Information
References
Contents
Download
[1]A.N. Hale, D.J. Ledbetter, T.R. Gawriluk, E.B. Rucker 3rd: Autophagy: regulation and role in development. Autophagy 9: 951–972 (2013)
[2]B. Levine, G. Kroemer: Autophagy in the pathogenesis of disease. Cell 132: 27–42 (2008)
[3]Y. Fuchs, H. Steller: Programmed cell death in animal development and disease. Cell 147: 742–758 (2011)
[4]A. Kaczmarek, P. Vandenabeele, D.V. Krysko: Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance. Immunity 38: 209–223 (2013)
[5]C. Gordy, Y.W. He: The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3: 17–27 (2012)
[6]D.S. Yang, P. Stavrides, P.S. Mohan, S. Kaushik, A. Kumar, M. Ohno, S.D. Schmidt, D. Wesson, U. Bandyopadhyay, Y. Jiang, M. Pawlik, C.M. Peterhoff, A.J. Yang, D.A. Wilson, P. St George-Hyslop, D. Westaway, P.M. Matthews, E. Levy, A.M. Cuervo, R.A. Nixon: Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134: 258–277 (2011)
[7]Y. Saitoh, N. Fujikake, Y. Okamoto, H.A. Popiel, Y. Hatanaka, M. Ueyama, M. Suzuki, S. Gaumer, M. Murata, K. Wada, Y. Nagi: P62 Plays a Protective Role in the Autophagic Degradation of Polyglutamine Protein Oligomers in Polyglutamine Disease Model Flies. J Biol Chem 290: 1442–1453 (2015)
[8]Y. Zhao, D. Srivastava: A developmental view of microRNA function. Trends Biochem Sci 32: 189–197 (2007)
[9]A. Aravin, T. Tuschl: Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579: 5830–5840 (2005)
[10]V.N. Kim: Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev 20: 1993–1997 (2006)
[11]S. Ounzain, F. Burdet, M. Ibberson, T. Pedrazzini: Discovery and functional characterization of cardiovascular long noncoding RNAs. J Mol Cell Cardiol 89: 17–26 (2015)
[12]A. Pasquinelli, B. Reinhart, F. Slack, M. Martindales, M. Kuroda, B. Maller, D. Hayward, E. Ball, B. Degnan, P. Müller, J. Spring, A. Srinivasan, M. Fishamn, J. Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson, G. Ruvkun: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89 (2000)
[13]H. Zhai, A. Fesler, J. Ju: MicroRNA A third dimension in autophagy. Cell Cycle 12: 246–250 (2013)
[14]J. Krol, I. Loedige, W. Filipowicz: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610 (2010)
[15]Y. Huang, X. Shen, Q. Zou, S. Wang, S. Tang, G. Zhang: Biological functions of microRNAs: a review. J Physiol Biochem 67: 129–139 (2011)
[16]D. Glick, S. Barth, K.F. Macleod: Autophagy: cellular and molecular mechanisms. J Pathol 221: 3–12 (2010)
[17]C.W. Wang, D. J. Klionsky: The Molecular Mechanism of Autophagy. Mol Med 9: 65–76 (2003)
[18]D.W. Hailey, A.S. Rambold, P. Satpute-Krishnan, K. Mitra, R. Sougrat, P.K. Kim, J. Lippincott-Schwartz: Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation. Cell 141: 656–667 (2010)
[19]B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, D.C. Rubinsztein: Plasma membrane contributes to the formation of pre- autophagosomal structures. Cell 12: 747–757 (2011)
[20]C. Puri, M. Renna, C.F. Bento, K. Moreau, D.C. Rubinsztein: Diverse Autophagosome Membrane Sources Coalesce in Recycling Endosomes. Cell 154: 1285–1299 (2013)
[21]A. Longatti, C.A. Lamb, M. Razi, S. Yoshimura, F.A. Barr, S.A. Tooze: TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 197: 659–675 (2012)
[22]B. Levine, D.J. Klionsky: Development by Self-DigestionMolecular Mechanisms and Biological Functions of Autophagy. Dev Cell 6: 463–477 (2004)
[23]M.C. Maiuri, E. Zalckvar, A. Kimchi, G. Kroemer: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741–752 (2007)
[24]J. Kim, M. Kundu, B. Viollet, K.L. Guan: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132–141 (2011)
[25]Y. Feng, D. He, Z. Yao, D.J. Klionsky: The machinery of macroautophagy. Cell Res 24: 24–41 (2014)
[26]H. Nakatogawa, K. Suzuki, Y. Kamada, Y. Ohsumi: Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10: 458–467 (2009)
[27]N. Mizushima, M. Komatsu: Autophagy: Renovation of Cells and Tissues. Cell 147: 728–741 (2011)
[28]Z. Jing, W. Han, X. Sui, J. Xie, H. Pan: Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 356: 332–338 (2015)
[29]V.Y. Nazarko, Q. Zhong: ULK1 targets Beclin-1 in autophagy. Nat Cell Biol 15: 727–728 (2013)
[30]Z. Su, Z. Yang, Y. Xu, Y. Chen, Q. Yu: MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6 (2015)
[31]A. Meenhuis, P.A. van Veelen, H. de Looper, N. van Boxtel, I.J. van den Berge, S.M. Sun, E. Taskesen, P. Stern, A.H. de Ru, A.J. van Adrichem, J. Demmers, M. Jongen-Lavrencic, B. Löwenberg, I.P. Touw, P.A. Sharp, S.J. Erkeland: MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 118: 916–925 (2011)
[32]X. Ao, L. Zou, Y. Wu Y: Regulation of autophagy by the Rab GTPase network. Cell Death Differ 21: 348–358 (2014)
[33]P. Jiang, T. Nishimura, Y. Sakamaki, E. Itakura, T. Hatta, T. Natsume, N. Mizushima: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25: 1327–1337 (2014)
[34]P.E. Czabotar, G. Lessene, A. Strasser, J.M. Adams: Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15: 49–63 (2013)
[35]S. Sinha, B. Levine: The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 Suppl 1: S137–S148 (2008)
[36]L. Bo, D. Su-Ling, L. Fang, Z. Lu-Yu, A. Tao, D. Stefan, W. Kun, L. Pei-Feng: Autophagic program is regulated by miR-325. Cell Death Differ 21: 967–977 (2014)
[37]X. Sui, J. Zhu, J. Zhou, X. Wang, D. Li, W. Han, Y. Fang, H. Pan: Epigenetic modifications as regulatory elements of autophagy in cancer. Cancer Lett 360: 106–113 (2015)
[38]Z. Yue, S. Jin, C. Yang, A.J. Levine, N. Heintz: Embryonic Development, Is a Haploinsufficient Tumor Suppressor. Proc. Natl. Acad. Sci. USA 100 (2003)
[39]X. Qu, J. Yu, G. Bhagat, N. Furuya, H. Hibshoosh, A. Troxel, J. Rosen, E.L. Eskelinen, N. Mizushima, Y. Ohsumi, G. Cattoretti, B. Levine: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809–1820 (2003)
[40]D. Perlmutter: The role of autophagy in alpha-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2: 258–263 (2006)
[41]T. Yorimitsu, D.J. Klionsky: Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17: 279–285 (2007)
[42]T. Kamimoto: Intracellular Inclusions Containing Mutant 1-Antitrypsin Z Are Propagated in the Absence of Autophagic Activity. J Biol Chem 281: 4467–4476 (2006)
[43]Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Rådmark, S. Kim, V.N. Kim: The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419 (2003)
[44]A.K.L. Leung: The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends Cell Biol 25: 601–610 (2015)
[45]T.P. Chendrimada, R.I. Gregory, E. Kumaraswamy, N. Cooch, K. Nishikura, R. Shiekhattar: TRBP recruites the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436: 740–744 (2005)
[46]A. Valinezhad Orang, R. Safaralizadeh, M. Kazemzadeh-Bavili: Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014: 970607 (2014)
[47]M.R. Fabian, N. Sonenberg, W. Filipowicz: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79: 351–379 (2010)
[48]M.A. Valencia-Sanchez, J. Liu, G.J. Hannon, R. Parker: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 515–524 (2006)
[49]N.L. Garneau, J. Wilusz, C.J. Wilusz: The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8: 113–126 (2007)
[50]S. Bagga, J. Bracht, S. Hunter, K. Massirer, J. Holtz, R. Eachus, A.E. Pasquinelli: Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation. Cell 122: 553–563 (2005)
[51]S. Iwasaki, Y. Tomari: Argonaute-mediated translational repression (and activation) Fly (Austin) 3: 204–206 (2009)
[52]A. Eulalio, E. Huntzinger, E. Izaurralde Getting to the root of miRNA-mediated gene silencing. Cell 132: 9–14 (2008)
[53]T. Eystathioy, A. Jakymiw, E.K.L. Chan, B. Séraphin, N. Cougot, M.J. Fritzler: The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9: 1171–1173 (2003)
[54]M.A. Andrei, D. Ingelfinger, R. Heintzmann, T. Achsel, R. Rivera-Pomar, R. Lührmann: A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11: 717–727 (2005)
[55]G.L. Sen, H.M. Blau: Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7: 633–636 (2005)
[56]T.P. Chendrimada, K.J. Finn, X. Ji, D. Baillat, R.I. Gregory, S.A. Liebhaber, A.E. Pasquinelli, R. Shiekhattar: MicroRNA silencing through RISC recruitment of eIF6. Nature 447: 823–828 (2007)
[57]X.C. Ding, H. Großhans: Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 28: 213–222 (2009)
[58]G. Mathonnet: MicroRNA Inhibition of Translation. Science (80-) 317: 1764 (2007)
[59]R.S. Pillai, S.N. Bhattacharyya, W. Filipowicz: Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17: 118–126. (2007)
[60]S. Vasudevan, Y. Tong, J.A. Steitz: Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 318: 1931–1934 (2007)
[61]Z. Yang: GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci 117: 5567–5578 (2004)
[62]E. Lund, M.D. Sheets, S.B Imboden, J.E. Dahlberg: Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25: 1121–1131 (2011)
[63]H. Zhu, H. Wu, X. Liu, B. Li, Y. Chen, X. Ren, C.G. Liu, J.M Yang: Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5: 816–823 (2009)
[64]J. Wang, K. Yang, L. Zhou, Minhaowu, Y. Wu, M. Zhu, X. Lai, T. Chen, L. Feng, M. Li, C. Huang, Q. Zhong, X. Huang: MicroRNA-155 Promotes Autophagy to Eliminate Intracellular Mycobacteria by Targeting Rheb. PLoS Pathog 9: e1003697 (2013)
[65]G. Zhao, J.G. Zhang, Y. Liu, Q. Qin, B. Wang, K. Tian, L. Liu, X. Li, Y. Niu, S.C. Deng, C.Y. Wang: miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 12: 83–93 (2013)
[66]B. Pan, J. Yi, H. Song: MicroRNA-mediated autophagic signaling networks and cancer chemoresistance. Cancer Biother Radiopharm 28: 573–578 (2013)
[67]L. Ciuffreda, C. Di Sanza, U. Incani, M. Milella: The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets 10: 484–495 (2010)
[68]H. Wu, F. Wang, S. Hu, C. Yin, X. Li, S. Zhao, J. Wang, X. Yan: MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal 24: 2179–2186 (2012)
[69]Y. Huang, A.Y. Chuang, E.A. Ratovitski: Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 10: 3938–3947 (2011)
[70]R. Menghini, V. Casagrande, A. Marino, V. Marchetti, M. Cardellini, R. Stoehr, S. Rizza, E. Martelli, S. Greco, A. Mauriello, A. Ippoliti, E. Martelli, R. Lauro, M. Federici: MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 5: e1029 (2014)
[71]G. Korkmaz, C. le Sage, K.A. Tekirdag, R. Agami, D. Gozuacik: miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8: 165–176 (2012)
[72]Y. Huang, R. Guerrero-Preston, E.A. Ratovitski: Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 11: 1247–1259 (2012)
[73]G. Shi, J. Shi, K. Liu, N. Liu, Y. Wang, Z. Fu, J. Ding, L. Jia, W. Yuan: Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61: 504–512 (2013)
[74]X. Dai, C. Tan: Combination of microRNA therapeutics with small-molecule anticancer drugs: Mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 81: 184–197 (2014)
[75]Y. Xu, Y. An, Y. Wang, C. Zhang, H. Zhang, C. Huang, H. Jiang, X. Wang, X. Li: miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 29: 2019–2024 (2013)
[76]P. Wang, J. Zhang, L. Zhang, Z. Zhu, J. Fan, L. Chen, L. Zhuang, J. Luo, H. Chen, L. Liu, Z. Chen, Z. Meng: MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 145: 1133–1143.e12 (2013)
[77]S. Comincini, G. Allavena, S. Palumbo, M. Morini, F. Durando, F. Angeletti, L. Pirtoli, C. Miracco: microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14: 574–586 (2013)
[78]K. Wang, C. Liu, L. Zhou, J. Wang, M. Wang, B. Zhao, W.K. Zhao, S.J. Xu, L.H. Fan, X.J. Zhang, C. Feng, C.Q. Wang, Y.F. Zhao, P.F. Li: APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6: 1–11 (2015)
[79]Y. Chen, R. Liersch, M. Detmar: The miR-290-295 cluster suppresses autophagic cell death of melanoma cells. Sci Rep 2: 808 (2012)
[80]Y. Chang, W. Yan, X. He, L. Zhang, C. Li, H. Huang, G. Nace, D.A. Geller, J. Lin, A. Tsung: MiR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 143: 177–187 (2012)
[81]J. Huang, W. Sun, H. Huang, J. Ye, W. Pan, Y. Zhong, C. Cheng, X. You, B. Liu, L. Xiong, S. Liu: miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS One 9: e94382 (2014)
[82]V. Kovaleva, R. Mora, Y.J. Park, C. Plass, A.I. Chiramel, R. Bartenschlager, H. Döhner, S. Stilgenbauer, A. Pscherer, P. Lichter, M. Seiffert: miRNA-130a Targets ATG2B and DICER1 to Inhibit Autophagy and Trigger Killing of Chronic Lymphocytic Leukemia Cells. Cancer Res 72: 1763–1772 (2012)
[83]D. Gibbings, S. Mostowy, F. Jay, Y. Schwab, P. Cossart, O. Voinnet: Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14: 1314–1321 (2012)
[84]D. Gibbings, S. Mostowy, O. Voinnet: Autophagy selectively regulates miRNA homeostasis. Autophagy 9: 781–783 (2013)
[85]H. Shimomura, F. Terasaki, T. Hayashi, Y. Kitaura, T. Isomura, H. Suma: Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J 65: 965–968 (2001)
[86]R.R. Bartz, H.B. Suliman, C.A. Piantadosi: Redox mechanisms of cardiomyocyte mitochondrial protection. Front Physiol 6: 1–8 (2015)
[87]A. Nemchenko, M. Chiong, A. Turer, S. Lavandero, J.A. Hill: Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 51: 584–593 (2011)
[88]G. Selvetella: Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence. Cardiovasc Res 63: 373–380 (2004)
[89]Y.K. Tham, B.C. Bernardo, J.Y.Y. Ooi, K.L. Weeks, J.R. McMullen: Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol : 1401–1438 (2015)
[90]G.G. Schiattarella, J.A. Hill: Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol (2015)
[91]W. Martinet, M.W.M. Knaapen, M.M. Kockx, G.R.Y. De Meyer: Autophagy in cardiovascular disease. Trends Mol Med 13: 482–491 (2007)
[92]M. Xie, C.R. Morales, S. Lavandero, J.A. Hill: Tuning flux: autophagy as a target of heart disease therapy. Curr Opin Cardiol 26: 216–222 (2011)
[93]J.F. Chen, E.P. Murchison, R. Tang, T.E. Callis, M. Tatsuguchi, Z. Deng, M. Rojas, S.M. Hammond, M.D. Schneider, C.H. Selzman, G. Meissner, C. Patterson, G.J. Hannon, D.Z. Wang: Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 105: 2111–2116 (2008)
[94]E. van Rooij, L.B. Sutherland, X. Qi, J.A. Richardson, J. Hill, E.N. Olson: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316: 575–579 (2007)
[95]X. Yin, C. Peng, W. Ning, C. Li, Z. Ren, J. Zhang, H. Gao, K. Zhao: miR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy. Mol Cell Biochem 379: 1–6 (2013)
[96]W. Pan, Y. Zhong, C. Cheng, B. Liu, L. Wang, A. Li, L. Xiong, S. Liu: MiR-30-Regulated Autophagy Mediates Angiotensin II-Induced Myocardial Hypertrophy. PLoS One 8: 1–14 (2013)
[97]R.A. Boon, K. Iekushi, S. Lechner, T. Seeger, A. Fischer, S. Heydt, D. Kaluza, K. Tréguer, G. Carmona, A. Bonauer, A.J. Horrevoets, N. Didier, Z. Girmatsion, P. Billiczki, J.R. Ehrlich, H.A. Katus, O.J. Müller, M. Potente, A.M. Zeiher, H. Hermeking, S. Dimmeler: MicroRNA-34a regulates cardiac ageing and function. Nature 495: 107–110 (2013)
[98]A. Ucar, S.K. Gupta, J. Fiedler, E. Erikci, M. Kardasinski, S. Batkai, S. Dangwal, R. Kumarswamy, C. Bang, A. Holzmann, J. Remke, M. Caprio, C. Jentzsch, S. Engelhardt, S. Geisendorf, C. Glas, T.G. Hofmann, M. Nessling, K. Richter, M. Schiffer, L. Carrier, L.C. Napp, J. Bauersachs, K. Chowdhury, T. Thum: The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3: 1078 (2012)
[99]M. Su, J. Wang, C. Wang, X. Wang, W. Dong, W. Qiu, Y. Wang, X. Zhao, Y. Zou, L. Song, L. Zhang, R. Hui: MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ 22: 986–999 (2015)
[100]L. Song, M. Su, S. Wang, Y. Zou, X. Wang, H. Cui, P. Zhao, R. Hui, J. Wang: MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med 18, 11 1–9 (2014)
[101]C. Buller, R. Loberg, M. Fan, Q. Zhu, J.L. Park, E. Vesely, K. Inoki, K.L. Guan, F.C. Brosius 3rd: A GSK-3 / TSC2 / mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Phsyiol Cell Phsyiol 295 3 836–843 (2008)
[102]Q. Li, J. Xie, R. Li, J. Shi, J. Sun, R. Gu, L. Ding, L. Wang, B. Xu: Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J Cell Mol Med 18: 919–928 (2014)
[103]S. Liu, S. Chen, M. Li, B. Zhang, P. Shen, P. Liu, D. Zheng, Y. Chen, J. Jiang: Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Arch Biochem Biophys 590: 37–47 (2016)
[104]K.K. Singh, F. Lovren, Y. Pan, A. Quan, A. Ramadan, P.N. Matkar, M. Ehsan, P. Sandhu, L.E. Mantella, N. Gupta, H. Teoh, M. Parotto, A. Tabuchi, W.M. Kuebler, M. Al-Omran, T. Finkel, S. Verma: The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem 290: 2547–2559 (2015)
[105]R.F. Duisters, A.J. Tijsen, B. Schroen, J.J. Leenders, V. Lentink, I. van der Made, V. Herias, R.E. van Leeuwen, M.W. Schellings, P. Barenbrug, J.G. Maessen, S. Heymans, Y.M. Pinto, E.E. Creemers: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104: 170–178 (2009)
[106]Z. Pan, X. Sun, H. Shan, N. Wang, J. Wang, J. Ren, S. Feng, L. Xie, C. Lu, Y. Yuan, Y. Zhang, Y. Wang, Y. Lu, B. Yang: miR-101 Inhibited Post-Infarct Cardiac Fibrosis and Improved Left Ventricular Compliance via FOS/TGFβ1 Pathway. Circulation : 840–850 (2012)
[107]D. Wu, H. Jiang, S. Chen, H. Zhang: Inhibition of microRNA-101 attenuates hypoxia/reoxygenation-induced apoptosis through induction of autophagy in H9c2 cardiomyocytes. Mol Med Rep 11: 3988–3994 (2015)
[108]N.J. Pagidipati, T.A. Gaziano: Estimating Deaths From Cardiovascular Disease: A Review of Global Methodologies of Mortality Measurement. Circulation 127: 749–756 (2013)
[109]Z. Zhao, J. Vinten-Johansen: Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 55: 438–455 (2002)
[110]G.N. Pierce, M.P. Czubryt: The Contribution of Ionic Imbalance to Ischemia Reperfusion-Induced Injury. J Mol Cell Cardiol 27: 53–63 (1995)
[111]C. Schafer, Y.V. Ladilov, B. Siegmund, H.M. Piper: Importance of bicarbonate transport for protection of cardiomyocytes against reoxygenation injury. Am J Hear Circ Physiol 278: 1457–1463 (2000)
[112]M. Bonora, P. Pinton: The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 4: 302 (2014)
[113]J. Li, R. Sagar, N. Gelber, J. Rutka, N. Sabah, R.A. Gladstone, C. Wei, P. Hu, R.K. Kharbanda, A.N. Redington: MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109: 1–15 (2014)
[114]X. Li, Z. Zeng, Q. Li, Q. Xu, J. Xie, H. Hao, G. Luo, W. Liao, J. Bin, X. Huang, Y. Liao: Inhibition of microRNA-497 ameliorates anoxia / reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget 6: 18829–18844 (2015)
[115]J. Xiao, X. Zhu, B. He, Y. Zhang, B. Kang, Z. Wang, X Ni: MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci 18: 35 (2011)
[116]Cardiovascular Disease and Diabetes Am Hear Assoc. (2015)
[117]S. Greco, P. Fasanaro, S. Castelvecchio, Y. D’Alessandra, D. Arcelli, M. Di Donato, A. Malavazos, M.C. Capogrossi, L. Menicanti, F. Martelli: MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 61: 1633–1641 (2012)
[118]X. Diao, E. Shen, X. Wang, B. Hu: Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice. Mol Med Rep 4: 633–640 (2011)
[119]B. Feng, S. Chen, B. George, Q. Feng, S. Chakrabarti: miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26: 40–49 (2010)
[120]S.S. Nandi, M.J. Duryee, H.R Shahshahan, G.M. Thiele, R. Daniel: Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am J Transl Res 7: 683–696 (2015)
[121]B. Vogelstein, D. Lane, A.J. Levine: Surfing the p53 network. Nature 408: 307–310 (2000)
[122]C.P. Concepcion, Y.C. Han, P. Mu, C. Bonetti, E. Yao, A. D’Andrea, J.A. Vindigal, W.P. Maughan, P. Ogrodowski, A. Ventura: Intact p53-Dependent Responses in miR-34–Deficient Mice. PLoS Genet 8: e1002797 (2012)
[123]Z. Xie, K. Lau, B. Eby, P. Lozano, C. He, B. Pennington, H. Li, S. Rathi, Y. Dong, R. Tian, D. Kem, M.H. Zou: Improvement of Cardiac Functions by Chronic Metformin Treatment Is Associated With Enhanced Cardiac Autophagy in Diabetic OVE26 Mice. Diabetes 60: 1770–1778 (2011)
[124]R. Ross: The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362: 801-809 (1993)
[125]P. Wang, J. Liang, Y. Li, J. Li, X. Yang, X. Zhang, S. Han, S. Li, J. Li: Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res 39: 1279–1291 (2014)
[126]J. Tao, W. Liu, G. Shang, Y. Zheng, J. Huang, R. Lin, L. Chen: MiR-207/352 regulate lysosomal-associated membrane proteins and enzymes following ischemic stroke. Neuroscience 305: 1–14 (2015)
[127]Y. Yuan, J. Zhao, S. Yan, D. Wang, S. Zhang, F. Yun, H. Zhao, L. Sun, G. Liu, X. Ding, L. Liu, Y. Li: Autophagy: A potential novel mechanistic contributor to atrial fibrillation. Int J Cardiol 172: 492–494 (2014)
[128]C. Deroyer, J. Magne, M. Moonen, C. Le Goff, L. Dupont, A. Hulin, M. Radermecker, A. Colige, E. Cavalier, P. Kolh, L. Pierard, P. Lancellotti, M.P. Merville, M. Fillet: New biomarkers for primary mitral regurgitation. Clin Proteomics 12: 25 (2015)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
MicroRNA regulation of autophagy in cardiovascular disease
1 Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
2 Department of Pharmacology, The Penn State Hershey Cancer Institute, The Pennsylvania State University, College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
Abstract
Autophagy, a form of lysosomal degradation capable of eliminating dysfunctional proteins and organelles, is a cellular process associated with homeostasis. Autophagy functions in cell survival by breaking down proteins and organelles and recycling them to meet metabolic demands. However, aberrant up regulation of autophagy can function as an alternative to apoptosis. The duality of autophagy, and its regulation over cell survival/death, intimately links it with human disease. Non-coding RNAs regulate mRNA levels and elicit diverse effects on mammalian protein expression. The most studied non-coding RNAs to-date are microRNAs (miRNA). MicroRNAs function in post-transcriptional regulation, causing profound changes in protein levels, and affect many biological processes and diseases. The role and regulation of autophagy, whether it is beneficial or harmful, is a controversial topic in cardiovascular disease. A number of recent studies have identified miRNAs that target autophagy-related proteins and influence the development, progression, or treatment of cardiovascular disease. Understanding the mechanisms by which these miRNAs work can provide promising insight and potential progress towards the development of therapeutic treatments in cardiovascular disease.
Keywords
- Autophagy
- microRNAs
- Cardiovascular Diseases
- Post-Transcriptional Regulation
- Review
References
- [1] A.N. Hale, D.J. Ledbetter, T.R. Gawriluk, E.B. Rucker 3rd: Autophagy: regulation and role in development. Autophagy 9: 951–972 (2013)
- [2] B. Levine, G. Kroemer: Autophagy in the pathogenesis of disease. Cell 132: 27–42 (2008)
- [3] Y. Fuchs, H. Steller: Programmed cell death in animal development and disease. Cell 147: 742–758 (2011)
- [4] A. Kaczmarek, P. Vandenabeele, D.V. Krysko: Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance. Immunity 38: 209–223 (2013)
- [5] C. Gordy, Y.W. He: The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3: 17–27 (2012)
- [6] D.S. Yang, P. Stavrides, P.S. Mohan, S. Kaushik, A. Kumar, M. Ohno, S.D. Schmidt, D. Wesson, U. Bandyopadhyay, Y. Jiang, M. Pawlik, C.M. Peterhoff, A.J. Yang, D.A. Wilson, P. St George-Hyslop, D. Westaway, P.M. Matthews, E. Levy, A.M. Cuervo, R.A. Nixon: Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134: 258–277 (2011)
- [7] Y. Saitoh, N. Fujikake, Y. Okamoto, H.A. Popiel, Y. Hatanaka, M. Ueyama, M. Suzuki, S. Gaumer, M. Murata, K. Wada, Y. Nagi: P62 Plays a Protective Role in the Autophagic Degradation of Polyglutamine Protein Oligomers in Polyglutamine Disease Model Flies. J Biol Chem 290: 1442–1453 (2015)
- [8] Y. Zhao, D. Srivastava: A developmental view of microRNA function. Trends Biochem Sci 32: 189–197 (2007)
- [9] A. Aravin, T. Tuschl: Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579: 5830–5840 (2005)
- [10] V.N. Kim: Small RNAs just got bigger: Piwi-interacting RNAs (piRNAs) in mammalian testes. Genes Dev 20: 1993–1997 (2006)
- [11] S. Ounzain, F. Burdet, M. Ibberson, T. Pedrazzini: Discovery and functional characterization of cardiovascular long noncoding RNAs. J Mol Cell Cardiol 89: 17–26 (2015)
- [12] A. Pasquinelli, B. Reinhart, F. Slack, M. Martindales, M. Kuroda, B. Maller, D. Hayward, E. Ball, B. Degnan, P. Müller, J. Spring, A. Srinivasan, M. Fishamn, J. Finnerty, J. Corbo, M. Levine, P. Leahy, E. Davidson, G. Ruvkun: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89 (2000)
- [13] H. Zhai, A. Fesler, J. Ju: MicroRNA A third dimension in autophagy. Cell Cycle 12: 246–250 (2013)
- [14] J. Krol, I. Loedige, W. Filipowicz: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610 (2010)
- [15] Y. Huang, X. Shen, Q. Zou, S. Wang, S. Tang, G. Zhang: Biological functions of microRNAs: a review. J Physiol Biochem 67: 129–139 (2011)
- [16] D. Glick, S. Barth, K.F. Macleod: Autophagy: cellular and molecular mechanisms. J Pathol 221: 3–12 (2010)
- [17] C.W. Wang, D. J. Klionsky: The Molecular Mechanism of Autophagy. Mol Med 9: 65–76 (2003)
- [18] D.W. Hailey, A.S. Rambold, P. Satpute-Krishnan, K. Mitra, R. Sougrat, P.K. Kim, J. Lippincott-Schwartz: Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation. Cell 141: 656–667 (2010)
- [19] B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, D.C. Rubinsztein: Plasma membrane contributes to the formation of pre- autophagosomal structures. Cell 12: 747–757 (2011)
- [20] C. Puri, M. Renna, C.F. Bento, K. Moreau, D.C. Rubinsztein: Diverse Autophagosome Membrane Sources Coalesce in Recycling Endosomes. Cell 154: 1285–1299 (2013)
- [21] A. Longatti, C.A. Lamb, M. Razi, S. Yoshimura, F.A. Barr, S.A. Tooze: TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 197: 659–675 (2012)
- [22] B. Levine, D.J. Klionsky: Development by Self-DigestionMolecular Mechanisms and Biological Functions of Autophagy. Dev Cell 6: 463–477 (2004)
- [23] M.C. Maiuri, E. Zalckvar, A. Kimchi, G. Kroemer: Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741–752 (2007)
- [24] J. Kim, M. Kundu, B. Viollet, K.L. Guan: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132–141 (2011)
- [25] Y. Feng, D. He, Z. Yao, D.J. Klionsky: The machinery of macroautophagy. Cell Res 24: 24–41 (2014)
- [26] H. Nakatogawa, K. Suzuki, Y. Kamada, Y. Ohsumi: Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10: 458–467 (2009)
- [27] N. Mizushima, M. Komatsu: Autophagy: Renovation of Cells and Tissues. Cell 147: 728–741 (2011)
- [28] Z. Jing, W. Han, X. Sui, J. Xie, H. Pan: Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 356: 332–338 (2015)
- [29] V.Y. Nazarko, Q. Zhong: ULK1 targets Beclin-1 in autophagy. Nat Cell Biol 15: 727–728 (2013)
- [30] Z. Su, Z. Yang, Y. Xu, Y. Chen, Q. Yu: MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6 (2015)
- [31] A. Meenhuis, P.A. van Veelen, H. de Looper, N. van Boxtel, I.J. van den Berge, S.M. Sun, E. Taskesen, P. Stern, A.H. de Ru, A.J. van Adrichem, J. Demmers, M. Jongen-Lavrencic, B. Löwenberg, I.P. Touw, P.A. Sharp, S.J. Erkeland: MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice. Blood 118: 916–925 (2011)
- [32] X. Ao, L. Zou, Y. Wu Y: Regulation of autophagy by the Rab GTPase network. Cell Death Differ 21: 348–358 (2014)
- [33] P. Jiang, T. Nishimura, Y. Sakamaki, E. Itakura, T. Hatta, T. Natsume, N. Mizushima: The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25: 1327–1337 (2014)
- [34] P.E. Czabotar, G. Lessene, A. Strasser, J.M. Adams: Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15: 49–63 (2013)
- [35] S. Sinha, B. Levine: The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 Suppl 1: S137–S148 (2008)
- [36] L. Bo, D. Su-Ling, L. Fang, Z. Lu-Yu, A. Tao, D. Stefan, W. Kun, L. Pei-Feng: Autophagic program is regulated by miR-325. Cell Death Differ 21: 967–977 (2014)
- [37] X. Sui, J. Zhu, J. Zhou, X. Wang, D. Li, W. Han, Y. Fang, H. Pan: Epigenetic modifications as regulatory elements of autophagy in cancer. Cancer Lett 360: 106–113 (2015)
- [38] Z. Yue, S. Jin, C. Yang, A.J. Levine, N. Heintz: Embryonic Development, Is a Haploinsufficient Tumor Suppressor. Proc. Natl. Acad. Sci. USA 100 (2003)
- [39] X. Qu, J. Yu, G. Bhagat, N. Furuya, H. Hibshoosh, A. Troxel, J. Rosen, E.L. Eskelinen, N. Mizushima, Y. Ohsumi, G. Cattoretti, B. Levine: Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809–1820 (2003)
- [40] D. Perlmutter: The role of autophagy in alpha-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2: 258–263 (2006)
- [41] T. Yorimitsu, D.J. Klionsky: Eating the endoplasmic reticulum: quality control by autophagy. Trends Cell Biol 17: 279–285 (2007)
- [42] T. Kamimoto: Intracellular Inclusions Containing Mutant 1-Antitrypsin Z Are Propagated in the Absence of Autophagic Activity. J Biol Chem 281: 4467–4476 (2006)
- [43] Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Rådmark, S. Kim, V.N. Kim: The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415–419 (2003)
- [44] A.K.L. Leung: The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends Cell Biol 25: 601–610 (2015)
- [45] T.P. Chendrimada, R.I. Gregory, E. Kumaraswamy, N. Cooch, K. Nishikura, R. Shiekhattar: TRBP recruites the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436: 740–744 (2005)
- [46] A. Valinezhad Orang, R. Safaralizadeh, M. Kazemzadeh-Bavili: Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Int J Genomics 2014: 970607 (2014)
- [47] M.R. Fabian, N. Sonenberg, W. Filipowicz: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79: 351–379 (2010)
- [48] M.A. Valencia-Sanchez, J. Liu, G.J. Hannon, R. Parker: Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 515–524 (2006)
- [49] N.L. Garneau, J. Wilusz, C.J. Wilusz: The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8: 113–126 (2007)
- [50] S. Bagga, J. Bracht, S. Hunter, K. Massirer, J. Holtz, R. Eachus, A.E. Pasquinelli: Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation. Cell 122: 553–563 (2005)
- [51] S. Iwasaki, Y. Tomari: Argonaute-mediated translational repression (and activation) Fly (Austin) 3: 204–206 (2009)
- [52] A. Eulalio, E. Huntzinger, E. Izaurralde Getting to the root of miRNA-mediated gene silencing. Cell 132: 9–14 (2008)
- [53] T. Eystathioy, A. Jakymiw, E.K.L. Chan, B. Séraphin, N. Cougot, M.J. Fritzler: The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9: 1171–1173 (2003)
- [54] M.A. Andrei, D. Ingelfinger, R. Heintzmann, T. Achsel, R. Rivera-Pomar, R. Lührmann: A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 11: 717–727 (2005)
- [55] G.L. Sen, H.M. Blau: Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7: 633–636 (2005)
- [56] T.P. Chendrimada, K.J. Finn, X. Ji, D. Baillat, R.I. Gregory, S.A. Liebhaber, A.E. Pasquinelli, R. Shiekhattar: MicroRNA silencing through RISC recruitment of eIF6. Nature 447: 823–828 (2007)
- [57] X.C. Ding, H. Großhans: Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 28: 213–222 (2009)
- [58] G. Mathonnet: MicroRNA Inhibition of Translation. Science (80-) 317: 1764 (2007)
- [59] R.S. Pillai, S.N. Bhattacharyya, W. Filipowicz: Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17: 118–126. (2007)
- [60] S. Vasudevan, Y. Tong, J.A. Steitz: Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science 318: 1931–1934 (2007)
- [61] Z. Yang: GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J Cell Sci 117: 5567–5578 (2004)
- [62] E. Lund, M.D. Sheets, S.B Imboden, J.E. Dahlberg: Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in Xenopus laevis. Genes Dev 25: 1121–1131 (2011)
- [63] H. Zhu, H. Wu, X. Liu, B. Li, Y. Chen, X. Ren, C.G. Liu, J.M Yang: Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy 5: 816–823 (2009)
- [64] J. Wang, K. Yang, L. Zhou, Minhaowu, Y. Wu, M. Zhu, X. Lai, T. Chen, L. Feng, M. Li, C. Huang, Q. Zhong, X. Huang: MicroRNA-155 Promotes Autophagy to Eliminate Intracellular Mycobacteria by Targeting Rheb. PLoS Pathog 9: e1003697 (2013)
- [65] G. Zhao, J.G. Zhang, Y. Liu, Q. Qin, B. Wang, K. Tian, L. Liu, X. Li, Y. Niu, S.C. Deng, C.Y. Wang: miR-148b functions as a tumor suppressor in pancreatic cancer by targeting AMPKα1. Mol Cancer Ther 12: 83–93 (2013)
- [66] B. Pan, J. Yi, H. Song: MicroRNA-mediated autophagic signaling networks and cancer chemoresistance. Cancer Biother Radiopharm 28: 573–578 (2013)
- [67] L. Ciuffreda, C. Di Sanza, U. Incani, M. Milella: The mTOR pathway: a new target in cancer therapy. Curr Cancer Drug Targets 10: 484–495 (2010)
- [68] H. Wu, F. Wang, S. Hu, C. Yin, X. Li, S. Zhao, J. Wang, X. Yan: MiR-20a and miR-106b negatively regulate autophagy induced by leucine deprivation via suppression of ULK1 expression in C2C12 myoblasts. Cell Signal 24: 2179–2186 (2012)
- [69] Y. Huang, A.Y. Chuang, E.A. Ratovitski: Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 10: 3938–3947 (2011)
- [70] R. Menghini, V. Casagrande, A. Marino, V. Marchetti, M. Cardellini, R. Stoehr, S. Rizza, E. Martelli, S. Greco, A. Mauriello, A. Ippoliti, E. Martelli, R. Lauro, M. Federici: MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis 5: e1029 (2014)
- [71] G. Korkmaz, C. le Sage, K.A. Tekirdag, R. Agami, D. Gozuacik: miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8: 165–176 (2012)
- [72] Y. Huang, R. Guerrero-Preston, E.A. Ratovitski: Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 11: 1247–1259 (2012)
- [73] G. Shi, J. Shi, K. Liu, N. Liu, Y. Wang, Z. Fu, J. Ding, L. Jia, W. Yuan: Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61: 504–512 (2013)
- [74] X. Dai, C. Tan: Combination of microRNA therapeutics with small-molecule anticancer drugs: Mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 81: 184–197 (2014)
- [75] Y. Xu, Y. An, Y. Wang, C. Zhang, H. Zhang, C. Huang, H. Jiang, X. Wang, X. Li: miR-101 inhibits autophagy and enhances cisplatin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 29: 2019–2024 (2013)
- [76] P. Wang, J. Zhang, L. Zhang, Z. Zhu, J. Fan, L. Chen, L. Zhuang, J. Luo, H. Chen, L. Liu, Z. Chen, Z. Meng: MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology 145: 1133–1143.e12 (2013)
- [77] S. Comincini, G. Allavena, S. Palumbo, M. Morini, F. Durando, F. Angeletti, L. Pirtoli, C. Miracco: microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14: 574–586 (2013)
- [78] K. Wang, C. Liu, L. Zhou, J. Wang, M. Wang, B. Zhao, W.K. Zhao, S.J. Xu, L.H. Fan, X.J. Zhang, C. Feng, C.Q. Wang, Y.F. Zhao, P.F. Li: APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6: 1–11 (2015)
- [79] Y. Chen, R. Liersch, M. Detmar: The miR-290-295 cluster suppresses autophagic cell death of melanoma cells. Sci Rep 2: 808 (2012)
- [80] Y. Chang, W. Yan, X. He, L. Zhang, C. Li, H. Huang, G. Nace, D.A. Geller, J. Lin, A. Tsung: MiR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 143: 177–187 (2012)
- [81] J. Huang, W. Sun, H. Huang, J. Ye, W. Pan, Y. Zhong, C. Cheng, X. You, B. Liu, L. Xiong, S. Liu: miR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLoS One 9: e94382 (2014)
- [82] V. Kovaleva, R. Mora, Y.J. Park, C. Plass, A.I. Chiramel, R. Bartenschlager, H. Döhner, S. Stilgenbauer, A. Pscherer, P. Lichter, M. Seiffert: miRNA-130a Targets ATG2B and DICER1 to Inhibit Autophagy and Trigger Killing of Chronic Lymphocytic Leukemia Cells. Cancer Res 72: 1763–1772 (2012)
- [83] D. Gibbings, S. Mostowy, F. Jay, Y. Schwab, P. Cossart, O. Voinnet: Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 14: 1314–1321 (2012)
- [84] D. Gibbings, S. Mostowy, O. Voinnet: Autophagy selectively regulates miRNA homeostasis. Autophagy 9: 781–783 (2013)
- [85] H. Shimomura, F. Terasaki, T. Hayashi, Y. Kitaura, T. Isomura, H. Suma: Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J 65: 965–968 (2001)
- [86] R.R. Bartz, H.B. Suliman, C.A. Piantadosi: Redox mechanisms of cardiomyocyte mitochondrial protection. Front Physiol 6: 1–8 (2015)
- [87] A. Nemchenko, M. Chiong, A. Turer, S. Lavandero, J.A. Hill: Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol 51: 584–593 (2011)
- [88] G. Selvetella: Adaptive and maladaptive hypertrophic pathways: points of convergence and divergence. Cardiovasc Res 63: 373–380 (2004)
- [89] Y.K. Tham, B.C. Bernardo, J.Y.Y. Ooi, K.L. Weeks, J.R. McMullen: Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol : 1401–1438 (2015)
- [90] G.G. Schiattarella, J.A. Hill: Therapeutic targeting of autophagy in cardiovascular disease. J Mol Cell Cardiol (2015)
- [91] W. Martinet, M.W.M. Knaapen, M.M. Kockx, G.R.Y. De Meyer: Autophagy in cardiovascular disease. Trends Mol Med 13: 482–491 (2007)
- [92] M. Xie, C.R. Morales, S. Lavandero, J.A. Hill: Tuning flux: autophagy as a target of heart disease therapy. Curr Opin Cardiol 26: 216–222 (2011)
- [93] J.F. Chen, E.P. Murchison, R. Tang, T.E. Callis, M. Tatsuguchi, Z. Deng, M. Rojas, S.M. Hammond, M.D. Schneider, C.H. Selzman, G. Meissner, C. Patterson, G.J. Hannon, D.Z. Wang: Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 105: 2111–2116 (2008)
- [94] E. van Rooij, L.B. Sutherland, X. Qi, J.A. Richardson, J. Hill, E.N. Olson: Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316: 575–579 (2007)
- [95] X. Yin, C. Peng, W. Ning, C. Li, Z. Ren, J. Zhang, H. Gao, K. Zhao: miR-30a downregulation aggravates pressure overload-induced cardiomyocyte hypertrophy. Mol Cell Biochem 379: 1–6 (2013)
- [96] W. Pan, Y. Zhong, C. Cheng, B. Liu, L. Wang, A. Li, L. Xiong, S. Liu: MiR-30-Regulated Autophagy Mediates Angiotensin II-Induced Myocardial Hypertrophy. PLoS One 8: 1–14 (2013)
- [97] R.A. Boon, K. Iekushi, S. Lechner, T. Seeger, A. Fischer, S. Heydt, D. Kaluza, K. Tréguer, G. Carmona, A. Bonauer, A.J. Horrevoets, N. Didier, Z. Girmatsion, P. Billiczki, J.R. Ehrlich, H.A. Katus, O.J. Müller, M. Potente, A.M. Zeiher, H. Hermeking, S. Dimmeler: MicroRNA-34a regulates cardiac ageing and function. Nature 495: 107–110 (2013)
- [98] A. Ucar, S.K. Gupta, J. Fiedler, E. Erikci, M. Kardasinski, S. Batkai, S. Dangwal, R. Kumarswamy, C. Bang, A. Holzmann, J. Remke, M. Caprio, C. Jentzsch, S. Engelhardt, S. Geisendorf, C. Glas, T.G. Hofmann, M. Nessling, K. Richter, M. Schiffer, L. Carrier, L.C. Napp, J. Bauersachs, K. Chowdhury, T. Thum: The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 3: 1078 (2012)
- [99] M. Su, J. Wang, C. Wang, X. Wang, W. Dong, W. Qiu, Y. Wang, X. Zhao, Y. Zou, L. Song, L. Zhang, R. Hui: MicroRNA-221 inhibits autophagy and promotes heart failure by modulating the p27/CDK2/mTOR axis. Cell Death Differ 22: 986–999 (2015)
- [100] L. Song, M. Su, S. Wang, Y. Zou, X. Wang, H. Cui, P. Zhao, R. Hui, J. Wang: MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med 18, 11 1–9 (2014)
- [101] C. Buller, R. Loberg, M. Fan, Q. Zhu, J.L. Park, E. Vesely, K. Inoki, K.L. Guan, F.C. Brosius 3rd: A GSK-3 / TSC2 / mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. Am J Phsyiol Cell Phsyiol 295 3 836–843 (2008)
- [102] Q. Li, J. Xie, R. Li, J. Shi, J. Sun, R. Gu, L. Ding, L. Wang, B. Xu: Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J Cell Mol Med 18: 919–928 (2014)
- [103] S. Liu, S. Chen, M. Li, B. Zhang, P. Shen, P. Liu, D. Zheng, Y. Chen, J. Jiang: Autophagy activation attenuates angiotensin II-induced cardiac fibrosis. Arch Biochem Biophys 590: 37–47 (2016)
- [104] K.K. Singh, F. Lovren, Y. Pan, A. Quan, A. Ramadan, P.N. Matkar, M. Ehsan, P. Sandhu, L.E. Mantella, N. Gupta, H. Teoh, M. Parotto, A. Tabuchi, W.M. Kuebler, M. Al-Omran, T. Finkel, S. Verma: The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem 290: 2547–2559 (2015)
- [105] R.F. Duisters, A.J. Tijsen, B. Schroen, J.J. Leenders, V. Lentink, I. van der Made, V. Herias, R.E. van Leeuwen, M.W. Schellings, P. Barenbrug, J.G. Maessen, S. Heymans, Y.M. Pinto, E.E. Creemers: miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104: 170–178 (2009)
- [106] Z. Pan, X. Sun, H. Shan, N. Wang, J. Wang, J. Ren, S. Feng, L. Xie, C. Lu, Y. Yuan, Y. Zhang, Y. Wang, Y. Lu, B. Yang: miR-101 Inhibited Post-Infarct Cardiac Fibrosis and Improved Left Ventricular Compliance via FOS/TGFβ1 Pathway. Circulation : 840–850 (2012)
- [107] D. Wu, H. Jiang, S. Chen, H. Zhang: Inhibition of microRNA-101 attenuates hypoxia/reoxygenation-induced apoptosis through induction of autophagy in H9c2 cardiomyocytes. Mol Med Rep 11: 3988–3994 (2015)
- [108] N.J. Pagidipati, T.A. Gaziano: Estimating Deaths From Cardiovascular Disease: A Review of Global Methodologies of Mortality Measurement. Circulation 127: 749–756 (2013)
- [109] Z. Zhao, J. Vinten-Johansen: Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 55: 438–455 (2002)
- [110] G.N. Pierce, M.P. Czubryt: The Contribution of Ionic Imbalance to Ischemia Reperfusion-Induced Injury. J Mol Cell Cardiol 27: 53–63 (1995)
- [111] C. Schafer, Y.V. Ladilov, B. Siegmund, H.M. Piper: Importance of bicarbonate transport for protection of cardiomyocytes against reoxygenation injury. Am J Hear Circ Physiol 278: 1457–1463 (2000)
- [112] M. Bonora, P. Pinton: The mitochondrial permeability transition pore and cancer: molecular mechanisms involved in cell death. Front Oncol 4: 302 (2014)
- [113] J. Li, R. Sagar, N. Gelber, J. Rutka, N. Sabah, R.A. Gladstone, C. Wei, P. Hu, R.K. Kharbanda, A.N. Redington: MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109: 1–15 (2014)
- [114] X. Li, Z. Zeng, Q. Li, Q. Xu, J. Xie, H. Hao, G. Luo, W. Liao, J. Bin, X. Huang, Y. Liao: Inhibition of microRNA-497 ameliorates anoxia / reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget 6: 18829–18844 (2015)
- [115] J. Xiao, X. Zhu, B. He, Y. Zhang, B. Kang, Z. Wang, X Ni: MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J Biomed Sci 18: 35 (2011)
- [116] Cardiovascular Disease and Diabetes Am Hear Assoc. (2015)
- [117] S. Greco, P. Fasanaro, S. Castelvecchio, Y. D’Alessandra, D. Arcelli, M. Di Donato, A. Malavazos, M.C. Capogrossi, L. Menicanti, F. Martelli: MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 61: 1633–1641 (2012)
- [118] X. Diao, E. Shen, X. Wang, B. Hu: Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice. Mol Med Rep 4: 633–640 (2011)
- [119] B. Feng, S. Chen, B. George, Q. Feng, S. Chakrabarti: miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26: 40–49 (2010)
- [120] S.S. Nandi, M.J. Duryee, H.R Shahshahan, G.M. Thiele, R. Daniel: Induction of autophagy markers is associated with attenuation of miR-133a in diabetic heart failure patients undergoing mechanical unloading. Am J Transl Res 7: 683–696 (2015)
- [121] B. Vogelstein, D. Lane, A.J. Levine: Surfing the p53 network. Nature 408: 307–310 (2000)
- [122] C.P. Concepcion, Y.C. Han, P. Mu, C. Bonetti, E. Yao, A. D’Andrea, J.A. Vindigal, W.P. Maughan, P. Ogrodowski, A. Ventura: Intact p53-Dependent Responses in miR-34–Deficient Mice. PLoS Genet 8: e1002797 (2012)
- [123] Z. Xie, K. Lau, B. Eby, P. Lozano, C. He, B. Pennington, H. Li, S. Rathi, Y. Dong, R. Tian, D. Kem, M.H. Zou: Improvement of Cardiac Functions by Chronic Metformin Treatment Is Associated With Enhanced Cardiac Autophagy in Diabetic OVE26 Mice. Diabetes 60: 1770–1778 (2011)
- [124] R. Ross: The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362: 801-809 (1993)
- [125] P. Wang, J. Liang, Y. Li, J. Li, X. Yang, X. Zhang, S. Han, S. Li, J. Li: Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res 39: 1279–1291 (2014)
- [126] J. Tao, W. Liu, G. Shang, Y. Zheng, J. Huang, R. Lin, L. Chen: MiR-207/352 regulate lysosomal-associated membrane proteins and enzymes following ischemic stroke. Neuroscience 305: 1–14 (2015)
- [127] Y. Yuan, J. Zhao, S. Yan, D. Wang, S. Zhang, F. Yun, H. Zhao, L. Sun, G. Liu, X. Ding, L. Liu, Y. Li: Autophagy: A potential novel mechanistic contributor to atrial fibrillation. Int J Cardiol 172: 492–494 (2014)
- [128] C. Deroyer, J. Magne, M. Moonen, C. Le Goff, L. Dupont, A. Hulin, M. Radermecker, A. Colige, E. Cavalier, P. Kolh, L. Pierard, P. Lancellotti, M.P. Merville, M. Fillet: New biomarkers for primary mitral regurgitation. Clin Proteomics 12: 25 (2015)
