Information
References
Contents
Download
[1]Pellegriti G1, Frasca F, Regalbuto C, Squatrito S, Vigneri R: Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013, 965212 (2013)
[2]Hofman MS: Thyroid nodules: time to stop over-reporting normal findings and update consensus guidelines. BMJ 347, f5742 (2013)
[3]Thyroid Cancer. MedicineNet.com.
[4]Numbers from EUROCARE, from Page 10 in: F. Grünwald; Biersack, H. J Grںunwald, F. Thyroid cancer. Berlin: Springer. (2005)
[5]ThyCa: Thyroid Carcinoma. http://www.thyca.org
[6]Pusztaszeri MP, Bongiovanni M, Faquin WC: Update on the cytologic and molecular features of medullary thyroid carcinoma. Adv Anat Pathol 21(1), 26-35 (2014)
[7]Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY: MicroRNAs as a potential tool in the differential diagnosis of thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol (Oxf) (2015)
[8]Zhang Y, Meng Z, Zhang M, Tan J, Tian W, He X: Immunohistochemical evaluation of midkine and nuclear factor-kappa B as diagnostic biomarkers for papillary thyroid cancer and synchronous metastasis. Life Sci 118(1), 39-45 (2014)
[9]Krajewska J, Handkiewicz-Junak D, Jarzab B: Sorafenib for the treatment of thyroid cancer: an updated review. Expert Opin Pharmacother 1-11 (2015)
[10]Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK: Efficacy and Tolerability of Vemurafenib in Patients with BRAF(V600E)-Positive Papillary Thyroid Cancer: M.D. Anderson Cancer Center Off Label Experience. J Clin Endocrinol Metab 100(1), E77-81 (2015)
[11]Tochilin VI, Volodchenko NP: Differential diagnosis of thyroid cancer. Klin Khir (12), 8-10 (1989)
[12]Hindié E, Zanotti-Fregonara P, Keller I, Duron F, Devaux JY, Calzada-Nocaudie M: Bone metastases of differentiated thyroid cancer: impact of early 131I-based detection on outcome. Endocr Relat Cancer 14(3), 799-807 (2007)
[13]Schlumberger M, Arcangioli O, Piekarski JD, Tubiana M, Parmentier C: Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med 29(11), 1790-4 (1988)
[14]Chebotareva ED, Dzhuzha DA, Shishkin VV, Siniuta BF, Protsyk VS: The importance of radionuclide tests in postop monitoring of patients with differentiated thyroid cancer. Klin Khir (3), 24-7 (2000)
[15]Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM: Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45(8), 1366-72 (2004)
[16]Jentzen W, Weise R, Kupferschläger J, Freudenberg L, Brandau W, Bares R: Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 35(3), 611-23 (2008)
[17]de Geus-Oei LF, Oei HY, Hennemann G, Krenning EP: Sensitivity of 123I whole-body scan and thyroglobulin in the detection of metastases or recurrent differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 29(6), 768-74 (2002)
[18]Wisotzki C, Friese M, Ehresmann J, Derlin T: Esophageal metastasis from papillary thyroid cancer: diagnosis by 131I SPECT/CT. Clin Nucl Med 39(1), e73-4 (2014)
[19]Kundu P, Lata S, Sharma P, Singh H, Malhotra A, Bal C: Prospective evaluation of (68)Ga-DOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative (131)I-whole body scan: comparison with (18)F-FDG PET-CT. Eur J Nucl Med Mol Imaging 41(7), 1354-62 (2014)
[20]Versari A, Sollini M, Frasoldati A, Fraternali A, Filice A, Froio A: Differentiated thyroid cancer: a new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 24(4), 715-26 (2014)
[21]Görges R, Kahaly G, Müller-Brand J, Mäcke H, Roser HW, Bockisch A: Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer. Thyroid 11(7), 647-59 (2001)
[22]Lee JH, Anzai Y: Imaging of thyroid and parathyroid glands. Semin Roentgenol 48(1), 87–104 (2013)
[23]Joyce JM, Swihart A: Thyroid: nuclear medicine update. Radiol Clin North Am 49(3), 425–434 (2011)
[24]Wahl RL. In: Werner &Ingbar’s The Thyroid. 10. Braverman LE, editor. Philadelphia: Lippincott Williams and Wilkins; Thyroid Radionuclide uptake and imaging studies. (2013)
[25]Lind P, Gallowitsch HJ: The use of non-specific tracers in the follow up of differentiated thyroid cancer: results with Tc-99m tetrofosmin whole body scintigraphy. Acta Med Austriaca 23(1-2), 69-75 (1996)
[26]Roelants V, Michel L, Lonneux M, Lacrosse M, Delgrange E, Donckier JE: Usefulness of (99mTC)MIBI and (18F)fluorodeoxyglucose for imaging recurrent medullary thyroid cancer and hyperparathyroidism in MEN 2a syndrome. Acta Clin Belg 56(6), 373-7 (2001)
[27]Tsyb AF, Drozdovskiĭ� BI, Proshin VV: Long-term results of iodine radioisotope therapy for lung metastasis of thyroid cancer. Vopr Onkol 42(3), 73-5 (1996)
[28]Dohán O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M: The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24(1), 48-77 (2003)
[29]Schmitz G(1), Füzesi L, Struck J, Siefker U, Hamann A, Sahlmann CO: Expression of the sodium iodide symporter in differentiated thyroid cancer: clinical evidence. Nuklearmedizin 44(3), 86-93 (2005)
[30]Lee YJ, Chung JK, Kang JH, Jeong JM, Lee DS, Lee MC: Wild-type p53 enhances the cytotoxic effect of radionuclide gene therapy using sodium iodide symporter in a murine anaplastic thyroid cancer model. Eur J Nucl Med Mol Imaging 37(2), 235-41 (2010)
[31]Drozdovskiĭ� BI, Proshin VV: Treatment of distant iodine-negative metastases of thyroid cancer with 32P. Vopr Onkol 42(3), 71-2 (1996)
[32]Barbet J, Kraeber-Bodéré F, Vuillez JP, Gautherot E, Rouvier E, Chatal JF: Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm 14(3), 153-66 (1999)
[33]Kraeber-Bodéré F, Goldenberg DM, Chatal JF, Barbet J: Pretargeted radioimmunotherapy in the treatment of metastatic medullary thyroid cancer. Curr Oncol 16(5), 3-8 (2009)
[34]Kraeber-Bodéré F, Salaun PY, Oudoux A, Goldenberg DM, Chatal JF, Barbet J: Pretargeted radioimmunotherapy in rapidly progressing, metastatic, medullary thyroid cancer. Cancer 116(4 Suppl), 1118-25 (2010)
[35]Salaun PY, Campion L, Bournaud C, Faivre-Chauvet A, Vuillez JP, Taieb D: Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med 53(8), 1185-92 (2012)
[36]Salaun PY, Campion L, Ansquer C, Frampas E, Mathieu C, Robin P: 18F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 41(8), 1501-10 (2014)
[37]Kraeber-Bodéré F, Saï-Maurel C, Campion L, Faivre-Chauvet A, Mirallié E, Chérel M: Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Mol Cancer Ther 1(4), 267-74 (2002)
[38]Kraeber-Bodéré F, Salaun PY, Ansquer C, Drui D, Mirallié E: Pretargeted radioimmunotherapy (pRAIT) in medullary thyroid cancer (MTC) Tumour Biol 33(3), 601-6 (2012)
[39]Verburg FA, Anlauf M, Mottaghy FM, Karges W: Somatostatin receptor imaging-guided pasireotide therapy in medullary thyroid cancer with ectopic adrenocorticotropin production. Clin Nucl Med 40(1), e83-4 (2015)
[40]Vaisman F, de Castro PH, Lopes FP, Kendler DB, Pessoa CH, Bulzico DA: Is There a Role for Peptide Receptor Radionuclide Therapy in Medullary Thyroid Cancer? Clin Nucl Med 40(2):123-7 (2015)
[41]Xing M, Haugen BR, Schlumberger M: Progress in molecular-based management of differentiated thyroid cancer. Lancet 381 (9871), 1058-69 (2013)
[42]Amin A, Badwey A, El-Fatah S: Differentiated thyroid carcinoma: an analysis of 249 patients undergoing therapy and aftercare at a single institution. Clin Nucl Med 39(2), 142-6 (2014)
[43]Nixon IJ, Whitcher MM, Palmer FL, Tuttle RM, Shaha AR, Shah JP, Patel SG, Ganly I: The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland. Thyroid 22(9), 884-9 (2012)
[44]Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP: Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 91(8), 2892-9 (2006)
[45]Czepczyński R, Matysiak-Grześ M, Gryczyńska M, Bączyk M, Wyszomirska A, Stajgis M, Ruchała M: Peptide Receptor Radionuclide Therapy of Differentiated Thyroid Cancer: Efficacy and Toxicity. Arch Immunol Ther Exp (Warsz) 63(2):147-54. (2015)
[46]Budiawan H, Salavati A, Kulkarni HR, Baum RP: Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)Yttrium and (177)Lutetium labeled somatostatin analogs: toxicity, response and survival analysis. Am J Nucl Med Mol Imaging 4(1), 39-52 (2013)
[47]Sfakianakis G, Sfakianaki E: The sodium-iodine symporter and the proton-pump inhibitors in - related to the side effects of-the treatment of thyroid cancer with iodine-131. Hell J Nucl Med 10(1), 2-5 (2007)
[48]Liu YY, Brandt MP, Shen DH, Kloos RT, Zhang X, Jhiang SM: Single photon emission computed tomography imaging for temporal dynamics of thyroidal and salivary radionuclide accumulation in 17-allyamino-17-demothoxygeldanamycin-treated thyroid cancer mouse model. Endocr Relat Cancer 18(1), 27-37 (2010)
[49]Casara D, Rubello D, Saladini G, Piotto A, Pelizzo MR, Girelli ME, Busnardo B: Pregnancy after high therapeutic doses of iodine-131 in differentiated thyroid cancer: potential risks and recommendations. Eur J Nucl Med 20(3), 192-4 (1993)
[50]Nalley C, Wiebeck K, Bartel TB, Bodenner D, Stack BC Jr: Intraoperative radiation exposure with the use of (18)F-FDG-guided thyroid cancer surgery. Otolaryngol Head Neck Surg 142(2), 281-3 (2010)
[51]Ramírez MJ, Surrallés J, Galofré P, Creus A, Marcos R: Radioactive iodine induces clastogenic and age-dependent aneugenic effects in lymphocytes of thyroid cancer patients as revealed by interphase FISH. Mutagenesis 12(6), 449-55 (1997)
[52]Lassmann M, Hänscheid H, Gassen D, Biko J, Meineke V: In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med 51(8), 1318-25 (2010)
[53]Willegaignon J, Sapienza MT, Buchpiguel CA: Comparison of different dosimetric methods for red marrow absorbed dose calculation in thyroid cancer therapy. Radiat Prot Dosimetry 149(2), 138-46 (2012)
[54]Tabei F, Neshandar Asli I, Azizmohammadi Z, Javadi H, Assadi M: Assessment of radioiodine clearance in patients with differentiated thyroid cancer. Radiat Prot Dosimetry 152(4), 323-7 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Radionuclide imaging and treatment of thyroid cancer
1 Department of Nuclear Medicine, Shan Xi Tumor Hospital, Shan Xi, 030013, China
2 Department of Nuclear Medicine, The First Hospital of Shan Xi Medical University, Shan Xi, 030012, China
Abstract
Over the past decades, the diagnostic methods and therapeutic tools for thyroid cancer (TC) have been greatly improved. In addition to the classical method of ingestion of radioactive iodine-131 (I131) and subsequent I123 and I124 positron emission tomography (PET) in therapy and examination, I124 PET-based 3-dimensional imaging, Ga68-labeled [1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid]-1-NaI(3)-octreotide (DOTANOC) PET/computed tomography (CT), Tc99m tetrofosmin, pre-targeted radioimmunotherapy, and peptide receptor radionuclide therapy have all been used clinically. These novel methods are useful in diagnosis and therapy of TC, but also have unavoidable adverse effects. In this review, we will discuss the development of nuclear medicine in TC examination and treatment.
Keywords
- Thyroid Cancer
- Radionuclide Imaging
- Therapy
- Review
References
- [1] Pellegriti G1, Frasca F, Regalbuto C, Squatrito S, Vigneri R: Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013, 965212 (2013)
- [2] Hofman MS: Thyroid nodules: time to stop over-reporting normal findings and update consensus guidelines. BMJ 347, f5742 (2013)
- [3] Thyroid Cancer. MedicineNet.com.
- [4] Numbers from EUROCARE, from Page 10 in: F. Grünwald; Biersack, H. J Grںunwald, F. Thyroid cancer. Berlin: Springer. (2005)
- [5] ThyCa: Thyroid Carcinoma. http://www.thyca.org
- [6] Pusztaszeri MP, Bongiovanni M, Faquin WC: Update on the cytologic and molecular features of medullary thyroid carcinoma. Adv Anat Pathol 21(1), 26-35 (2014)
- [7] Wei WJ, Shen CT, Song HJ, Qiu ZL, Luo QY: MicroRNAs as a potential tool in the differential diagnosis of thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol (Oxf) (2015)
- [8] Zhang Y, Meng Z, Zhang M, Tan J, Tian W, He X: Immunohistochemical evaluation of midkine and nuclear factor-kappa B as diagnostic biomarkers for papillary thyroid cancer and synchronous metastasis. Life Sci 118(1), 39-45 (2014)
- [9] Krajewska J, Handkiewicz-Junak D, Jarzab B: Sorafenib for the treatment of thyroid cancer: an updated review. Expert Opin Pharmacother 1-11 (2015)
- [10] Dadu R, Shah K, Busaidy NL, Waguespack SG, Habra MA, Ying AK: Efficacy and Tolerability of Vemurafenib in Patients with BRAF(V600E)-Positive Papillary Thyroid Cancer: M.D. Anderson Cancer Center Off Label Experience. J Clin Endocrinol Metab 100(1), E77-81 (2015)
- [11] Tochilin VI, Volodchenko NP: Differential diagnosis of thyroid cancer. Klin Khir (12), 8-10 (1989)
- [12] Hindié E, Zanotti-Fregonara P, Keller I, Duron F, Devaux JY, Calzada-Nocaudie M: Bone metastases of differentiated thyroid cancer: impact of early 131I-based detection on outcome. Endocr Relat Cancer 14(3), 799-807 (2007)
- [13] Schlumberger M, Arcangioli O, Piekarski JD, Tubiana M, Parmentier C: Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med 29(11), 1790-4 (1988)
- [14] Chebotareva ED, Dzhuzha DA, Shishkin VV, Siniuta BF, Protsyk VS: The importance of radionuclide tests in postop monitoring of patients with differentiated thyroid cancer. Klin Khir (3), 24-7 (2000)
- [15] Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM: Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45(8), 1366-72 (2004)
- [16] Jentzen W, Weise R, Kupferschläger J, Freudenberg L, Brandau W, Bares R: Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 35(3), 611-23 (2008)
- [17] de Geus-Oei LF, Oei HY, Hennemann G, Krenning EP: Sensitivity of 123I whole-body scan and thyroglobulin in the detection of metastases or recurrent differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 29(6), 768-74 (2002)
- [18] Wisotzki C, Friese M, Ehresmann J, Derlin T: Esophageal metastasis from papillary thyroid cancer: diagnosis by 131I SPECT/CT. Clin Nucl Med 39(1), e73-4 (2014)
- [19] Kundu P, Lata S, Sharma P, Singh H, Malhotra A, Bal C: Prospective evaluation of (68)Ga-DOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative (131)I-whole body scan: comparison with (18)F-FDG PET-CT. Eur J Nucl Med Mol Imaging 41(7), 1354-62 (2014)
- [20] Versari A, Sollini M, Frasoldati A, Fraternali A, Filice A, Froio A: Differentiated thyroid cancer: a new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 24(4), 715-26 (2014)
- [21] Görges R, Kahaly G, Müller-Brand J, Mäcke H, Roser HW, Bockisch A: Radionuclide-labeled somatostatin analogues for diagnostic and therapeutic purposes in nonmedullary thyroid cancer. Thyroid 11(7), 647-59 (2001)
- [22] Lee JH, Anzai Y: Imaging of thyroid and parathyroid glands. Semin Roentgenol 48(1), 87–104 (2013)
- [23] Joyce JM, Swihart A: Thyroid: nuclear medicine update. Radiol Clin North Am 49(3), 425–434 (2011)
- [24] Wahl RL. In: Werner &Ingbar’s The Thyroid. 10. Braverman LE, editor. Philadelphia: Lippincott Williams and Wilkins; Thyroid Radionuclide uptake and imaging studies. (2013)Cited within: 0Google Scholar
- [25] Lind P, Gallowitsch HJ: The use of non-specific tracers in the follow up of differentiated thyroid cancer: results with Tc-99m tetrofosmin whole body scintigraphy. Acta Med Austriaca 23(1-2), 69-75 (1996)
- [26] Roelants V, Michel L, Lonneux M, Lacrosse M, Delgrange E, Donckier JE: Usefulness of (99mTC)MIBI and (18F)fluorodeoxyglucose for imaging recurrent medullary thyroid cancer and hyperparathyroidism in MEN 2a syndrome. Acta Clin Belg 56(6), 373-7 (2001)
- [27] Tsyb AF, Drozdovskiĭ� BI, Proshin VV: Long-term results of iodine radioisotope therapy for lung metastasis of thyroid cancer. Vopr Onkol 42(3), 73-5 (1996)
- [28] Dohán O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M: The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24(1), 48-77 (2003)
- [29] Schmitz G(1), Füzesi L, Struck J, Siefker U, Hamann A, Sahlmann CO: Expression of the sodium iodide symporter in differentiated thyroid cancer: clinical evidence. Nuklearmedizin 44(3), 86-93 (2005)
- [30] Lee YJ, Chung JK, Kang JH, Jeong JM, Lee DS, Lee MC: Wild-type p53 enhances the cytotoxic effect of radionuclide gene therapy using sodium iodide symporter in a murine anaplastic thyroid cancer model. Eur J Nucl Med Mol Imaging 37(2), 235-41 (2010)
- [31] Drozdovskiĭ� BI, Proshin VV: Treatment of distant iodine-negative metastases of thyroid cancer with 32P. Vopr Onkol 42(3), 71-2 (1996)
- [32] Barbet J, Kraeber-Bodéré F, Vuillez JP, Gautherot E, Rouvier E, Chatal JF: Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm 14(3), 153-66 (1999)
- [33] Kraeber-Bodéré F, Goldenberg DM, Chatal JF, Barbet J: Pretargeted radioimmunotherapy in the treatment of metastatic medullary thyroid cancer. Curr Oncol 16(5), 3-8 (2009)
- [34] Kraeber-Bodéré F, Salaun PY, Oudoux A, Goldenberg DM, Chatal JF, Barbet J: Pretargeted radioimmunotherapy in rapidly progressing, metastatic, medullary thyroid cancer. Cancer 116(4 Suppl), 1118-25 (2010)
- [35] Salaun PY, Campion L, Bournaud C, Faivre-Chauvet A, Vuillez JP, Taieb D: Phase II trial of anticarcinoembryonic antigen pretargeted radioimmunotherapy in progressive metastatic medullary thyroid carcinoma: biomarker response and survival improvement. J Nucl Med 53(8), 1185-92 (2012)
- [36] Salaun PY, Campion L, Ansquer C, Frampas E, Mathieu C, Robin P: 18F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 41(8), 1501-10 (2014)
- [37] Kraeber-Bodéré F, Saï-Maurel C, Campion L, Faivre-Chauvet A, Mirallié E, Chérel M: Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Mol Cancer Ther 1(4), 267-74 (2002)
- [38] Kraeber-Bodéré F, Salaun PY, Ansquer C, Drui D, Mirallié E: Pretargeted radioimmunotherapy (pRAIT) in medullary thyroid cancer (MTC) Tumour Biol 33(3), 601-6 (2012)
- [39] Verburg FA, Anlauf M, Mottaghy FM, Karges W: Somatostatin receptor imaging-guided pasireotide therapy in medullary thyroid cancer with ectopic adrenocorticotropin production. Clin Nucl Med 40(1), e83-4 (2015)
- [40] Vaisman F, de Castro PH, Lopes FP, Kendler DB, Pessoa CH, Bulzico DA: Is There a Role for Peptide Receptor Radionuclide Therapy in Medullary Thyroid Cancer? Clin Nucl Med 40(2):123-7 (2015)
- [41] Xing M, Haugen BR, Schlumberger M: Progress in molecular-based management of differentiated thyroid cancer. Lancet 381 (9871), 1058-69 (2013)
- [42] Amin A, Badwey A, El-Fatah S: Differentiated thyroid carcinoma: an analysis of 249 patients undergoing therapy and aftercare at a single institution. Clin Nucl Med 39(2), 142-6 (2014)
- [43] Nixon IJ, Whitcher MM, Palmer FL, Tuttle RM, Shaha AR, Shah JP, Patel SG, Ganly I: The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland. Thyroid 22(9), 884-9 (2012)
- [44] Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP: Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 91(8), 2892-9 (2006)
- [45] Czepczyński R, Matysiak-Grześ M, Gryczyńska M, Bączyk M, Wyszomirska A, Stajgis M, Ruchała M: Peptide Receptor Radionuclide Therapy of Differentiated Thyroid Cancer: Efficacy and Toxicity. Arch Immunol Ther Exp (Warsz) 63(2):147-54. (2015)
- [46] Budiawan H, Salavati A, Kulkarni HR, Baum RP: Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)Yttrium and (177)Lutetium labeled somatostatin analogs: toxicity, response and survival analysis. Am J Nucl Med Mol Imaging 4(1), 39-52 (2013)
- [47] Sfakianakis G, Sfakianaki E: The sodium-iodine symporter and the proton-pump inhibitors in - related to the side effects of-the treatment of thyroid cancer with iodine-131. Hell J Nucl Med 10(1), 2-5 (2007)
- [48] Liu YY, Brandt MP, Shen DH, Kloos RT, Zhang X, Jhiang SM: Single photon emission computed tomography imaging for temporal dynamics of thyroidal and salivary radionuclide accumulation in 17-allyamino-17-demothoxygeldanamycin-treated thyroid cancer mouse model. Endocr Relat Cancer 18(1), 27-37 (2010)
- [49] Casara D, Rubello D, Saladini G, Piotto A, Pelizzo MR, Girelli ME, Busnardo B: Pregnancy after high therapeutic doses of iodine-131 in differentiated thyroid cancer: potential risks and recommendations. Eur J Nucl Med 20(3), 192-4 (1993)
- [50] Nalley C, Wiebeck K, Bartel TB, Bodenner D, Stack BC Jr: Intraoperative radiation exposure with the use of (18)F-FDG-guided thyroid cancer surgery. Otolaryngol Head Neck Surg 142(2), 281-3 (2010)
- [51] Ramírez MJ, Surrallés J, Galofré P, Creus A, Marcos R: Radioactive iodine induces clastogenic and age-dependent aneugenic effects in lymphocytes of thyroid cancer patients as revealed by interphase FISH. Mutagenesis 12(6), 449-55 (1997)
- [52] Lassmann M, Hänscheid H, Gassen D, Biko J, Meineke V: In vivo formation of gamma-H2AX and 53BP1 DNA repair foci in blood cells after radioiodine therapy of differentiated thyroid cancer. J Nucl Med 51(8), 1318-25 (2010)
- [53] Willegaignon J, Sapienza MT, Buchpiguel CA: Comparison of different dosimetric methods for red marrow absorbed dose calculation in thyroid cancer therapy. Radiat Prot Dosimetry 149(2), 138-46 (2012)
- [54] Tabei F, Neshandar Asli I, Azizmohammadi Z, Javadi H, Assadi M: Assessment of radioiodine clearance in patients with differentiated thyroid cancer. Radiat Prot Dosimetry 152(4), 323-7 (2012)
