, N. S. Williams, J. F. Amatruda, L. Lum and C. Chen: Structure-activity relationship studies of small-molecule inhibitors of Wnt response. Bioorganic & medicinal chemistry letters, 19(14), 3825-7 (2009)Cited within: 0Google Scholar
- [71] M. Narwal, H. Venkannagari and L. Lehtio: Structural basis of selective inhibition of human tankyrases. Journal of medicinal chemistry, 55(3), 1360-7 (2012)
- [72] M. Ghaedi, E. A. Calle, J. J. Mendez, A. L. Gard, J. Balestrini, A. Booth, P. F. Bove, L. Gui, E. S. White and L. E. Niklason: Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. The Journal of clinical investigation, 123(11), 4950-62 (2013)
- [73] J. Tchao, L. Han, B. Lin, L. Yang and K. Tobita: Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Scientific reports, 4, 6614 (2014)
- [74] C. A. Thorne, A. J. Hanson, J. Schneider, E. Tahinci, D. Orton, C. S. Cselenyi, K. K. Jernigan, K. C. Meyers, B. I. Hang, A. G. Waterson, K. Kim, B. Melancon, V. P. Ghidu, G. A. Sulikowski, B. LaFleur, A. Salic, L. A. Lee, D. M. Miller, 3rd and E. Lee: Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature chemical biology, 6(11), 829-36 (2010)
- [75] S. K. Singh, C. Venugopal, R. Hallett, P. Vora, B. Manoranjan, S. Mahendram, M. Qazi, N. McFarlane, M. Subapanditha, S. Nolte, M. Singh, D. Bakhshinyan, N. Garg, T. Vijayakumar, B. Lach, J. P. Provias, K. Reddy, N. Murty, B. Doble, M. Bhatia and J. A. Hassell: Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells. Clinical cancer research: an official journal of the American Association for Cancer Research (2015)
- [76] W. Xu, L. Lacerda, B. G. Debeb, R. L. Atkinson, T. N. Solley, L. Li, D. Orton, J. S. McMurray, B. I. Hang, E. Lee, A. H. Klopp, N. T. Ueno, J. M. Reuben, S. Krishnamurthy and W. A. Woodward: The antihelmintic drug pyrvinium pamoate targets aggressive breast cancer. PloS one, 8(8), e71508 (2013)
- [77] H. Li, F. Ban, K. Dalal, E. Leblanc, K. Frewin, D. Ma, H. Adomat, P. S. Rennie and A. Cherkasov: Discovery of small-molecule inhibitors selectively targeting the DNA-binding domain of the human androgen receptor. Journal of medicinal chemistry, 57(15), 6458-67 (2014)
- [78] J. O. Jones, E. C. Bolton, Y. Huang, C. Feau, R. K. Guy, K. R. Yamamoto, B. Hann and M. I. Diamond: Non-competitive androgen receptor inhibition in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7233-8 (2009)
- [79] M. Lim, M. Otto-Duessel, M. He, L. Su, D. Nguyen, E. Chin, T. Alliston and J. O. Jones: Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium. ACS chemical biology, 9(3), 692-702 (2014)
- [80] C. M. Cruciat: Casein kinase 1 and Wnt/beta-catenin signaling. Current opinion in cell biology, 31, 46-55 (2014)
- [81] K. H. Emami, C. Nguyen, H. Ma, D. H. Kim, K. W. Jeong, M. Eguchi, R. T. Moon, J. L. Teo, H. Y. Kim, S. H. Moon, J. R. Ha and M. Kahn: A small molecule inhibitor of beta-catenin/CREB-binding protein transcription (corrected). Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12682-7 (2004)
- [82] B. Zhou, Y. Liu, M. Kahn, D. K. Ann, A. Han, H. Wang, C. Nguyen, P. Flodby, Q. Zhong, M. S. Krishnaveni, J. M. Liebler, P. Minoo, E. D. Crandall and Z. Borok: Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). The Journal of biological chemistry, 287(10), 7026-38 (2012)
- [83] E. J. Gang, Y. T. Hsieh, J. Pham, Y. Zhao, C. Nguyen, S. Huantes, E. Park, K. Naing, L. Klemm, S. Swaminathan, E. M. Conway, L. M. Pelus, J. Crispino, C. G. Mullighan, M. McMillan, M. Muschen, M. Kahn and Y. M. Kim: Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene, 33(17), 2169-78 (2014)
- [84] L. Boulter, R. V. Guest, T. J. Kendall, D. H. Wilson, D. Wojtacha, A. J. Robson, R. A. Ridgway, K. Samuel, N. Van Rooijen, S. T. Barry, S. J. Wigmore, O. J. Sansom and S. J. Forbes: WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. The Journal of clinical investigation, 125(3), 1269-85 (2015)
- [85] A. Hammitzsch, C. Tallant, O. Fedorov, A. O’Mahony, P. E. Brennan, D. A. Hay, F. O. Martinez, M. H. Al-Mossawi, J. de Wit, M. Vecellio, C. Wells, P. Wordsworth, S. Muller, S. Knapp and P. Bowness: CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10768-73 (2015)
- [86] S. Picaud, O. Fedorov, A. Thanasopoulou, K. Leonards, K. Jones, J. Meier, H. Olzscha, O. Monteiro, S. Martin, M. Philpott, A. Tumber, P. Filippakopoulos, C. Yapp, C. Wells, K. Hing Che, A. Bannister, S. Robson, U. Kumar, N. Parr, K. Lee, D. Lugo, P. Jeffrey, S. Taylor, M. L. Vecellio, C. Bountra, P. Brennan, A. O’Mahony, S. Velichko, S. Muller, D. Hay, D. L. Daniels, M. Urh, N. B. La Thangue, T. Kouzarides, R. Prinjha, J. Schwaller and S. Knapp: Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for leukemia therapy. Cancer research (2015)
- [87] Y. Higuchi, C. Nguyen, S. Y. Yasuda, M. McMillan, K. Hasegawa and M. Kahn: Specific Direct Small Molecule p300/beta-Catenin Antagonists Maintain Stem Cell Potency. Current molecular pharmacology (2015)
- [88] G. Giotopoulos, W. I. Chan, S. J. Horton, D. Ruau, P. Gallipoli, A. Fowler, C. Crawley, E. Papaemmanuil, P. J. Campbell, B. Gottgens, J. M. Van Deursen, P. A. Cole and B. J. Huntly: The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene (2015)
- [89] A. V. Smrcka: G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cellular and molecular life sciences: CMLS, 65(14), 2191-214 (2008)
- [90] C. Locht, L. Coutte and N. Mielcarek: The ins and outs of pertussis toxin. The FEBS journal, 278(23), 4668-82 (2011)
- [91] P. Sebo, R. Osicka and J. Masin: Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines. Expert review of vaccines, 13(10), 1215-27 (2014)
- [92] D. C. Slusarski, V. G. Corces and R. T. Moon: Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390(6658), 410-3 (1997)
- [93] Y. S. Jung, H. Y. Lee, S. D. Kim, J. S. Park, J. K. Kim, P. G. Suh and Y. S. Bae: Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils. Experimental & molecular medicine, 45, e27 (2013)Cited within: 0Google Scholar
- [94] A. Schmidt, L. Hennighausen and U. Siebenlist: Inducible nuclear factor binding to the kappa B elements of the human immunodeficiency virus enhancer in T cells can be blocked by cyclosporin A in a signal-dependent manner. Journal of virology, 64(8), 4037-41(1990)
- [95] E. V. Schaible, J. Windschugl, W. Bobkiewicz, Y. Kaburov, L. Dangel, T. Kramer, C. Huang, A. Sebastiani, C. Luh, C. Werner, K. Engelhard, S. C. Thal and M. K. Schafer: 2-Methoxyestradiol confers neuroprotection and inhibits a maladaptive HIF-1alpha response after traumatic brain injury in mice. Journal of neurochemistry, 129(6), 940-54 (2014)
- [96] S. H. Choi, Z. Y. Hong, J. K. Nam, H. J. Lee, J. Jang, R. J. Yoo, Y. J. Lee, C. Y. Lee, K. H. Kim, S. Park, Y. H. Ji, Y. S. Lee and J. Cho: A Hypoxia-Induced Vascular Endothelial-to-Mesenchymal Transition in Development of Radiation-Induced Pulmonary Fibrosis. Clinical cancer research: an official journal of the American Association for Cancer Research (2015)
- [97] F. Wimbauer, C. Yang, K. L. Shogren, M. Zhang, R. Goyal, S. M. Riester, M. J. Yaszemski and A. Maran: Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells. BMC cancer, 12, 93 (2012)
- [98] A. Maran, M. Zhang, A. M. Kennedy, J. D. Sibonga, D. J. Rickard, T. C. Spelsberg and R. T. Turner: 2-methoxyestradiol induces interferon gene expression and apoptosis in osteosarcoma cells. Bone, 30(2), 393-8 (2002)
- [99] I. S. Song, Y. J. Jeong, S. H. Jeong, H. J. Heo, H. K. Kim, S. R. Lee, T. H. Ko, J. B. Youm, N. Kim, K. S. Ko, B. D. Rhee and J. Han: Combination treatment with 2-methoxyestradiol overcomes bortezomib resistance of multiple myeloma cells. Experimental & molecular medicine, 45, e50 (2013)Cited within: 0Google Scholar
- [100] L. Zhou, J. Hou, W. Fu, D. Wang, Z. Yuan and H. Jiang: Arsenic trioxide and 2-methoxyestradiol reduce beta-catenin accumulation after proteasome inhibition and enhance the sensitivity of myeloma cells to Bortezomib. Leukemia research, 32(11), 1674-83 (2008)
- [101] S. Reumann, K. L. Shogren, M. J. Yaszemski and A. Maran: Inhibition of Autophagy Increases 2-Methoxyestradiol-Induced Cytotoxicity in SW1353 Chondrosarcoma Cells. Journal of cellular biochemistry (2015)
- [102] S. Sarkar, D. L. Brautigan, S. J. Parsons and J. M. Larner: Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene, 33(1), 26-33 (2014)
- [103] R. S. Tarapore, I. A. Siddiqui and H. Mukhtar: Modulation of Wnt/beta-catenin signaling pathway by bioactive food components. Carcinogenesis, 33(3), 483-91 (2012)
- [104] S. Park and J. Choi: Inhibition of beta-catenin/Tcf signaling by flavonoids. Journal of cellular biochemistry, 110(6), 1376-85 (2010)
- [105] N. G. Amado, B. F. Fonseca, D. M. Cerqueira, A. H. Reis, A. B. Simas, R. M. Kuster, F. A. Mendes and J. G. Abreu: Effects of natural compounds on Xenopus embryogenesis: a potential read out for functional drug discovery targeting Wnt/beta-catenin signaling. Current topics in medicinal chemistry, 12(19), 2103-13 (2012)
- [106] B. E. Shan, M. X. Wang and R. Q. Li: Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer investigation, 27(6), 604-12 (2009)
- [107] N. G. Amado, D. Predes, B. F. Fonseca, D. M. Cerqueira, A. H. Reis, A. C. Dudenhoeffer, H. L. Borges, F. A. Mendes and J. G. Abreu: Isoquercitrin suppresses colon cancer cell growth in vitro by targeting the Wnt/beta-catenin signaling pathway. The Journal of biological chemistry, 289(51), 35456-67 (2014)
- [108] M. Mojsin, J. M. Vicentic, M. Schwirtlich, V. Topalovic and M. Stevanovic: Quercetin reduces pluripotency, migration and adhesion of human teratocarcinoma cell line NT2/D1 by inhibiting Wnt/beta-catenin signaling. Food & function, 5(10), 2564-73 (2014)Cited within: 0Google Scholar
- [109] H. Kim, E. M. Seo, A. R. Sharma, B. Ganbold, J. Park, G. Sharma, Y. H. Kang, D. K. Song, S. S. Lee and J. S. Nam: Regulation of Wnt signaling activity for growth suppression induced by quercetin in 4T1 murine mammary cancer cells. International journal of oncology, 43(4), 1319-25 (2013)
- [110] M. C. Novo, L. Osugui, V. O. dos Reis, I. M. Longo-Maugeri, M. Mariano and A. F. Popi: Blockage of Wnt/beta-catenin signaling by quercetin reduces survival and proliferation of B-1 cells in vitro. Immunobiology, 220(1), 60-7 (2015)
- [111] A. Wada: GSK-3 inhibitors and insulin receptor signaling in health, disease, and therapeutics. Frontiers in bioscience, 14, 1558-70 (2009)
- [112] R. V. Bhat, S. L. Budd Haeberlein and J. Avila: Glycogen synthase kinase 3: a drug target for CNS therapies. Journal of neurochemistry, 89(6), 1313-7 (2004)
- [113] H. Cheng, J. Woodgett, M. Maamari and T. Force: Targeting GSK-3 family members in the heart: a very sharp double-edged sword. Journal of molecular and cellular cardiology, 51(4), 607-13 (2011)
- [114] J. A. McCubrey, L. S. Steelman, F. E. Bertrand, N. M. Davis, S. L. Abrams, G. Montalto, A. B. D’Assoro, M. Libra, F. Nicoletti, R. Maestro, J. Basecke, L. Cocco, M. Cervello and A. M. Martelli: Multifaceted roles of GSK-3 and Wnt/beta-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia, 28(1), 15-33 (2014)
- [115] T. A. Engler, J. R. Henry, S. Malhotra, B. Cunningham, K. Furness, J. Brozinick, T. P. Burkholder, M. P. Clay, J. Clayton, C. Diefenbacher, E. Hawkins, P. W. Iversen, Y. Li, T. D. Lindstrom, A. L. Marquart, J. McLean, D. Mendel, E. Misener, D. Briere, J. C. O’Toole, W. J. Porter, S. Queener, J. K. Reel, R. A. Owens, R. A. Brier, T. E. Eessalu, J. R. Wagner, R. M. Campbell and R. Vaughn: Substituted 3-imidazo(1,2-a)pyridin-3-yl-4-(1,2,3,4-tetrahydro-(1,4)diazepino-(6,7,1-hi)indol-7-yl)pyrrole-2,5-diones as highly selective and potent inhibitors of glycogen synthase kinase-3. Journal of medicinal chemistry, 47(16), 3934-7 (2004)
- [116] M. P. Coghlan, A. A. Culbert, D. A. Cross, S. L. Corcoran, J. W. Yates, N. J. Pearce, O. L. Rausch, G. J. Murphy, P. S. Carter, L. Roxbee Cox, D. Mills, M. J. Brown, D. Haigh, R. W. Ward, D. G. Smith, K. J. Murray, A. D. Reith and J. C. Holder: Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chemistry & biology, 7(10), 793-803 (2000)Cited within: 0Google Scholar
- [117] L. Meijer, A. L. Skaltsounis, P. Magiatis, P. Polychronopoulos, M. Knockaert, M. Leost, X. P. Ryan, C. A. Vonica, A. Brivanlou, R. Dajani, C. Crovace, C. Tarricone, A. Musacchio, S. M. Roe, L. Pearl and P. Greengard: GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chemistry & biology, 10(12), 1255-66 (2003)Cited within: 0Google Scholar
- [118] S. C. Lee, H. T. Kim, C. H. Park, Y. Lee do, H. J. Chang, S. Park, J. M. Cho, S. Ro and Y. G. Suh: Design, synthesis and biological evaluation of novel imidazopyridines as potential antidiabetic GSK3beta inhibitors. Bioorganic & medicinal chemistry letters, 22(13), 4221-4 (2012)Cited within: 0Google Scholar
- [119] S. C. Lee, D. Shin, J. M. Cho, S. Ro and Y. G. Suh: Structure-activity relationship of the 7-hydroxy benzimidazole analogs as glycogen synthase kinase 3beta inhibitor. Bioorganic & medicinal chemistry letters, 22(5), 1891-4 (2012)Cited within: 0Google Scholar
- [120] R. Luna-Medina, M. Cortes-Canteli, S. Sanchez-Galiano, J. A. Morales-Garcia, A. Martinez, A. Santos and A. Perez-Castillo: NP031112, a thiadiazolidinone compound, prevents inflammation and neurodegeneration under excitotoxic conditions: potential therapeutic role in brain disorders. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(21), 5766-76 (2007)
- [121] J. M. Atkinson, K. B. Rank, Y. Zeng, A. Capen, V. Yadav, J. R. Manro, T. A. Engler and M. Chedid: Activating the Wnt/beta-Catenin Pathway for the Treatment of Melanoma--Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3. PloS one, 10(4), e0125028 (2015)
- [122] N. Sato, L. Meijer, L. Skaltsounis, P. Greengard and A. H. Brivanlou: Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature medicine, 10(1), 55-63 (2004)
- [123] K. Azim, A. Rivera, O. Raineteau and A. M. Butt: GSK3beta regulates oligodendrogenesis in the dorsal microdomain of the subventricular zone via Wnt-beta-catenin signaling. Glia, 62(5), 778-9 (2014)
- [124] T. del Ser, K. C. Steinwachs, H. J. Gertz, M. V. Andres, B. Gomez-Carrillo, M. Medina, J. A. Vericat, P. Redondo, D. Fleet and T. Leon: Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. Journal of Alzheimer’s disease: JAD, 33(1), 205-15 (2013)
- [125] S. Lovestone, M. Boada, B. Dubois, M. Hull, J. O. Rinne, H. J. Huppertz, M. Calero, M. V. Andres, B. Gomez-Carrillo, T. Leon and T. del Ser: A phase II trial of tideglusib in Alzheimer’s disease. Journal of Alzheimer’s disease: JAD, 45(1), 75-88 (2015)
- [126] W. Poewe, P. Mahlknecht and F. Krismer: Therapeutic advances in multiple system atrophy and progressive supranuclear palsy. Movement disorders: official journal of the Movement Disorder Society, 30(11), 1528-38(2015)
- [127] O. Marin, V. H. Bustos, L. Cesaro, F. Meggio, M. A. Pagano, M. Antonelli, C. C. Allende, L. A. Pinna and J. E. Allende: A noncanonical sequence phosphorylated by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting of important signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 100(18), 10193-200(2003)
- [128] N. C. Ha, T. Tonozuka, J. L. Stamos, H. J. Choi and W. I. Weis: Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Molecular cell, 15(4), 511-21(2004)
- [129] C. Niehrs and J. Shen: Regulation of Lrp6 phosphorylation. Cellular and molecular life sciences: CMLS, 67(15), 2551-62(2010)
- [130] O. Bernatik, R. S. Ganji, J. P. Dijksterhuis, P. Konik, I. Cervenka, T. Polonio, P. Krejci, G. Schulte and V. Bryja: Sequential activation and inactivation of Dishevelled in the Wnt/beta-catenin pathway by casein kinases. The Journal of biological chemistry, 286(12), 10396-410(2011)
- [131] B. S. Winkler, F. Oltmer, J. Richter, J. Bischof, P. Xu, T. Burster, F. Leithauser and U. Knippschild: CK1delta in lymphoma: gene expression and mutation analyses and validation of CK1delta kinase activity for therapeutic application. Frontiers in cell and developmental biology, 3, 9(2015)
- [132] J. Richter, J. Bischof, M. Zaja, H. Kohlhof, O. Othersen, D. Vitt, V. Alscher, I. Pospiech, B. Garcia-Reyes, S. Berg, J. Leban and U. Knippschild: Difluoro-dioxolo-benzoimidazol-benzamides as potent inhibitors of CK1delta and epsilon with nanomolar inhibitory activity on cancer cell proliferation. Journal of medicinal chemistry, 57(19), 7933-46(2014)
- [133] S. Chakraborti, G. Dhar, V. Dwivedi, A. Das, A. Poddar, G. Chakraborti, G. Basu, P. Chakrabarti, A. Surolia and B. Bhattacharyya: Stable and potent analogues derived from the modification of the dicarbonyl moiety of curcumin. Biochemistry, 52(42), 7449-60(2013)
- [134] P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal: Bioavailability of curcumin: problems and promises. Molecular pharmaceutics, 4(6), 807-18(2007)
- [135] S. K. Tiwari, S. Agarwal, B. Seth, A. Yadav, S. Nair, P. Bhatnagar, M. Karmakar, M. Kumari, L. K. Chauhan, D. K. Patel, V. Srivastava, D. Singh, S. K. Gupta, A. Tripathi, R. K. Chaturvedi and K. C. Gupta: Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS nano, 8(1), 76-103(2014)
- [136] J. Singh, R. K. Dubey and C. K. Atal: Piperine-mediated inhibition of glucuronidation activity in isolated epithelial cells of the guinea-pig small intestine: evidence that piperine lowers the endogeneous UDP-glucuronic acid content. The Journal of pharmacology and experimental therapeutics, 236(2), 488-93(1986)
- [137] S. Singh, S. Jamwal and P. Kumar: Piperine Enhances the Protective Effect of Curcumin Against 3-NP Induced Neurotoxicity: Possible Neurotransmitters Modulation Mechanism. Neurochemical research, 40(8), 1758-66(2015)
- [138] G. Tripodo, G. Pasut, A. Trapani, A. Mero, F. M. Lasorsa, T. Chlapanidas, G. Trapani and D. Mandracchia: Inulin-D-alpha-tocopherol succinate (INVITE) nanomicelles as a platform for effective intravenous administration of curcumin. Biomacromolecules, 16(2), 550-7(2015)
- [139] F. Hao, J. Kang, Y. Cao, S. Fan, H. Yang, Y. An, Y. Pan, L. Tie and X. Li: Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic beta-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways. Apoptosis: an international journal on programmed cell death (2015)
- [140] A. Jacob, L. Chaves, M. T. Eadon, A. Chang, R. J. Quigg and J. J. Alexander: Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology, 139(3), 328-37(2013)
- [141] X. Zhang, Y. Tian, C. Zhang, X. Tian, A. W. Ross, R. D. Moir, H. Sun, R. E. Tanzi, A. Moore and C. Ran: Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 112(31), 9734-9(2015)
- [142] L. Cui, X. Jia, Q. Zhou, X. Zhai, Y. Zhou and H. Zhu: Curcumin affects beta-catenin pathway in hepatic stellate cell in vitro and in vivo. The Journal of pharmacy and pharmacology, 66(11), 1615-22(2014)
- [143] S. K. Tiwari, S. Agarwal, A. Tripathi and R. K. Chaturvedi: Bisphenol-A Mediated Inhibition of Hippocampal Neurogenesis Attenuated by Curcumin via Canonical Wnt Pathway. Molecular neurobiology (2015)
- [144] A. S. Jaiswal, B. P. Marlow, N. Gupta and S. Narayan: Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene, 21(55), 8414-27(2002)
- [145] S. Bose, A. K. Panda, S. Mukherjee and G. Sa: Curcumin and tumor immune-editing: resurrecting the immune system. Cell division, 10, 6(2015)
- [146] S. C. Gupta, S. Patchva and B. B. Aggarwal: Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195-218(2013)
- [147] P. S. Klein and D. A. Melton: A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8455-9(1996)
- [148] B. T. Livingston and F. H. Wilt: Range and stability of cell fate determination in isolated sea urchin blastomeres. Development, 108(3), 403-10(1990)
- [149] A. Fainsod, H. Steinbeisser and E. M. De Robertis: On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. The EMBO journal, 13(21), 5015-25(1994)
- [150] C. A. Larabell, M. Torres, B. A. Rowning, C. Yost, J. R. Miller, M. Wu, D. Kimelman and R. T. Moon: Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. The Journal of cell biology, 136(5), 1123-36(1997)
- [151] J. K. Rybakowski: Factors associated with lithium efficacy in bipolar disorder. Harvard review of psychiatry, 22(6), 353-7(2014)
- [152] M. Zhang, Y. Yan, Y. B. Lim, D. Tang, R. Xie, A. Chen, P. Tai, S. E. Harris, L. Xing, Y. X. Qin and D. Chen: BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. Journal of cellular biochemistry, 108(4), 896-905(2009)
- [153] N. Tang, W. X. Song, J. Luo, X. Luo, J. Chen, K. A. Sharff, Y. Bi, B. C. He, J. Y. Huang, G. H. Zhu, Y. X. Su, W. Jiang, M. Tang, Y. He, Y. Wang, L. Chen, G. W. Zuo, J. Shen, X. Pan, R. R. Reid, H. H. Luu, R. C. Haydon and T. C. He: BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. Journal of cellular and molecular medicine, 13(8B), 2448-64(2009)
- [154] E. Nemoto, Y. Ebe, S. Kanaya, M. Tsuchiya, T. Nakamura, M. Tamura and H. Shimauchi: Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis. Biochemical and biophysical research communications, 422(4), 627-32(2012)
- [155] N. Kamiya, L. Ye, T. Kobayashi, Y. Mochida, M. Yamauchi, H. M. Kronenberg, J. Q. Feng and Y. Mishina: BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development, 135(22), 3801-11(2008)
- [156] G. Han, A. G. Li, Y. Y. Liang, P. Owens, W. He, S. Lu, Y. Yoshimatsu, D. Wang, P. Ten Dijke, X. Lin and X. J. Wang: Smad7-induced beta-catenin degradation alters epidermal appendage development. Developmental cell, 11(3), 301-12(2006)
- [157] W. Liu, H. Rui, J. Wang, S. Lin, Y. He, M. Chen, Q. Li, Z. Ye, S. Zhang, S. C. Chan, Y. G. Chen, J. Han and S. C. Lin: Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. The EMBO journal, 25(8), 1646-58(2006)
- [158] M. Furuhashi, K. Yagi, H. Yamamoto, Y. Furukawa, S. Shimada, Y. Nakamura, A. Kikuchi, K. Miyazono and M. Kato: Axin facilitates Smad3 activation in the transforming growth factor beta signaling pathway. Molecular and cellular biology, 21(15), 5132-41(2001)
- [159] M. S. Rahman, N. Akhtar, H. M. Jamil, R. S. Banik and S. M. Asaduzzaman: TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone research, 3, 15005(2015)
- [160] B. Piersma, R. A. Bank and M. Boersema: Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Frontiers in medicine, 2, 59 (2015)
- [161] R. Alvarez-Medina, G. Le Dreau, M. Ros and E. Marti: Hedgehog activation is required upstream of Wnt signalling to control neural progenitor proliferation. Development, 136(19), 3301-9 (2009)
- [162] G. Rawadi, B. Vayssiere, F. Dunn, R. Baron and S. Roman-Roman: BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research, 18(10), 1842-53 (2003)
- [163] D. M. Gonzalez and D. Medici: Signaling mechanisms of the epithelial-mesenchymal transition. Science signaling, 7(344), re8 (2014)
- [164] J. Taipale and P. A. Beachy: The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835), 349-54 (2001)
- [165] E. Zoni, G. van der Pluijm, P. C. Gray and M. Kruithof-de Julio: Epithelial Plasticity in Cancer: Unmasking a MicroRNA Network for TGF-beta-, Notch-, and Wnt-Mediated EMT. Journal of oncology, 2015, 198967 (2015)
- [166] L. Lum and H. Clevers: Cell biology. The unusual case of Porcupine. Science, 337(6097), 922-3 (2012)
