Information
References
Contents
Download
[1]R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, J. Abraham, T. Adair, R. Aggarwal, S. Y. Ahn, M. Alvarado, H. R. Anderson, L. M. Anderson, K. G. Andrews, C. Atkinson, L. M. Baddour, S. Barker-Collo, D. H. Bartels, M. L. Bell, E. J. Benjamin, D. Bennett, K. Bhalla, B. Bikbov, A. Bin Abdulhak, G. Birbeck, F. Blyth, I. Bolliger, S. Boufous, C. Bucello, M. Burch, P. Burney, J. Carapetis, H. Chen, D. Chou, S. S. Chugh, L. E. Coffeng, S. D. Colan, S. Colquhoun, K. E. Colson, J. Condon, M. D. Connor, L. T. Cooper, M. Corriere, M. Cortinovis, K. C. de Vaccaro, W. Couser, B. C. Cowie, M. H. Criqui, M. Cross, K. C. Dabhadkar, N. Dahodwala, D. De Leo, L. Degenhardt, A. Delossantos, J. Denenberg, D. C. Des Jarlais, S. D. Dharmaratne, E. R. Dorsey, T. Driscoll, H. Duber, B. Ebel, P. J. Erwin, P. Espindola, M. Ezzati, V. Feigin, A. D. Flaxman, M. H. Forouzanfar, F. G. Fowkes, R. Franklin, M. Fransen, M. K. Freeman, S. E. Gabriel, E. Gakidou, F. Gaspari, R. F. Gillum, D. Gonzalez-Medina, Y. A. Halasa, D. Haring, J. E. Harrison, R. Havmoeller, R. J. Hay, B. Hoen, P. J. Hotez, D. Hoy, K. H. Jacobsen, S. L. James, R. Jasrasaria, S. Jayaraman, N. Johns, G. Karthikeyan, N. Kassebaum, A. Keren, J. P. Khoo, L. M. Knowlton, O. Kobusingye, A. Koranteng, R. Krishnamurthi, M. Lipnick, S. E. Lipshultz, S. L. Ohno, J. Mabweijano, M. F. MacIntyre, L. Mallinger, L. March, G. B. Marks, R. Marks, A. Matsumori, R. Matzopoulos, B. M. Mayosi, J. H. McAnulty, M. M. McDermott, J. McGrath, G. A. Mensah, T. R. Merriman, C. Michaud, M. Miller, T. R. Miller, C. Mock, A. O. Mocumbi, A. A. Mokdad, A. Moran, K. Mulholland, M. N. Nair, L. Naldi, K. M. Narayan, K. Nasseri, P. Norman, M. O’Donnell, S. B. Omer, K. Ortblad, R. Osborne, D. Ozgediz, B. Pahari, J. D. Pandian, A. P. Rivero, R. P. Padilla, F. Perez-Ruiz, N. Perico, D. Phillips, K. Pierce, C. A. Pope, 3rd, E. Porrini, F. Pourmalek, M. Raju, D. Ranganathan, J. T. Rehm, D. B. Rein, G. Remuzzi, F. P. Rivara, T. Roberts, F. R. De Leon, L. C. Rosenfeld, L. Rushton, R. L. Sacco, J. A. Salomon, U. Sampson, E. Sanman, D. C. Schwebel, M. Segui-Gomez, D. S. Shepard, D. Singh, J. Singleton, K. Sliwa, E. Smith, A. Steer, J. A. Taylor, B. Thomas, I. M. Tleyjeh, J. A. Towbin, T. Truelsen, E. A. Undurraga, N. Venketasubramanian, L. Vijayakumar, T. Vos, G. R. Wagner, M. Wang, W. Wang, K. Watt, M. A. Weinstock, R. Weintraub, J. D. Wilkinson, A. D. Woolf, S. Wulf, P. H. Yeh, P. Yip, A. Zabetian, Z. J. Zheng, A. D. Lopez, C. J. Murray, M. A. AlMazroa and Z. A. Memish: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095-128 (2012)
[2]A. J. Nahmias and S. Kibrick: Inhibitory effect of heparin on herpes simplex virus. J Bacteriol, 87(5), 1060-6 (1964)
[3]F. Lehel and G. Hadhazy: Effect of heparin on herpes simplex virus infection in the rabbit. Acta Microbiol Acad Sci Hung, 13(3), 197-203 (1966)
[4]J. Hunter: Heparin therapy in meningococcal septicaemia. Arch Dis Child, 48(3), 233-5 (1973)
[5]C. C. Kuo and T. Grayston: Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect Immun, 13(4), 1103-9 (1976)
[6]A. H. Bartlett and P. W. Park: Proteoglycans in host-pathogen interactions: molecular mechanisms and therapeutic implications. Expert Rev Mol Med, 12, e5 (2010)
[7]D. Spillmann: Heparan sulfate: anchor for viral intruders? Biochimie, 83(8), 811-817 (2001)
[8]R. S. Aquino, E. S. Lee and P. W. Park: Diverse functions of glycosaminoglycans in infectious diseases. Prog Mol Biol Transl Sci, 93, 373-94 (2010)
[9]Y. H. Teng, R. S. Aquino and P. W. Park: Molecular functions of syndecan-1 in disease. Matrix Biol, 31(1), 3-16 (2012)
[10]J. L. Funderburgh: Keratan sulfate: structure, biosynthesis, and function. Glycobiology, 10(10), 951-8 (2000)
[11]J. D. Esko and S. B. Selleck: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 71, 435-471 (2002)
[12]J. M. Trowbridge and R. L. Gallo: Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology, 12(9), 117R-25R (2002)
[13]P. H. Weigel and P. L. DeAngelis: Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem, 282(51), 36777-81 (2007)
[14]S. Nagamine, M. Tamba, H. Ishimine, K. Araki, K. Shiomi, T. Okada, T. Ohto, S. Kunita, S. Takahashi, R. G. Wismans, T. H. van Kuppevelt, M. Masu and K. Keino-Masu: Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J Biol Chem, 287(12), 9579-90 (2012)
[15]L. Fux, N. Ilan, R. D. Sanderson and I. Vlodavsky: Heparanase: busy at the cell surface. Trends Biochem Sci, 34(10), 511-9 (2009)
[16]S. Thammawat, T. A. Sadlon, P. G. Hallsworth and D. L. Gordon: Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection. J Virol, 82(23), 11767-74 (2008)
[17]A. Chang, C. Masante, U. J. Buchholz and R. E. Dutch: Human metapneumovirus (HMPV) binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate. J Virol, 86(6), 3230-43 (2012)
[18]S. A. Feldman, S. Audet and J. A. Beeler: The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol, 74(14), 6442-7 (2000)
[19]V. Cagno, M. Donalisio, A. Civra, M. Volante, E. Veccelli, P. Oreste, M. Rusnati and D. Lembo: Highly sulfated K5 Escherichia coli polysaccharide derivatives inhibit respiratory syncytial virus infectivity in cell lines and human tracheal-bronchial histocultures. Antimicrob Agents Chemother, 58(8), 4782-94 (2014)
[20]H. Hofmann, K. Pyrc, L. van der Hoek, M. Geier, B. Berkhout and S. Pohlmann: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A, 102(22), 7988-93 (2005)
[21]D. S. Dimitrov: The secret life of ACE2 as a receptor for the SARS virus. Cell, 115(6), 652-3 (2003)
[22]A. Milewska, M. Zarebski, P. Nowak, K. Stozek, J. Potempa and K. Pyrc: Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol, 88(22), 13221-30 (2014)
[23]I. Bucior, K. Mostov and J. N. Engel: Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect Immun, 78(3), 939-53 (2010)
[24]I. Bucior, J. F. Pielage and J. N. Engel: Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog, 8(4), e1002616 (2012)
[25]P. W. Park, G. B. Pier, M. J. Preston, O. Goldberger, M. L. Fitzgerald and M. Bernfield: Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem, 275(5), 3057-3064 (2000)
[26]P. W. Park, G. B. Pier, M. T. Hinkes and M. Bernfield: Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 411(6833), 98-102 (2001)
[27]H. Su, L. Raymond, D. D. Rockey, E. Fischer, T. Hackstadt and H. D. Caldwell: A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci U S A, 93(20), 11143-8 (1996)
[28]J. C. Chen and R. S. Stephens: Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb. Pathog., 22(1), 23-30 (1997)
[29]J. H. Kim, S. Jiang, C. A. Elwell and J. N. Engel: Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog, 7(10), e1002285 (2011)
[30]H. Grassmé, E. Gulbins, B. Brenner, K. Ferlinz, K. Sandhoff, K. Harzer, F. Lang and T. F. Meyer: Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell, 91, 605-615 (1997)
[31]J. P. van Putten, T. D. Duensing and R. L. Cole: Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol. Microbiol., 29(1), 369-379 (1998)
[32]J. P. van Putten and S. M. Paul: Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrheae entry into human mucosal cells. EMBO J., 14, 2144-2154 (1995)
[33]E. Freissler, A. Meyer auf der Heyde, G. David, T. F. Meyer and C. Dehio: Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cell Microbiol, 2, 69-82 (2000)
[34]K. M. Johnson, R. C. Kines, J. N. Roberts, D. R. Lowy, J. T. Schiller and P. M. Day: Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol, 83(5), 2067-74 (2009)
[35]R. C. Kines, C. D. Thompson, D. R. Lowy, J. T. Schiller and P. M. Day: The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci U S A, 106(48), 20458-63 (2009)
[36]S. Shafti-Keramat, A. Handisurya, E. Kriehuber, G. Meneguzzi, K. Slupetzky and R. Kirnbauer: Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol, 77(24), 13125-13135 (2003)
[37]P. M. Day, R. Gambhira, R. B. Roden, D. R. Lowy and J. T. Schiller: Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol, 82(9), 4638-46 (2008)
[38]R. M. Richards, D. R. Lowy, J. T. Schiller and P. M. Day: Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A, 103(5), 1522-7 (2006)
[39]J. Sun, J. S. Yu, S. Jin, X. Zha, Y. Wu and Z. Yu: Interaction of synthetic HPV-16 capsid peptides with heparin: thermodynamic parameters and binding mechanism. J Phys Chem B, 114(30), 9854-61 (2010)
[40]C. Cerqueira, Y. Liu, L. Kuhling, W. Chai, W. Hafezi, T. H. van Kuppevelt, J. E. Kuhn, T. Feizi and M. Schelhaas: Heparin increases the infectivity of human papillomavirus type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cell Microbiol, 15(11), 1818-36 (2013)
[41]M. Tamura, K. Natori, M. Kobayashi, T. Miyamura and N. Takeda: Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol, 78(8), 3817-26 (2004)
[42]F. Superti, M. L. Marziano, A. Tinari and G. Donelli: Effect of polyions on the infectivity of SA-11 rotavirus in LCC-MK2 cells. Comp Immunol Microbiol Infect Dis, 16(1), 55-62 (1993)
[43]R. P. Fagan, M. A. Lambert and S. G. Smith: The hek outer membrane protein of Escherichia coli strain RS218 binds to proteoglycan and utilizes a single extracellular loop for adherence, invasion, and autoaggregation. Infect Immun, 76(3), 1135-42 (2008)
[44]M. A. Lambert and S. G. Smith: The PagN protein mediates invasion via interaction with proteoglycan. FEMS Microbiol Lett, 297(2), 209-16 (2009)
[45]A. Didsbury, C. Wang, D. Verdon, M. A. Sewell, J. D. McIntosh and J. A. Taylor: Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells. Virol J, 8, 551 (2011)
[46]A. P. Boyd, M. P. Sory, M. Iriarte and G. R. Cornelis: Heparin interferes with translocation of Yop proteins into HeLa cells and binds to LcrG, a regulatory component of the Yersinia Yop apparatus. Mol Microbiol, 27(2), 425-436 (1998)
[47]G. I. Viboud and J. B. Bliska: Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol, 59, 69-89 (2005)
[48]E. Veiga and P. Cossart: Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol, 7(9), 894-900 (2005)
[49]R. Jonquieres, J. Pizarro-Cerda and P. Cossart: Synergy between the N-and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol, 42(4), 955-65 (2001)
[50]M. Banerjee, J. Copp, D. Vuga, M. Marino, T. Chapman, P. van der Geer and P. Ghosh: GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation. Mol Microbiol, 52(1), 257-71 (2004)
[51]C. Alvarez-Dominguez, J. Vasquez-Boland, E. Carrasco-Marin, P. Lopez-Mato and F. Leyva-Cobian: Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun., 65, 78-88 (1997)
[52]D. A. Portnoy, T. Chakraborty, W. Goebel and P. Cossart: Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun, 60(4), 1263-7 (1992)
[53]I. Lasa and P. Cossart: Actin-based bacterial motility: towards a definition of the minimal requirements. Trends Cell Biol, 6(3), 109-14 (1996)
[54]D. Shukla, J. Liu, P. Blaiklock, N. W. Shworak, X. Bai, J. D. Esko, G. H. Cohen, R. J. Eisenberg, R. D. Rosenberg and P. G. Spear: A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell, 99, 13-22 (1999)
[55]R. M. Schowalter, D. V. Pastrana and C. B. Buck: Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog, 7(7), e1002161 (2011)
[56]N. N. Schommer, J. Muto, V. Nizet and R. L. Gallo: Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J Biol Chem, 289(39), 26914-21 (2014)
[57]O. D. Liang, F. Ascencio, L. Fransson and T. Wadström: Binding of heparan sulfate to Staphylococcus aureus. Infect. Immun., 60, 899-906 (1992)
[58]M. Fatoux-Ardore, F. Peysselon, A. Weiss, P. Bastien, F. Pratlong and S. Ricard-Blum: Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging. Infect Immun, 82(2), 594-606 (2014)
[59]J. V. Green, K. I. Orsborn, M. Zhang, Q. K. Tan, K. D. Greis, A. Porollo, D. R. Andes, J. Long Lu and M. K. Hostetter: Heparin-binding motifs and biofilm formation by Candida albicans. J Infect Dis, 208(10), 1695-704 (2013)
[60]R. A. Sack, I. Nunes, A. Beaton and C. Morris: Host-defense mechanism of the ocular surfaces. Biosci. Rep., 21(4), 463-80 (2001)
[61]E. Feyzi, E. Trybala, T. Bergström, U. Lindahl and D. Spillman: Structural requirement of heparan sulfate for interaction with herpes simplex virus type I virions and isolated glycoprotein C. J. Biol. Chem., 272, 24850-24857 (1997)
[62]S. Laquerre, R. Argnani, D. B. Anderson, S. Zucchini, R. Manservigi and J. C. Glorioso: Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol, 72(7), 6119-6130 (1998)
[63]P. G. Spear, M. T. Shieh, B. C. Herold, D. WuDunn and T. I. Koshy: Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv. Exp. Med. Biol., 313, 341-353 (1992)
[64]S. R. Hadigal, A. M. Agelidis, G. A. Karasneh, T. E. Antoine, A. M. Yakoub, V. C. Ramani, A. R. Djalilian, R. D. Sanderson and D. Shukla: Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun, 6, 6985 (2015)
[65]G. A. Karasneh, M. Ali and D. Shukla: An important role for syndecan-1 in herpes simplex virus type-1 induced cell-to-cell fusion and virus spread. PLoS One, 6(9), e25252 (2011)
[66]A. Hayashida, S. Amano and P. W. Park: Syndecan-1 promotes Staphylococcus aureus corneal infection by counteracting neutrophil-mediated host defense. J Biol Chem, 285, 3288-3297 (2011)
[67]A. Hayashida, S. Amano, R. L. Gallo, R. J. Linhardt, J. Liu and P. W. Park: 2-O-Sulfated Domains in Syndecan-1 Heparan Sulfate Inhibit Neutrophil Cathelicidin and Promote Staphylococcus aureus Corneal Infection. J Biol Chem, 290(26), 16157-67 (2015)
[68]M. Green, A. Apel and F. Stapleton: Risk factors and causative organisms in microbial keratitis. Cornea, 27(1), 22-7 (2008)
[69]F. Schaefer, O. Bruttin, L. Zografos and Y. Guex-Crosier: Bacterial keratitis: a prospective clinical and microbiological study. Br. J. Ophthalmol., 85(7), 842-7 (2001)
[70]C. N. Ly, J. N. Pham, P. R. Badenoch, S. M. Bell, G. Hawkins, D. L. Rafferty and K. A. McClellan: Bacteria commonly isolated from keratitis specimens retain antibiotic susceptibility to fluoroquinolones and gentamicin plus cephalothin. Clin. Experiment. Ophthalmol., 34(1), 44-50 (2006)
[71]M. J. Henry-Stanley, D. J. Hess, E. A. Erickson, R. M. Garni and C. L. Wells: Role of heparan sulfate in interactions of Listeria monocytogenes with enterocytes. Med. Microbiol. Immunol., 192(2), 107-115 (2003)
[72]P. W. Park, T. J. Foster, E. Nishi, S. J. Duncan, M. Klagsbrun and Y. Chen: Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin. J Biol Chem, 279(1), 251-258 (2004)
[73]D. O. Girgis, G. D. Sloop, J. M. Reed and R. J. O’Callaghan: Effects of toxin production in a murine model of Staphylococcus aureus keratitis. Invest Ophthalmol Vis Sci, 46(6), 2064-70 (2005)
[74]R. J. O’Callaghan, M. C. Callegan, J. M. Moreau, L. C. Green, T. J. Foster, O. M. Hartford, L. S. Engel and J. M. Hill: Specific roles of alpha-toxin and beta-toxin during Staphylococcus aureus corneal infection. Infect Immun, 65, 1571-1578 (1997)
[75]Y. Chen, A. Hayashida, A. E. Bennett, S. K. Hollingshead and P. W. Park: Streptococcus pneumoniae sheds syndecan-1 ectodomains through ZmpC, a metalloproteinase virulence factor. J Biol Chem, 282(1), 159-167 (2007)
[76]H. Barth, C. Schafer, M. I. Adah, F. Zhang, R. J. Linhardt, H. Toyoda, A. Kinoshita-Toyoda, T. Toida, T. H. Van Kuppevelt, E. Depla, F. Von Weizsacker, H. E. Blum and T. F. Baumert: Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J. Biol. Chem., 278(42), 41003-41012 (2003)
[77]F. Kobayashi, S. Yamada, S. Taguwa, C. Kataoka, S. Naito, Y. Hama, H. Tani, Y. Matsuura and K. Sugahara: Specific interaction of the envelope glycoproteins E1 and E2 with liver heparan sulfate involved in the tissue tropismatic infection by hepatitis C virus. Glycoconj J, 29(4), 211-20 (2012)
[78]J. Jiang, W. Cun, X. Wu, Q. Shi, H. Tang and G. Luo: Hepatitis C virus attachment mediated by apolipoprotein E binding to cell surface heparan sulfate. J Virol, 86(13), 7256-67 (2012)
[79]Y. Xu, P. Martinez, K. Seron, G. Luo, F. Allain, J. Dubuisson and S. Belouzard: Characterization of hepatitis C virus interaction with heparan sulfate proteoglycans. J Virol, 89(7), 3846-58 (2015)
[80]K. I. Stanford, J. R. Bishop, E. M. Foley, J. C. Gonzales, I. R. Niesman, J. L. Witztum and J. D. Esko: Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest, 119(11), 3236-45 (2009)
[81]K. I. Stanford, L. Wang, J. Castagnola, D. Song, J. R. Bishop, J. R. Brown, R. Lawrence, X. Bai, H. Habuchi, M. Tanaka, W. V. Cardoso, K. Kimata and J. D. Esko: Heparan sulfate 2-O-sulfotransferase is required for triglyceride-rich lipoprotein clearance. J Biol Chem, 285(1), 286-94 (2010)
[82]Q. Shi, J. Jiang and G. Luo: Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol, 87(12), 6866-75 (2013)
[83]M. Lefevre, D. J. Felmlee, M. Parnot, T. F. Baumert and C. Schuster: Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS One, 9(4), e95550 (2014)
[84]C. M. Leistner, S. Gruen-Bernhard and D. Glebe: Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell. Microbiol., 10(1), 122-133 (2008)
[85]O. Lamas Longarela, T. T. Schmidt, K. Schoneweis, R. Romeo, H. Wedemeyer, S. Urban and A. Schulze: Proteoglycans act as cellular hepatitis delta virus attachment receptors. PLoS One, 8(3), e58340 (2013)
[86]M. Kalia, V. Chandra, S. A. Rahman, D. Sehgal and S. Jameel: Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol, 83(24), 12714-24 (2009)
[87]E. G. Argyris, E. Acheampong, G. Nunnari, M. Mukhtar, K. J. Williams and R. J. Pomerantz: Human immunodeficiency virus type 1 enters primary human brain microvascular endothelial cells by a mechanism involving cell surface proteoglycans independent of lipid rafts. J Virol, 77(22), 12140-12151 (2003)
[88]M. D. Bobardt, A. C. Saphire, H. C. Hung, X. Yu, B. Van der Schueren, Z. Zhang, G. David and P. A. Gallay: Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity, 18(1), 27-39 (2003)
[89]L. de Witte, M. Bobardt, U. Chatterji, G. Degeest, G. David, T. B. Geijtenbeek and P. Gallay: Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proc Natl Acad Sci U S A, 104(49), 19464-19469 (2007)
[90]A. C. Saphire, M. D. Bobardt, Z. Zhang, G. David and P. A. Gallay: Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol, 75(19), 9187-9200 (2001)
[91]P. U. Cameron, P. S. Freudenthal, J. M. Barker, S. Gezelter, K. Inaba and R. M. Steinman: Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science, 257 (5068), 383-7 (1992)
[92]M. Tyagi, M. Rusnati, M. Presta and M. Giacca: Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem., 276(5), 3254-3261 (2001)
[93]M. Rusnati, D. Coltrini, P. Oreste, G. Zoppetti, A. Albini, D. Noonan, F. d’Adda di Fagagna, M. Giacca and M. Presta: Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. J Biol Chem, 272(17), 11313-20 (1997)
[94]M. Rusnati, G. Tulipano, D. Spillmann, E. Tanghetti, P. Oreste, g. Zoppetti, M. Giacca and M. Presta: Multiple interactions of HIV-1 Tat protein with size-defined heparin oligosaccharides. J. Biol. Chem., 274, 28198-28205 (1999)
[95]E. G. Argyris, J. Kulkosky, M. E. Meyer, Y. Xu, M. Mukhtar, R. J. Pomerantz and K. J. Williams: The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity. Virology, 330(2), 481-486 (2004)
[96]H. C. Chang, F. Samaniego, B. C. Nair, L. Buonaguro and B. Ensoli: HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS, 11(12), 1421-1431 (1997)
[97]M. Rusnati and M. Presta: HIV-1 Tat protein: a target for the development of anti-AIDS therapies. Drug Fut, 27, 481-493 (2002)
[98]M. Rusnati and C. Urbinati: Polysulfated/sulfonated compounds for the development of drugs at the crossroad of viral infection and oncogenesis. Curr Pharm Des, 15(25), 2946-57 (2009)
[99]I. W. Sherman, S. Eda and E. Winograd: Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect, 5(10), 897-909 (2003)
[100]M. Fried and P. E. Duffy: Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science, 272 (5267), 1502-4 (1996)
[101]A. Muthusamy, R. N. Achur, V. P. Bhavanandan, G. G. Fouda, D. W. Taylor and D. C. Gowda: Plasmodium falciparum-infected erythrocytes adhere both in the intervillous space and on the villous surface of human placenta by binding to the low-sulfated chondroitin sulfate proteoglycan receptor. Am. J. Pathol., 164(6), 2013-2025 (2004)
[102]A. Muthusamy, R. N. Achur, M. Valiyaveettil, J. J. Botti, D. W. Taylor, R. F. Leke and D. C. Gowda: Chondroitin sulfate proteoglycan but not hyaluronic acid is the receptor for the adherence of Plasmodium falciparum-infected erythrocytes in human placenta, and infected red blood cell adherence up-regulates the receptor expression. Am J Pathol, 170(6), 1989-2000 (2007)
[103]T. M. Clausen, S. Christoffersen, M. Dahlback, A. E. Langkilde, K. E. Jensen, M. Resende, M. O. Agerbaek, D. Andersen, B. Berisha, S. B. Ditlev, V. V. Pinto, M. A. Nielsen, T. G. Theander, S. Larsen and A. Salanti: Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J Biol Chem, 287(28), 23332-45 (2012)
[104]J. M. Beaudet, L. Mansur, E. J. Joo, E. Kamhi, B. Yang, T. M. Clausen, A. Salanti, F. Zhang and R. J. Linhardt: Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes. Glycoconj J, 31(2), 109-16 (2014)
[105]A. Coppi, R. Tewari, J. R. Bishop, B. L. Bennett, R. Lawrence, J. D. Esko, O. Billker and P. Sinnis: Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe, 2(5), 316-327 (2007)
[106]B. P. Guo, E. L. Brown, D. W. Dorward, L. C. Rosenberg and M. Hook: Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol, 30(4), 711-23 (1998)
[107]Y. P. Lin, V. Benoit, X. Yang, R. Martinez-Herranz, U. Pal and J. M. Leong: Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLoS Pathog, 10(7), e1004238 (2014)
[108]E. L. Brown, R. M. Wooten, B. J. Johnson, R. V. Iozzo, A. Smith, M. C. Dolan, B. P. Guo, J. J. Weis and M. Hook: Resistance to Lyme disease in decorin-deficient mice. J Clin Invest, 107(7), 845-52 (2001)
[109]F. T. Liang, E. L. Brown, T. Wang, R. V. Iozzo and E. Fikrig: Protective niche for Borrelia burgdorferi to evade humoral immunity. Am J Pathol, 165(3), 977-85 (2004)
[110]P. Avirutnan, L. Zhang, N. Punyadee, A. Manuyakorn, C. Puttikhunt, W. Kasinrerk, P. Malasit, J. P. Atkinson and M. S. Diamond: Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog, 3(11), 1798-1812 (2007)
[111]N. Dalrymple and E. R. Mackow: Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol, 85(18), 9478-85 (2011)
[112]X. Lin, G. Wei, Z. Shi, L. Dryer, J. D. Esko, D. E. Wells and M. M. Matzuk: Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev. Biol., 224, 299-311 (2000)
[113]T. Izumikawa, N. Kanagawa, Y. Watamoto, M. Okada, M. Saeki, M. Sakano, K. Sugahara, K. Sugihara, M. Asano and H. Kitagawa: Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-I-deficient mice. J Biol Chem, 285(16), 12190-6 (2010)
[114]G. Fan, L. Xiao, L. Cheng, X. Wang, B. Sun and G. Hu: Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett, 467, 7-11 (2000)
[115]M. Ringvall, J. Ledin, K. Holmborn, T. van Kuppevelt, F. Ellin, I. Eriksson, A. M. Olofsson, L. Kjellen and E. Forsberg: Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem., 275, 25926-25930 (2000)
[116]J. Li, F. Gong, A. Hagner-McWhirter, E. Forsberg, M. Åbrink, R. Kisilevsky, X. Zhang and U. Lindahl: Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J. Biol. Chem., 278, 28363-28366 (2003)
[117]S. L. Bullock, J. M. Fletcher, R. S. Beddington and V. A. Wilson: Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev., 12, 1894-1906 (1998)
[118]K. Hayashida, Y. Chen, A. H. Bartlett and P. W. Park: Syndecan-1 is an in vivo suppressor of Gram-positive toxic shock. J Biol Chem, 283(29), 19895-19903 (2008)
[119]K. Hayashida, W. C. Parks and P. W. Park: Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood, 114(14), 3033-3043 (2009)
[120]J. Xu, P. W. Park, F. Kheradmand and D. B. Corry: Endogenous attenuation of allergic lung inflammation by syndecan-1. J Immunol, 174(9), 5758-5765 (2005)
[121]R. Copeland, A. Balasubramaniam, V. Tiwari, F. Zhang, A. Bridges, R. J. Linhardt, D. Shukla and J. Liu: Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry, 47(21), 5774-5783 (2008)
[122]M. Rusnati, C. Urbinati, A. Caputo, L. Possati, H. Lortat-Jacob, M. Giacca, D. Ribatti and M. Presta: Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J. Biol. Chem., 276, 22420-22425 (2001)
[123]B. C. Herold, N. Bourne, D. Marcellino, R. Kirkpatrick, D. M. Strauss, L. J. Zaneveld, D. P. Waller, R. A. Anderson, C. J. Chany, B. J. Barham, L. R. Stanberry and M. D. Cooper: Poly(sodium 4-styrene sulfonate): an effective candidate topical antimicrobial for the prevention of sexually transmitted diseases. J. Infect. Dis., 181(2), 770-773 (2000)
[124]E. Lee, M. Pavy, N. Young, C. Freeman and M. Lobigs: Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res, 69(1), 31-8 (2006)
[125]D. Lembo, M. Donalisio, M. Rusnati, A. Bugatti, M. Cornaglia, P. Cappello, M. Giovarelli, P. Oreste and S. Landolfo: Sulfated K5 Escherichia coli polysaccharide derivatives as wide-range inhibitors of genital types of human papillomavirus. Antimicrob. Agents Chemother., 52(4), 1374-1381 (2008)
[126]N. R. Roan, S. Sowinski, J. Munch, F. Kirchhoff and W. C. Greene: Aminoquinoline surfen inhibits the action of SEVI (semen-derived enhancer of viral infection). J Biol Chem, 285(3), 1861-9 (2010)
[127]M. Schmidtke, A. Karger, A. Meerbach, R. Egerer, A. Stelzner and V. Makarov: Binding of a N,N’-bisheteryl derivative of dispirotripiperazine to heparan sulfate residues on the cell surface specifically prevents infection of viruses from different families. Virology, 311(1), 134-43 (2003)
[128]A. M. Vogt, F. Pettersson, K. Moll, C. Jonsson, J. Normark, U. Ribacke, T. G. Egwang, H. P. Ekre, D. Spillmann, Q. Chen and M. Wahlgren: Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathog., 2(9), e100 (2006)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Glycosaminoglycans and infection
1 Division of Respiratory Diseases, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
2 Division of Newborn Medicine, Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
Abstract
Glycosaminoglycans (GAGs) are complex linear polysaccharides expressed in intracellular compartments, at the cell surface, and in the extracellular environment where they interact with various molecules to regulate many cellular processes implicated in health and disease. Subversion of GAGs is a pathogenic strategy shared by a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi. Pathogens use GAGs at virtually every major portals of entry to promote their attachment and invasion of host cells, movement from one cell to another, and to protect themselves from immune attack. Pathogens co-opt fundamental activities of GAGs to accomplish these tasks. This ingenious strategy to subvert essential activities of GAGs likely prevented host organisms from deleting or inactivating these mechanisms during their evolution. The goal of this review is to provide a mechanistic overview of our current understanding of how microbes subvert GAGs at major steps of pathogenesis, using select GAG-pathogen interactions as representative examples.
Keywords
- Heparan Sulfate
- Heparin
- Chondroitin Sulfate
- Dermatan Sulfate
- Hyaluronan
- Keratan Sulfate
- Proteoglycan
- Syndecan
- Microbial Pathogenesis
- Host Defense
- Virulence Factor
- Antimicrobial Peptide
- Review
References
- [1] R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, J. Abraham, T. Adair, R. Aggarwal, S. Y. Ahn, M. Alvarado, H. R. Anderson, L. M. Anderson, K. G. Andrews, C. Atkinson, L. M. Baddour, S. Barker-Collo, D. H. Bartels, M. L. Bell, E. J. Benjamin, D. Bennett, K. Bhalla, B. Bikbov, A. Bin Abdulhak, G. Birbeck, F. Blyth, I. Bolliger, S. Boufous, C. Bucello, M. Burch, P. Burney, J. Carapetis, H. Chen, D. Chou, S. S. Chugh, L. E. Coffeng, S. D. Colan, S. Colquhoun, K. E. Colson, J. Condon, M. D. Connor, L. T. Cooper, M. Corriere, M. Cortinovis, K. C. de Vaccaro, W. Couser, B. C. Cowie, M. H. Criqui, M. Cross, K. C. Dabhadkar, N. Dahodwala, D. De Leo, L. Degenhardt, A. Delossantos, J. Denenberg, D. C. Des Jarlais, S. D. Dharmaratne, E. R. Dorsey, T. Driscoll, H. Duber, B. Ebel, P. J. Erwin, P. Espindola, M. Ezzati, V. Feigin, A. D. Flaxman, M. H. Forouzanfar, F. G. Fowkes, R. Franklin, M. Fransen, M. K. Freeman, S. E. Gabriel, E. Gakidou, F. Gaspari, R. F. Gillum, D. Gonzalez-Medina, Y. A. Halasa, D. Haring, J. E. Harrison, R. Havmoeller, R. J. Hay, B. Hoen, P. J. Hotez, D. Hoy, K. H. Jacobsen, S. L. James, R. Jasrasaria, S. Jayaraman, N. Johns, G. Karthikeyan, N. Kassebaum, A. Keren, J. P. Khoo, L. M. Knowlton, O. Kobusingye, A. Koranteng, R. Krishnamurthi, M. Lipnick, S. E. Lipshultz, S. L. Ohno, J. Mabweijano, M. F. MacIntyre, L. Mallinger, L. March, G. B. Marks, R. Marks, A. Matsumori, R. Matzopoulos, B. M. Mayosi, J. H. McAnulty, M. M. McDermott, J. McGrath, G. A. Mensah, T. R. Merriman, C. Michaud, M. Miller, T. R. Miller, C. Mock, A. O. Mocumbi, A. A. Mokdad, A. Moran, K. Mulholland, M. N. Nair, L. Naldi, K. M. Narayan, K. Nasseri, P. Norman, M. O’Donnell, S. B. Omer, K. Ortblad, R. Osborne, D. Ozgediz, B. Pahari, J. D. Pandian, A. P. Rivero, R. P. Padilla, F. Perez-Ruiz, N. Perico, D. Phillips, K. Pierce, C. A. Pope, 3rd, E. Porrini, F. Pourmalek, M. Raju, D. Ranganathan, J. T. Rehm, D. B. Rein, G. Remuzzi, F. P. Rivara, T. Roberts, F. R. De Leon, L. C. Rosenfeld, L. Rushton, R. L. Sacco, J. A. Salomon, U. Sampson, E. Sanman, D. C. Schwebel, M. Segui-Gomez, D. S. Shepard, D. Singh, J. Singleton, K. Sliwa, E. Smith, A. Steer, J. A. Taylor, B. Thomas, I. M. Tleyjeh, J. A. Towbin, T. Truelsen, E. A. Undurraga, N. Venketasubramanian, L. Vijayakumar, T. Vos, G. R. Wagner, M. Wang, W. Wang, K. Watt, M. A. Weinstock, R. Weintraub, J. D. Wilkinson, A. D. Woolf, S. Wulf, P. H. Yeh, P. Yip, A. Zabetian, Z. J. Zheng, A. D. Lopez, C. J. Murray, M. A. AlMazroa and Z. A. Memish: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095-128 (2012)
- [2] A. J. Nahmias and S. Kibrick: Inhibitory effect of heparin on herpes simplex virus. J Bacteriol, 87(5), 1060-6 (1964)
- [3] F. Lehel and G. Hadhazy: Effect of heparin on herpes simplex virus infection in the rabbit. Acta Microbiol Acad Sci Hung, 13(3), 197-203 (1966)
- [4] J. Hunter: Heparin therapy in meningococcal septicaemia. Arch Dis Child, 48(3), 233-5 (1973)
- [5] C. C. Kuo and T. Grayston: Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect Immun, 13(4), 1103-9 (1976)
- [6] A. H. Bartlett and P. W. Park: Proteoglycans in host-pathogen interactions: molecular mechanisms and therapeutic implications. Expert Rev Mol Med, 12, e5 (2010)
- [7] D. Spillmann: Heparan sulfate: anchor for viral intruders? Biochimie, 83(8), 811-817 (2001)
- [8] R. S. Aquino, E. S. Lee and P. W. Park: Diverse functions of glycosaminoglycans in infectious diseases. Prog Mol Biol Transl Sci, 93, 373-94 (2010)
- [9] Y. H. Teng, R. S. Aquino and P. W. Park: Molecular functions of syndecan-1 in disease. Matrix Biol, 31(1), 3-16 (2012)
- [10] J. L. Funderburgh: Keratan sulfate: structure, biosynthesis, and function. Glycobiology, 10(10), 951-8 (2000)
- [11] J. D. Esko and S. B. Selleck: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem, 71, 435-471 (2002)
- [12] J. M. Trowbridge and R. L. Gallo: Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology, 12(9), 117R-25R (2002)
- [13] P. H. Weigel and P. L. DeAngelis: Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J Biol Chem, 282(51), 36777-81 (2007)
- [14] S. Nagamine, M. Tamba, H. Ishimine, K. Araki, K. Shiomi, T. Okada, T. Ohto, S. Kunita, S. Takahashi, R. G. Wismans, T. H. van Kuppevelt, M. Masu and K. Keino-Masu: Organ-specific sulfation patterns of heparan sulfate generated by extracellular sulfatases Sulf1 and Sulf2 in mice. J Biol Chem, 287(12), 9579-90 (2012)
- [15] L. Fux, N. Ilan, R. D. Sanderson and I. Vlodavsky: Heparanase: busy at the cell surface. Trends Biochem Sci, 34(10), 511-9 (2009)
- [16] S. Thammawat, T. A. Sadlon, P. G. Hallsworth and D. L. Gordon: Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection. J Virol, 82(23), 11767-74 (2008)
- [17] A. Chang, C. Masante, U. J. Buchholz and R. E. Dutch: Human metapneumovirus (HMPV) binding and infection are mediated by interactions between the HMPV fusion protein and heparan sulfate. J Virol, 86(6), 3230-43 (2012)
- [18] S. A. Feldman, S. Audet and J. A. Beeler: The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol, 74(14), 6442-7 (2000)
- [19] V. Cagno, M. Donalisio, A. Civra, M. Volante, E. Veccelli, P. Oreste, M. Rusnati and D. Lembo: Highly sulfated K5 Escherichia coli polysaccharide derivatives inhibit respiratory syncytial virus infectivity in cell lines and human tracheal-bronchial histocultures. Antimicrob Agents Chemother, 58(8), 4782-94 (2014)
- [20] H. Hofmann, K. Pyrc, L. van der Hoek, M. Geier, B. Berkhout and S. Pohlmann: Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A, 102(22), 7988-93 (2005)
- [21] D. S. Dimitrov: The secret life of ACE2 as a receptor for the SARS virus. Cell, 115(6), 652-3 (2003)
- [22] A. Milewska, M. Zarebski, P. Nowak, K. Stozek, J. Potempa and K. Pyrc: Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol, 88(22), 13221-30 (2014)
- [23] I. Bucior, K. Mostov and J. N. Engel: Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect Immun, 78(3), 939-53 (2010)
- [24] I. Bucior, J. F. Pielage and J. N. Engel: Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog, 8(4), e1002616 (2012)
- [25] P. W. Park, G. B. Pier, M. J. Preston, O. Goldberger, M. L. Fitzgerald and M. Bernfield: Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem, 275(5), 3057-3064 (2000)
- [26] P. W. Park, G. B. Pier, M. T. Hinkes and M. Bernfield: Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 411(6833), 98-102 (2001)
- [27] H. Su, L. Raymond, D. D. Rockey, E. Fischer, T. Hackstadt and H. D. Caldwell: A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc Natl Acad Sci U S A, 93(20), 11143-8 (1996)
- [28] J. C. Chen and R. S. Stephens: Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb. Pathog., 22(1), 23-30 (1997)
- [29] J. H. Kim, S. Jiang, C. A. Elwell and J. N. Engel: Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection. PLoS Pathog, 7(10), e1002285 (2011)
- [30] H. Grassmé, E. Gulbins, B. Brenner, K. Ferlinz, K. Sandhoff, K. Harzer, F. Lang and T. F. Meyer: Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell, 91, 605-615 (1997)
- [31] J. P. van Putten, T. D. Duensing and R. L. Cole: Entry of OpaA+ gonococci into HEp-2 cells requires concerted action of glycosaminoglycans, fibronectin and integrin receptors. Mol. Microbiol., 29(1), 369-379 (1998)
- [32] J. P. van Putten and S. M. Paul: Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrheae entry into human mucosal cells. EMBO J., 14, 2144-2154 (1995)
- [33] E. Freissler, A. Meyer auf der Heyde, G. David, T. F. Meyer and C. Dehio: Syndecan-1 and syndecan-4 can mediate the invasion of OpaHSPG-expressing Neisseria gonorrhoeae into epithelial cells. Cell Microbiol, 2, 69-82 (2000)
- [34] K. M. Johnson, R. C. Kines, J. N. Roberts, D. R. Lowy, J. T. Schiller and P. M. Day: Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol, 83(5), 2067-74 (2009)
- [35] R. C. Kines, C. D. Thompson, D. R. Lowy, J. T. Schiller and P. M. Day: The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci U S A, 106(48), 20458-63 (2009)
- [36] S. Shafti-Keramat, A. Handisurya, E. Kriehuber, G. Meneguzzi, K. Slupetzky and R. Kirnbauer: Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol, 77(24), 13125-13135 (2003)
- [37] P. M. Day, R. Gambhira, R. B. Roden, D. R. Lowy and J. T. Schiller: Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol, 82(9), 4638-46 (2008)
- [38] R. M. Richards, D. R. Lowy, J. T. Schiller and P. M. Day: Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci U S A, 103(5), 1522-7 (2006)
- [39] J. Sun, J. S. Yu, S. Jin, X. Zha, Y. Wu and Z. Yu: Interaction of synthetic HPV-16 capsid peptides with heparin: thermodynamic parameters and binding mechanism. J Phys Chem B, 114(30), 9854-61 (2010)
- [40] C. Cerqueira, Y. Liu, L. Kuhling, W. Chai, W. Hafezi, T. H. van Kuppevelt, J. E. Kuhn, T. Feizi and M. Schelhaas: Heparin increases the infectivity of human papillomavirus type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cell Microbiol, 15(11), 1818-36 (2013)
- [41] M. Tamura, K. Natori, M. Kobayashi, T. Miyamura and N. Takeda: Genogroup II noroviruses efficiently bind to heparan sulfate proteoglycan associated with the cellular membrane. J Virol, 78(8), 3817-26 (2004)
- [42] F. Superti, M. L. Marziano, A. Tinari and G. Donelli: Effect of polyions on the infectivity of SA-11 rotavirus in LCC-MK2 cells. Comp Immunol Microbiol Infect Dis, 16(1), 55-62 (1993)
- [43] R. P. Fagan, M. A. Lambert and S. G. Smith: The hek outer membrane protein of Escherichia coli strain RS218 binds to proteoglycan and utilizes a single extracellular loop for adherence, invasion, and autoaggregation. Infect Immun, 76(3), 1135-42 (2008)
- [44] M. A. Lambert and S. G. Smith: The PagN protein mediates invasion via interaction with proteoglycan. FEMS Microbiol Lett, 297(2), 209-16 (2009)
- [45] A. Didsbury, C. Wang, D. Verdon, M. A. Sewell, J. D. McIntosh and J. A. Taylor: Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells. Virol J, 8, 551 (2011)
- [46] A. P. Boyd, M. P. Sory, M. Iriarte and G. R. Cornelis: Heparin interferes with translocation of Yop proteins into HeLa cells and binds to LcrG, a regulatory component of the Yersinia Yop apparatus. Mol Microbiol, 27(2), 425-436 (1998)
- [47] G. I. Viboud and J. B. Bliska: Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol, 59, 69-89 (2005)
- [48] E. Veiga and P. Cossart: Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol, 7(9), 894-900 (2005)
- [49] R. Jonquieres, J. Pizarro-Cerda and P. Cossart: Synergy between the N-and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol, 42(4), 955-65 (2001)
- [50] M. Banerjee, J. Copp, D. Vuga, M. Marino, T. Chapman, P. van der Geer and P. Ghosh: GW domains of the Listeria monocytogenes invasion protein InlB are required for potentiation of Met activation. Mol Microbiol, 52(1), 257-71 (2004)
- [51] C. Alvarez-Dominguez, J. Vasquez-Boland, E. Carrasco-Marin, P. Lopez-Mato and F. Leyva-Cobian: Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun., 65, 78-88 (1997)
- [52] D. A. Portnoy, T. Chakraborty, W. Goebel and P. Cossart: Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun, 60(4), 1263-7 (1992)
- [53] I. Lasa and P. Cossart: Actin-based bacterial motility: towards a definition of the minimal requirements. Trends Cell Biol, 6(3), 109-14 (1996)
- [54] D. Shukla, J. Liu, P. Blaiklock, N. W. Shworak, X. Bai, J. D. Esko, G. H. Cohen, R. J. Eisenberg, R. D. Rosenberg and P. G. Spear: A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell, 99, 13-22 (1999)
- [55] R. M. Schowalter, D. V. Pastrana and C. B. Buck: Glycosaminoglycans and sialylated glycans sequentially facilitate Merkel cell polyomavirus infectious entry. PLoS Pathog, 7(7), e1002161 (2011)
- [56] N. N. Schommer, J. Muto, V. Nizet and R. L. Gallo: Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J Biol Chem, 289(39), 26914-21 (2014)
- [57] O. D. Liang, F. Ascencio, L. Fransson and T. Wadström: Binding of heparan sulfate to Staphylococcus aureus. Infect. Immun., 60, 899-906 (1992)
- [58] M. Fatoux-Ardore, F. Peysselon, A. Weiss, P. Bastien, F. Pratlong and S. Ricard-Blum: Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging. Infect Immun, 82(2), 594-606 (2014)
- [59] J. V. Green, K. I. Orsborn, M. Zhang, Q. K. Tan, K. D. Greis, A. Porollo, D. R. Andes, J. Long Lu and M. K. Hostetter: Heparin-binding motifs and biofilm formation by Candida albicans. J Infect Dis, 208(10), 1695-704 (2013)
- [60] R. A. Sack, I. Nunes, A. Beaton and C. Morris: Host-defense mechanism of the ocular surfaces. Biosci. Rep., 21(4), 463-80 (2001)
- [61] E. Feyzi, E. Trybala, T. Bergström, U. Lindahl and D. Spillman: Structural requirement of heparan sulfate for interaction with herpes simplex virus type I virions and isolated glycoprotein C. J. Biol. Chem., 272, 24850-24857 (1997)
- [62] S. Laquerre, R. Argnani, D. B. Anderson, S. Zucchini, R. Manservigi and J. C. Glorioso: Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol, 72(7), 6119-6130 (1998)
- [63] P. G. Spear, M. T. Shieh, B. C. Herold, D. WuDunn and T. I. Koshy: Heparan sulfate glycosaminoglycans as primary cell surface receptors for herpes simplex virus. Adv. Exp. Med. Biol., 313, 341-353 (1992)
- [64] S. R. Hadigal, A. M. Agelidis, G. A. Karasneh, T. E. Antoine, A. M. Yakoub, V. C. Ramani, A. R. Djalilian, R. D. Sanderson and D. Shukla: Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun, 6, 6985 (2015)
- [65] G. A. Karasneh, M. Ali and D. Shukla: An important role for syndecan-1 in herpes simplex virus type-1 induced cell-to-cell fusion and virus spread. PLoS One, 6(9), e25252 (2011)
- [66] A. Hayashida, S. Amano and P. W. Park: Syndecan-1 promotes Staphylococcus aureus corneal infection by counteracting neutrophil-mediated host defense. J Biol Chem, 285, 3288-3297 (2011)
- [67] A. Hayashida, S. Amano, R. L. Gallo, R. J. Linhardt, J. Liu and P. W. Park: 2-O-Sulfated Domains in Syndecan-1 Heparan Sulfate Inhibit Neutrophil Cathelicidin and Promote Staphylococcus aureus Corneal Infection. J Biol Chem, 290(26), 16157-67 (2015)
- [68] M. Green, A. Apel and F. Stapleton: Risk factors and causative organisms in microbial keratitis. Cornea, 27(1), 22-7 (2008)
- [69] F. Schaefer, O. Bruttin, L. Zografos and Y. Guex-Crosier: Bacterial keratitis: a prospective clinical and microbiological study. Br. J. Ophthalmol., 85(7), 842-7 (2001)
- [70] C. N. Ly, J. N. Pham, P. R. Badenoch, S. M. Bell, G. Hawkins, D. L. Rafferty and K. A. McClellan: Bacteria commonly isolated from keratitis specimens retain antibiotic susceptibility to fluoroquinolones and gentamicin plus cephalothin. Clin. Experiment. Ophthalmol., 34(1), 44-50 (2006)
- [71] M. J. Henry-Stanley, D. J. Hess, E. A. Erickson, R. M. Garni and C. L. Wells: Role of heparan sulfate in interactions of Listeria monocytogenes with enterocytes. Med. Microbiol. Immunol., 192(2), 107-115 (2003)
- [72] P. W. Park, T. J. Foster, E. Nishi, S. J. Duncan, M. Klagsbrun and Y. Chen: Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin. J Biol Chem, 279(1), 251-258 (2004)
- [73] D. O. Girgis, G. D. Sloop, J. M. Reed and R. J. O’Callaghan: Effects of toxin production in a murine model of Staphylococcus aureus keratitis. Invest Ophthalmol Vis Sci, 46(6), 2064-70 (2005)
- [74] R. J. O’Callaghan, M. C. Callegan, J. M. Moreau, L. C. Green, T. J. Foster, O. M. Hartford, L. S. Engel and J. M. Hill: Specific roles of alpha-toxin and beta-toxin during Staphylococcus aureus corneal infection. Infect Immun, 65, 1571-1578 (1997)
- [75] Y. Chen, A. Hayashida, A. E. Bennett, S. K. Hollingshead and P. W. Park: Streptococcus pneumoniae sheds syndecan-1 ectodomains through ZmpC, a metalloproteinase virulence factor. J Biol Chem, 282(1), 159-167 (2007)
- [76] H. Barth, C. Schafer, M. I. Adah, F. Zhang, R. J. Linhardt, H. Toyoda, A. Kinoshita-Toyoda, T. Toida, T. H. Van Kuppevelt, E. Depla, F. Von Weizsacker, H. E. Blum and T. F. Baumert: Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J. Biol. Chem., 278(42), 41003-41012 (2003)
- [77] F. Kobayashi, S. Yamada, S. Taguwa, C. Kataoka, S. Naito, Y. Hama, H. Tani, Y. Matsuura and K. Sugahara: Specific interaction of the envelope glycoproteins E1 and E2 with liver heparan sulfate involved in the tissue tropismatic infection by hepatitis C virus. Glycoconj J, 29(4), 211-20 (2012)
- [78] J. Jiang, W. Cun, X. Wu, Q. Shi, H. Tang and G. Luo: Hepatitis C virus attachment mediated by apolipoprotein E binding to cell surface heparan sulfate. J Virol, 86(13), 7256-67 (2012)
- [79] Y. Xu, P. Martinez, K. Seron, G. Luo, F. Allain, J. Dubuisson and S. Belouzard: Characterization of hepatitis C virus interaction with heparan sulfate proteoglycans. J Virol, 89(7), 3846-58 (2015)
- [80] K. I. Stanford, J. R. Bishop, E. M. Foley, J. C. Gonzales, I. R. Niesman, J. L. Witztum and J. D. Esko: Syndecan-1 is the primary heparan sulfate proteoglycan mediating hepatic clearance of triglyceride-rich lipoproteins in mice. J Clin Invest, 119(11), 3236-45 (2009)
- [81] K. I. Stanford, L. Wang, J. Castagnola, D. Song, J. R. Bishop, J. R. Brown, R. Lawrence, X. Bai, H. Habuchi, M. Tanaka, W. V. Cardoso, K. Kimata and J. D. Esko: Heparan sulfate 2-O-sulfotransferase is required for triglyceride-rich lipoprotein clearance. J Biol Chem, 285(1), 286-94 (2010)
- [82] Q. Shi, J. Jiang and G. Luo: Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol, 87(12), 6866-75 (2013)
- [83] M. Lefevre, D. J. Felmlee, M. Parnot, T. F. Baumert and C. Schuster: Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS One, 9(4), e95550 (2014)
- [84] C. M. Leistner, S. Gruen-Bernhard and D. Glebe: Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell. Microbiol., 10(1), 122-133 (2008)
- [85] O. Lamas Longarela, T. T. Schmidt, K. Schoneweis, R. Romeo, H. Wedemeyer, S. Urban and A. Schulze: Proteoglycans act as cellular hepatitis delta virus attachment receptors. PLoS One, 8(3), e58340 (2013)
- [86] M. Kalia, V. Chandra, S. A. Rahman, D. Sehgal and S. Jameel: Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J Virol, 83(24), 12714-24 (2009)
- [87] E. G. Argyris, E. Acheampong, G. Nunnari, M. Mukhtar, K. J. Williams and R. J. Pomerantz: Human immunodeficiency virus type 1 enters primary human brain microvascular endothelial cells by a mechanism involving cell surface proteoglycans independent of lipid rafts. J Virol, 77(22), 12140-12151 (2003)
- [88] M. D. Bobardt, A. C. Saphire, H. C. Hung, X. Yu, B. Van der Schueren, Z. Zhang, G. David and P. A. Gallay: Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity, 18(1), 27-39 (2003)
- [89] L. de Witte, M. Bobardt, U. Chatterji, G. Degeest, G. David, T. B. Geijtenbeek and P. Gallay: Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proc Natl Acad Sci U S A, 104(49), 19464-19469 (2007)
- [90] A. C. Saphire, M. D. Bobardt, Z. Zhang, G. David and P. A. Gallay: Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol, 75(19), 9187-9200 (2001)
- [91] P. U. Cameron, P. S. Freudenthal, J. M. Barker, S. Gezelter, K. Inaba and R. M. Steinman: Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science, 257 (5068), 383-7 (1992)
- [92] M. Tyagi, M. Rusnati, M. Presta and M. Giacca: Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J. Biol. Chem., 276(5), 3254-3261 (2001)
- [93] M. Rusnati, D. Coltrini, P. Oreste, G. Zoppetti, A. Albini, D. Noonan, F. d’Adda di Fagagna, M. Giacca and M. Presta: Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. J Biol Chem, 272(17), 11313-20 (1997)
- [94] M. Rusnati, G. Tulipano, D. Spillmann, E. Tanghetti, P. Oreste, g. Zoppetti, M. Giacca and M. Presta: Multiple interactions of HIV-1 Tat protein with size-defined heparin oligosaccharides. J. Biol. Chem., 274, 28198-28205 (1999)
- [95] E. G. Argyris, J. Kulkosky, M. E. Meyer, Y. Xu, M. Mukhtar, R. J. Pomerantz and K. J. Williams: The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity. Virology, 330(2), 481-486 (2004)
- [96] H. C. Chang, F. Samaniego, B. C. Nair, L. Buonaguro and B. Ensoli: HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS, 11(12), 1421-1431 (1997)
- [97] M. Rusnati and M. Presta: HIV-1 Tat protein: a target for the development of anti-AIDS therapies. Drug Fut, 27, 481-493 (2002)
- [98] M. Rusnati and C. Urbinati: Polysulfated/sulfonated compounds for the development of drugs at the crossroad of viral infection and oncogenesis. Curr Pharm Des, 15(25), 2946-57 (2009)
- [99] I. W. Sherman, S. Eda and E. Winograd: Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect, 5(10), 897-909 (2003)
- [100] M. Fried and P. E. Duffy: Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science, 272 (5267), 1502-4 (1996)
- [101] A. Muthusamy, R. N. Achur, V. P. Bhavanandan, G. G. Fouda, D. W. Taylor and D. C. Gowda: Plasmodium falciparum-infected erythrocytes adhere both in the intervillous space and on the villous surface of human placenta by binding to the low-sulfated chondroitin sulfate proteoglycan receptor. Am. J. Pathol., 164(6), 2013-2025 (2004)
- [102] A. Muthusamy, R. N. Achur, M. Valiyaveettil, J. J. Botti, D. W. Taylor, R. F. Leke and D. C. Gowda: Chondroitin sulfate proteoglycan but not hyaluronic acid is the receptor for the adherence of Plasmodium falciparum-infected erythrocytes in human placenta, and infected red blood cell adherence up-regulates the receptor expression. Am J Pathol, 170(6), 1989-2000 (2007)
- [103] T. M. Clausen, S. Christoffersen, M. Dahlback, A. E. Langkilde, K. E. Jensen, M. Resende, M. O. Agerbaek, D. Andersen, B. Berisha, S. B. Ditlev, V. V. Pinto, M. A. Nielsen, T. G. Theander, S. Larsen and A. Salanti: Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J Biol Chem, 287(28), 23332-45 (2012)
- [104] J. M. Beaudet, L. Mansur, E. J. Joo, E. Kamhi, B. Yang, T. M. Clausen, A. Salanti, F. Zhang and R. J. Linhardt: Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes. Glycoconj J, 31(2), 109-16 (2014)
- [105] A. Coppi, R. Tewari, J. R. Bishop, B. L. Bennett, R. Lawrence, J. D. Esko, O. Billker and P. Sinnis: Heparan sulfate proteoglycans provide a signal to Plasmodium sporozoites to stop migrating and productively invade host cells. Cell Host Microbe, 2(5), 316-327 (2007)
- [106] B. P. Guo, E. L. Brown, D. W. Dorward, L. C. Rosenberg and M. Hook: Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol, 30(4), 711-23 (1998)
- [107] Y. P. Lin, V. Benoit, X. Yang, R. Martinez-Herranz, U. Pal and J. M. Leong: Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLoS Pathog, 10(7), e1004238 (2014)
- [108] E. L. Brown, R. M. Wooten, B. J. Johnson, R. V. Iozzo, A. Smith, M. C. Dolan, B. P. Guo, J. J. Weis and M. Hook: Resistance to Lyme disease in decorin-deficient mice. J Clin Invest, 107(7), 845-52 (2001)
- [109] F. T. Liang, E. L. Brown, T. Wang, R. V. Iozzo and E. Fikrig: Protective niche for Borrelia burgdorferi to evade humoral immunity. Am J Pathol, 165(3), 977-85 (2004)
- [110] P. Avirutnan, L. Zhang, N. Punyadee, A. Manuyakorn, C. Puttikhunt, W. Kasinrerk, P. Malasit, J. P. Atkinson and M. S. Diamond: Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog, 3(11), 1798-1812 (2007)
- [111] N. Dalrymple and E. R. Mackow: Productive dengue virus infection of human endothelial cells is directed by heparan sulfate-containing proteoglycan receptors. J Virol, 85(18), 9478-85 (2011)
- [112] X. Lin, G. Wei, Z. Shi, L. Dryer, J. D. Esko, D. E. Wells and M. M. Matzuk: Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev. Biol., 224, 299-311 (2000)
- [113] T. Izumikawa, N. Kanagawa, Y. Watamoto, M. Okada, M. Saeki, M. Sakano, K. Sugahara, K. Sugihara, M. Asano and H. Kitagawa: Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-I-deficient mice. J Biol Chem, 285(16), 12190-6 (2010)
- [114] G. Fan, L. Xiao, L. Cheng, X. Wang, B. Sun and G. Hu: Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett, 467, 7-11 (2000)
- [115] M. Ringvall, J. Ledin, K. Holmborn, T. van Kuppevelt, F. Ellin, I. Eriksson, A. M. Olofsson, L. Kjellen and E. Forsberg: Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem., 275, 25926-25930 (2000)
- [116] J. Li, F. Gong, A. Hagner-McWhirter, E. Forsberg, M. Åbrink, R. Kisilevsky, X. Zhang and U. Lindahl: Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J. Biol. Chem., 278, 28363-28366 (2003)
- [117] S. L. Bullock, J. M. Fletcher, R. S. Beddington and V. A. Wilson: Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev., 12, 1894-1906 (1998)
- [118] K. Hayashida, Y. Chen, A. H. Bartlett and P. W. Park: Syndecan-1 is an in vivo suppressor of Gram-positive toxic shock. J Biol Chem, 283(29), 19895-19903 (2008)
- [119] K. Hayashida, W. C. Parks and P. W. Park: Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood, 114(14), 3033-3043 (2009)
- [120] J. Xu, P. W. Park, F. Kheradmand and D. B. Corry: Endogenous attenuation of allergic lung inflammation by syndecan-1. J Immunol, 174(9), 5758-5765 (2005)
- [121] R. Copeland, A. Balasubramaniam, V. Tiwari, F. Zhang, A. Bridges, R. J. Linhardt, D. Shukla and J. Liu: Using a 3-O-sulfated heparin octasaccharide to inhibit the entry of herpes simplex virus type 1. Biochemistry, 47(21), 5774-5783 (2008)
- [122] M. Rusnati, C. Urbinati, A. Caputo, L. Possati, H. Lortat-Jacob, M. Giacca, D. Ribatti and M. Presta: Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J. Biol. Chem., 276, 22420-22425 (2001)
- [123] B. C. Herold, N. Bourne, D. Marcellino, R. Kirkpatrick, D. M. Strauss, L. J. Zaneveld, D. P. Waller, R. A. Anderson, C. J. Chany, B. J. Barham, L. R. Stanberry and M. D. Cooper: Poly(sodium 4-styrene sulfonate): an effective candidate topical antimicrobial for the prevention of sexually transmitted diseases. J. Infect. Dis., 181(2), 770-773 (2000)
- [124] E. Lee, M. Pavy, N. Young, C. Freeman and M. Lobigs: Antiviral effect of the heparan sulfate mimetic, PI-88, against dengue and encephalitic flaviviruses. Antiviral Res, 69(1), 31-8 (2006)
- [125] D. Lembo, M. Donalisio, M. Rusnati, A. Bugatti, M. Cornaglia, P. Cappello, M. Giovarelli, P. Oreste and S. Landolfo: Sulfated K5 Escherichia coli polysaccharide derivatives as wide-range inhibitors of genital types of human papillomavirus. Antimicrob. Agents Chemother., 52(4), 1374-1381 (2008)
- [126] N. R. Roan, S. Sowinski, J. Munch, F. Kirchhoff and W. C. Greene: Aminoquinoline surfen inhibits the action of SEVI (semen-derived enhancer of viral infection). J Biol Chem, 285(3), 1861-9 (2010)
- [127] M. Schmidtke, A. Karger, A. Meerbach, R. Egerer, A. Stelzner and V. Makarov: Binding of a N,N’-bisheteryl derivative of dispirotripiperazine to heparan sulfate residues on the cell surface specifically prevents infection of viruses from different families. Virology, 311(1), 134-43 (2003)
- [128] A. M. Vogt, F. Pettersson, K. Moll, C. Jonsson, J. Normark, U. Ribacke, T. G. Egwang, H. P. Ekre, D. Spillmann, Q. Chen and M. Wahlgren: Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathog., 2(9), e100 (2006)
