Information
References
Contents
Download
[1]N Bartke, YA Hannun: Bioactive sphingolipids: metabolism and function. J Lipid Res 50 Suppl, S91-S96 (2009)
[2]S Borodzicz, K Czarzasta, M Kuch, A Cudnoch-Jedrzejewska: Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 14, 55 (2015)
[3]T Hla, AJ Dannenberg: Sphingolipid signaling in metabolic disorders. Cell Metab 16(4), 420-434 (2012)
[4]PL Li, Y Zhang: Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb Exp Pharmacol 216, 171-197 (2013)
[5]T Levade, N Auge, RJ Veldman, O Cuvillier, A Negre-Salvayre, R Salvayre: Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res 89(11), 957-968 (2001)
[6]CR Gault, LM Obeid, YA Hannun: An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688, 1-23 (2010)
[7]M Fenger, A Linneberg, T Jorgensen, S Madsbad, K Sobye, J Eugen-Olsen, J Jeppesen: Genetics of the ceramide/sphingosine-1-phosphate rheostat in blood pressure regulation and hypertension. BMC Genet 12, 44 (2011)
[8]J Kornhuber, C Rhein, CP Muller, C Muhle: Secretory sphingomyelinase in health and disease. Biol Chem 396(6-7), 707-736 (2015)
[9]A Cantalupo, Y Zhang, M Kothiya, S Galvani, H Obinata, M Bucci, FJ Giordano, XC Jiang, T Hla, A Di Lorenzo: Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat Med 21(9), 1028-1037 (2015)
[10]Y Takuwa, Y Okamoto, K Yoshioka, N Takuwa: Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim Biophys Acta 1781(9), 483-488 (2008)
[11]K Takabe, SW Paugh, S Milstien, S Spiegel: “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60(2), 181-195 (2008)
[12]J de Faria Poloni, H Chapola, BC Feltes, D Bonatto: The importance of sphingolipids and reactive oxygen species in cardiovascular development. Biol Cell 106(6), 167-181 (2014)
[13]AY Zhang, F Yi, S Jin, M Xia, QZ Chen, E Gulbins, PL Li: Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9(7), 817-828 (2007)
[14]JX Bao, M Xia, JL Poklis, WQ Han, C Brimson, PL Li: Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Am J Physiol Heart Circ Physiol 298(3), H992-H1002 (2010)
[15]X Li, WQ Han, KM Boini, M Xia, Y Zhang, PL Li: TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice. J Mol Med (Berl) 91(1), 25-36 (2013)
[16]S Jin, F Yi, PL Li: Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9(9), 1417-1426 (2007)
[17]JX Bao, S Jin, F Zhang, ZC Wang, N Li, PL Li: Activation of membrane NADPH oxidase associated with lysosome-targeted acid sphingomyelinase in coronary endothelial cells. Antioxid Redox Signal 12(6), 703-712 (2010)
[18]J Oshikawa, N Urao, HW Kim, N Kaplan, M Razvi, R McKinney, LB Poole, T Fukai, M Ushio-Fukai: Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One 5(4), e10189 (2010)
[19]E Feuk-Lagerstedt, C Movitz, S Pellme, C Dahlgren, A Karlsson: Lipid raft proteome of the human neutrophil azurophil granule. Proteomics 7(2), 194-205 (2007)
[20]T Hara, N Kondo, H Nakamura, H Okuyama, A Mitsui, Y Hoshino, J Yo, Cell-surface thioredoxin-1: possible involvement in thiol-mediated leukocyte-endothelial cell interaction through lipid rafts. Antioxid Redox Signal 9(9), 1427-1437 (2007)
[21]M Levy, SS Castillo, T Goldkorn: nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun 344(3), 900-905 (2006)
[22]SS Castillo, M Levy, JV Thaikoottathil, T Goldkorn: Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells. Exp Cell Res 313(12), 2680-2686 (2007)
[23]B Yang, TN Oo, V Rizzo: Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB J 20(9), 1501-1503 (2006)
[24]S Chen, J Yang, H Xiang, W Chen, H Zhong, G Yang, T Fang, H Deng, H Yuan, AF Chen, H Lu: Role of sphingosine-1-phosphate receptor 1 and sphingosine-1-phosphate receptor 2 in hyperglycemia-induced endothelial cell dysfunction. Int J Mol Med 35(4), 1103-1108 (2015)
[26]YM Kim, SC Lim, CY Han, HY Kay, IJ Cho, SH Ki, MY Lee, HM Kwon, CH Lee, SG Kim: G(alpha)12/13 induction of CYR61 in association with arteriosclerotic intimal hyperplasia: effect of sphingosine-1-phosphate. Arterioscler Thromb Vasc Biol 31(4), 861-869 (2011)
[27]E Roztocil, SM Nicholl, MG Davies: Mechanisms of sphingosine-1-phosphate-induced akt-dependent smooth muscle cell migration. Surgery 145(1), 34-41 (2009)
[28]M Maceyka, S Milstien, S Spiegel: Shooting the messenger: oxidative stress regulates sphingosine-1-phosphate. Circ Res 100(1), 7-9 (2007)
[29]JR Van Brocklyn, JB Williams: The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 163(1), 26-36 (2012)
[30]MC Michel, AC Mulders, M Jongsma, AE Alewijnse, SL Peters: Vascular effects of sphingolipids. Acta Paediatr Suppl96(455), 44-48 (2007)
[31]LP Bharath, T Ruan, Y Li, A Ravindran, X Wan, JK Nhan, ML Walker, L Deeter, R Goodrich, E Johnson, D Munday, R Mueller, D Kunz, D Jones, V Reese, SA Summers, PV Anandh Babu, WL Holland, QJ Zhang, ED Abel, JD Symons: Ceramide initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo. Diabetes (2015)
[32]PL Li, DX Zhang, AP Zou, WB Campbell: Effect of ceramide on KCa channel activity and vascular tone in coronary arteries. Hypertension 33(6), 1441-1446 (1999)
[33]T Zheng, W Li, J Wang, BT Altura, BM Altura: C2-ceramide attenuates phenylephrine-induced vasoconstriction and elevation in (Ca2+)i in rat aortic smooth muscle. Lipids 34(7), 689-695 (1999)
[34]T Zheng, W Li, J Wang, BT Altura, BM Altura: Effects of neutral sphingomyelinase on phenylephrine-induced vasoconstriction and (Ca2+) mobilization in rat aortic smooth muscle. Eur J Pharmacol 391(1-2), 127-135 (2000)
[35]JS Jin, CS Tsai, X Si, RC Webb: Endothelium dependent and independent relaxations induced by ceramide in vascular smooth muscles. Chin J Physiol 42(1), 47-51 (1999)
[36]C Berry, R Touyz, AF Dominiczak, RC Webb, DG Johns: Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281(6), H2337-H2365 (2001)
[37]J Igarashi, T Michel: Sphingosine-1-phosphate and modulation of vascular tone. Cardiovasc Res 82(2), 212-220 (2009)
[38]M Schuchardt, M Tolle, J Prufer, M van der Giet: Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 163(6), 1140-1162 (2011)
[39]M Tolle, B Levkau, P Keul, V Brinkmann, G Giebing, G Schonfelder, M Schafers, K von Wnuck Lipinski, J Jankowski, V Jankowski, J Chun, W Zidek, M Van der Giet: Immunomodulator FTY720 Induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96(8), 913-920 (2005)
[40]EQ Scherer, D Lidington, E Oestreicher, WArnold, U Pohl, SS Bolz: Sphingosine-1-phosphate modulates spiral modiolar artery tone: Apotential role in vascular-based inner ear pathologies? Cardiovasc Res 70(1), 79-87 (2006)
[41]PC Wilson, WR Fitzgibbon, SM Garrett, AA Jaffa, LM Luttrell, MW Brands, HM El-Shewy: Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. Mol Endocrinol 29(6), 896-908 (2015)
[42]DKerage, DN Brindley, DG Hemmings: Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta 35 Suppl, S86-92 (2014)
[43]PL Jernigan, AT Makley, RS Hoehn, MJ Edwards, TA Pritts: The role of sphingolipids in endothelial barrier function. Biol Chem 396(6-7), 681-691 (2015)
[44]J Igarashi, HS Thatte, P Prabhakar, DE Golan, T Michel: Calcium-independent activation of endothelial nitric oxide synthase by ceramide. Proc Natl Acad Sci U S A 96(22), 12583-12588 (1999)
[45]BA Wilkerson, KM Argraves: The role of sphingosine-1-phosphate in endothelial barrier function. Biochim Biophys Acta 1841(10), 1403-1412 (2014)
[46]JF Lee, Q Zeng, H Ozaki, L Wang, AR Hand, T Hla, E Wang, MJ Lee: Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem 281(39), 29190-29200 (2006)
[47]MM Young, M Kester, HG Wang: Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54(1), 5-19 (2013)
[48]A Haimovitz-Friedman, RN Kolesnick, Z Fuks: Ceramide signaling in apoptosis. Br Med Bull 53(3), 539-553 (1997)
[49]N Ueda: Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 16(3), 5076-5124 (2015)
[50]H Grassme, J Riethmuller, E Gulbins: Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 46(3-4), 161-170 (2007)
[51]O Cuvillier, G Pirianov, B Kleuser, PG Vanek, OA Coso, S Gutkind, S Spiegel: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381 (6585), 800-803 (1996)
[52]DM Zheng, T Kitamura, K Ikejima, N Enomoto, S Yamashina, S Suzuki, Y Takei, N Sato: Sphingosine 1-phosphate protects rat liver sinusoidal endothelial cells from ethanol-induced apoptosis: Role of intracellular calcium and nitric oxide. Hepatology 44(5), 1278-1287 (2006)
[53]R Alemany, CJ van Koppen, K Danneberg, M Ter Braak, D Meyer Zu Heringdorf: Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 374(5-6), 413-428 (2007)
[54]GR De Meyer, MO Grootaert, CF Michiels, A Kurdi, DM Schrijvers, W Martinet: Autophagy in vascular disease. Circ Res 116(3), 468-479 (2015)
[55]YLi, S Li, X Qin, W Hou, H Dong, L Yao, L Xiong: The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5, e1245 (2014)
[56]XLi, M Xu, AL Pitzer, M Xia, KM Boini, PL Li, Y Zhang: Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med (Berl) 92(5), 473-485 (2014)
[57]FC Luft: Acid sphingomyelinase, autophagy, and atherosclerosis. J Mol Med (Berl) 92(5), 429-431 (2014)
[58]CUllio, J Casas, UT Brunk, G Sala, G Fabrias, R Ghidoni, G Bonelli, FM Baccino, R Autelli: Sphingosine mediates TNFalpha-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells. J Lipid Res 53(6), 1134-1143 (2012)
[59]K Tachibana, C Kitanaka: (Autophagy and autophagic cell death). Tanpakushitsu Kakusan Koso 51(10 Suppl), 1519-1524 (2006)
[60]RD Sentelle, CE Senkal, W Jiang, S Ponnusamy, S Gencer, SP Selvam, VK Ramshesh, YK Peterson, JJ Lemasters, ZM Szulc, J Bielawski, B Ogretmen: Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8(10), 831-838 (2012)
[61]S Lepine, JC Allegood, Y Edmonds, S Milstien, S Spiegel: Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286(52), 44380-44390 (2011)
[62]NHa, N Sonenberg: Upstream and downstream of mTOR. Genes Dev 18(16), 1926-1945 (2004)
[63]N Auge, N Andrieu, A Negre-Salvayre, JC Thiers, T Levade, R Salvayre: The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation.J Biol Chem 271(32), 19251-19255 (1996)
[64]N Auge, F Maupas-Schwalm, M Elbaz, JC Thiers, A Waysbort, S Itohara, HW Krell, R Salvayre, A Negre-Salvayre: Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 110(5), 571-578 (2004)
[65]N Auge, M Nikolova-Karakashian, S Carpentier, S Parthasarathy, A Negre-Salvayre, R Salvayre, Jr AH Merrill, T Levade: Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274(31), 21533-21538 (1999)
[66]BW Wattenberg, SM Pitson, DM Raben: The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 47(6), 1128-1139 (2006)
[67]TJ Kim, YJ Kang, Y Lim, HW Lee, K Bae, YS Lee, JM Yoo, HS Yoo, YP Yun: Ceramide 1-phosphate induces neointimal formation via cell proliferation and cell cycle progression upstream of ERK1/2 in vascular smooth muscle cells. Exp Cell Res 317(14), 2041-2051 (2011)
[68]V Hinkovska-Galcheva, JA Shayman: Ceramide-1-phosphate in phagocytosis and calcium homeostasis. Adv Exp Med Biol 688, 131-140 (2010)
[69]S Chatterjee, D Bedja, S Mishra, C Amuzie, A Avolio, DA Kass, D Berkowitz, M Renehan: Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/-mice and rabbits fed a high-fat and-cholesterol diet. Circulation 129(23), 2403-2413 (2014)
[70]S Chatterjee: Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol 18(10), 1523-1533 (1998)
[71]K Mizugishi, T Yamashita, A Olivera, GF Miller, S Spiegel, RL Proia: Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25(24), 11113-11121 (2005)
[72]M Kono, Y Mi, Y Liu, T Sasaki, ML Allende, YP Wu, T Yamashita, RL Proia: The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279(28), 29367-29373 (2004)
[73]H Ren, M Panchatcharam, P Mueller, D Escalante-Alcalde, AJ Morris, SS Smyth: Lipid phosphate phosphatase (LPP3) and vascular development. Biochim Biophys Acta 1831(1), 126-132 (2013)
[74]M Adada, D Canals, YA Hannun, LM Obeid: Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim Biophys Acta 1841(5), 727-737 (2014)
[75]WF Marasas, RT Riley, KA Hendricks, VL Stevens, TW Sadler, J Gelineau-van Waes, SA Missmer, J Cabrera, O Torres, WC Gelderblom, J Allegood, C Martinez, J Maddox, JD Miller, L Starr, MC Sullards, AV Roman, KA Voss, E Wang, Jr AH Merrill: Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134(4), 711-716 (2004)
[76]LS Tang, BJ Wlodarczyk, DR Santillano, RC Miranda, RH Finnell: Developmental consequences of abnormal folate transport during murine heart morphogenesis. Birth Defects Res A Clin Mol Teratol 70(7), 449-458 (2004)
[77]O Oyama, N Sugimoto, X Qi, N Takuwa, K Mizugishi, J Koizumi, Y Takuwa: The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice. Cardiovasc Res 78(2), 301-307 (2008)
[78]T Yabu, H Tomimoto, Y Taguchi, S Yamaoka, Y Igarashi, T Okazaki: Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 106(1), 125-134 (2005)
[79]GJ Czarnota, R Karshafian, PN Burns, S Wong, A Al Mahrouki, JW Lee, A Caissie, W Tran, C Kim, M Furukawa, E Wong, A Giles: Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci U S A 109(30), E2033-2041 (2012)
[80]H Yazama, K Kitatani, K Fujiwara, M Kato, M Hashimoto-Nishimura, K Kawamoto, K Hasegawa, H Kitano, A Bielawska, J Bielawski, T Okazaki: Dietary glucosylceramides suppress tumor growth in a mouse xenograft model of head and neck squamous cell carcinoma by the inhibition of angiogenesis through an increase in ceramide. Int J Clin Oncol 20(3), 438-446 (2015)
[81]HJ Abuhusain, A Matin, Q Qiao, H Shen, N Kain, BW Day, BW Stringer, B Daniels, MA Laaksonen, C Teo, KL McDonald, AS Don: Ametabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 288(52), 37355-37364 (2013)
[82]SS Chae, JH Paik, H Furneaux, T Hla: Requirement for sphingosine 1–phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 114(8), 1082-1089 (2004)
[83]B Visentin, JA Vekich, BJ Sibbald, AL Cavalli, KM Moreno, RG Matteo, WA Garland, Y Lu, S Yu, HS. Hall, V Kundra, GB Mills, RA Sabbadini: Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3), 225-238 (2006)
[84]S Poitevin, D Cussac, AS Leroyer, V Albinet, G Sarlon-Bartoli, B Guillet, L Hubert, N Andrieu-Abadie, B Couderc, A Parini, F Dignat-George, F Sabatier: Sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity. Cardiovasc Res 103(1), 121-130 (2014)
[85]LJ Spijkers, RF van den Akker, BJ Janssen, JJ Debets, JG De Mey, ES Stroes, BJ van den Born, DS Wijesinghe, CE Chalfant, L MacAleese, GB Eijkel, RM Heeren, AE Alewijnse, SL Peters: Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One 6(7), e21817 (2011)
[86]LJ Spijkers, BJ Janssen, J Nelissen, MJ Meens, D Wijesinghe, CE Chalfant, JG De Mey, AE Alewijnse, SL Peters: Antihypertensive treatment differentially affects vascular sphingolipid biology in spontaneously hypertensive rats. PLoS One 6(12), e29222 (2011)
[87]SH Hsiao, PD Constable, GW Smith, WM Haschek: Effects of exogenous sphinganine, sphingosine, and sphingosine-1-phosphate on relaxation and contraction of porcine thoracic aortic and pulmonary arterial rings. Toxicol Sci 86(1), 194-199 (2005)
[88]J Bismuth, P Lin, Q Yao, C Chen: Ceramide: a common pathway for atherosclerosis? Atherosclerosis 196(2), 497-504 (2008)
[89]C Pavoine, F Pecker: Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc Res 82(2), 175-183 (2009)
[90]ZS Kaplan, SP Jackson: The role of platelets in atherothrombosis. Hematology Am Soc Hematol Educ Program 2011, 51-61 (2011)
[91]Z Li, Y Fan, J Liu, Y Li, C Huan, HH Bui, MS Kuo, TS Park, G Cao, XC Jiang: Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32(7), 1577-1584 (2012)
[92]P Keul, M Tolle, S Lucke, K von Wnuck Lipinski, G Heusch, M Schuchardt, M van der Giet, B Levkau: The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27(3), 607-613 (2007)
[93]BM Altura, NC Shah, GJ Shah, A Zhang, W Li, T Zheng, JL Perez-Albela, BT Altura: Short-term Mg deficiency upregulates protein kinase C isoforms in cardiovascular tissues and cells; relation to NF-kB, cytokines, ceramide salvage sphingolipid pathway and PKC-zeta: hypothesis and review. Int J Clin Exp Med 7(1), 1-21 (2014)
[94]NC Shah, GJ Shah, Z Li, XC Jiang, BT Altura, BM Altura: Short-term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging. Int J Clin Exp Med 7(3), 497-514 (2014)
[95]T Zheng, W Li, BT Altura, NC Shah, BM Altura: Sphingolipids regulate (Mg2+)o uptake and (Mg2+)i content in vascular smooth muscle cells: potential mechanisms and importance to membrane transport of Mg2+. Am J Physiol Heart Circ Physiol 300(2), H486-492 (2011)
[96]J Ohanian, A Liao, SP Forman, V Ohanian: Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2(5) (2014)
[97]X Huang, BR Withers, RC Dickson: Sphingolipids and lifespan regulation. Biochim Biophys Acta 1841(5), 657-664 (2014)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Vascular sphingolipids in physiological and pathological adaptation
1 Department of Aerospace Hygiene, Fourth Military Medical University, Xi’an 710032, People’s Republic of China
Abstract
Sphingolipids (SLs) are compounds containing a long-chain fatty alcohol amine called sphingosine which exists in cellular membranes, cytoplasm, nucleus, interstitial fluid, blood and lymphatic circulation. SLs act as essential constituents of membranes of eukaryotic cells, so the seesaw of SLs will lead to structural alteration of membranes instigating cellular functional change. SLs also act as crucial signaling molecules taking effect intracellularly or extracellularly which regulates activity of downstream molecules determining cellular adaptation to numerous stimulus. This review aims to highlight the contribution of SLs to physiological and pathophysiological remodeling of vasculature. We will first provide a short overview on metabolism, trafficking and compartmentalization of SLs. Then the regulation of SLs on reactive oxygen species (ROS) formation, vascular tone modulation, endothelial barrier integrity, apoptosis and autophagy are summarized. Finally, we will discuss how the SLs are modulated contributing to vascular development, angiogenesis and vascular remodeling in pathological situations as hypertension, atherosclerosis, and aging. The compellingly regulative actions of SLs bring about copious therapeutic targets for potential pharmacological intervention on the diseases involving vascular maladaptation.
Keywords
- Sphingolipid
- Vascular Adaptation
- Ceramide
- Sphingosine-1-Phosphate
- Review
References
- [1] N Bartke, YA Hannun: Bioactive sphingolipids: metabolism and function. J Lipid Res 50 Suppl, S91-S96 (2009)
- [2] S Borodzicz, K Czarzasta, M Kuch, A Cudnoch-Jedrzejewska: Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis 14, 55 (2015)
- [3] T Hla, AJ Dannenberg: Sphingolipid signaling in metabolic disorders. Cell Metab 16(4), 420-434 (2012)
- [4] PL Li, Y Zhang: Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb Exp Pharmacol 216, 171-197 (2013)
- [5] T Levade, N Auge, RJ Veldman, O Cuvillier, A Negre-Salvayre, R Salvayre: Sphingolipid mediators in cardiovascular cell biology and pathology. Circ Res 89(11), 957-968 (2001)
- [6] CR Gault, LM Obeid, YA Hannun: An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688, 1-23 (2010)
- [7] M Fenger, A Linneberg, T Jorgensen, S Madsbad, K Sobye, J Eugen-Olsen, J Jeppesen: Genetics of the ceramide/sphingosine-1-phosphate rheostat in blood pressure regulation and hypertension. BMC Genet 12, 44 (2011)
- [8] J Kornhuber, C Rhein, CP Muller, C Muhle: Secretory sphingomyelinase in health and disease. Biol Chem 396(6-7), 707-736 (2015)
- [9] A Cantalupo, Y Zhang, M Kothiya, S Galvani, H Obinata, M Bucci, FJ Giordano, XC Jiang, T Hla, A Di Lorenzo: Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat Med 21(9), 1028-1037 (2015)
- [10] Y Takuwa, Y Okamoto, K Yoshioka, N Takuwa: Sphingosine-1-phosphate signaling and biological activities in the cardiovascular system. Biochim Biophys Acta 1781(9), 483-488 (2008)
- [11] K Takabe, SW Paugh, S Milstien, S Spiegel: “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60(2), 181-195 (2008)
- [12] J de Faria Poloni, H Chapola, BC Feltes, D Bonatto: The importance of sphingolipids and reactive oxygen species in cardiovascular development. Biol Cell 106(6), 167-181 (2014)
- [13] AY Zhang, F Yi, S Jin, M Xia, QZ Chen, E Gulbins, PL Li: Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9(7), 817-828 (2007)
- [14] JX Bao, M Xia, JL Poklis, WQ Han, C Brimson, PL Li: Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Am J Physiol Heart Circ Physiol 298(3), H992-H1002 (2010)
- [15] X Li, WQ Han, KM Boini, M Xia, Y Zhang, PL Li: TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice. J Mol Med (Berl) 91(1), 25-36 (2013)
- [16] S Jin, F Yi, PL Li: Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9(9), 1417-1426 (2007)
- [17] JX Bao, S Jin, F Zhang, ZC Wang, N Li, PL Li: Activation of membrane NADPH oxidase associated with lysosome-targeted acid sphingomyelinase in coronary endothelial cells. Antioxid Redox Signal 12(6), 703-712 (2010)
- [18] J Oshikawa, N Urao, HW Kim, N Kaplan, M Razvi, R McKinney, LB Poole, T Fukai, M Ushio-Fukai: Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One 5(4), e10189 (2010)
- [19] E Feuk-Lagerstedt, C Movitz, S Pellme, C Dahlgren, A Karlsson: Lipid raft proteome of the human neutrophil azurophil granule. Proteomics 7(2), 194-205 (2007)
- [20] T Hara, N Kondo, H Nakamura, H Okuyama, A Mitsui, Y Hoshino, J Yo, Cell-surface thioredoxin-1: possible involvement in thiol-mediated leukocyte-endothelial cell interaction through lipid rafts. Antioxid Redox Signal 9(9), 1427-1437 (2007)
- [21] M Levy, SS Castillo, T Goldkorn: nSMase2 activation and trafficking are modulated by oxidative stress to induce apoptosis. Biochem Biophys Res Commun 344(3), 900-905 (2006)
- [22] SS Castillo, M Levy, JV Thaikoottathil, T Goldkorn: Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells. Exp Cell Res 313(12), 2680-2686 (2007)
- [23] B Yang, TN Oo, V Rizzo: Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB J 20(9), 1501-1503 (2006)
- [24] S Chen, J Yang, H Xiang, W Chen, H Zhong, G Yang, T Fang, H Deng, H Yuan, AF Chen, H Lu: Role of sphingosine-1-phosphate receptor 1 and sphingosine-1-phosphate receptor 2 in hyperglycemia-induced endothelial cell dysfunction. Int J Mol Med 35(4), 1103-1108 (2015)
- [26] YM Kim, SC Lim, CY Han, HY Kay, IJ Cho, SH Ki, MY Lee, HM Kwon, CH Lee, SG Kim: G(alpha)12/13 induction of CYR61 in association with arteriosclerotic intimal hyperplasia: effect of sphingosine-1-phosphate. Arterioscler Thromb Vasc Biol 31(4), 861-869 (2011)
- [27] E Roztocil, SM Nicholl, MG Davies: Mechanisms of sphingosine-1-phosphate-induced akt-dependent smooth muscle cell migration. Surgery 145(1), 34-41 (2009)
- [28] M Maceyka, S Milstien, S Spiegel: Shooting the messenger: oxidative stress regulates sphingosine-1-phosphate. Circ Res 100(1), 7-9 (2007)
- [29] JR Van Brocklyn, JB Williams: The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 163(1), 26-36 (2012)
- [30] MC Michel, AC Mulders, M Jongsma, AE Alewijnse, SL Peters: Vascular effects of sphingolipids. Acta Paediatr Suppl96(455), 44-48 (2007)
- [31] LP Bharath, T Ruan, Y Li, A Ravindran, X Wan, JK Nhan, ML Walker, L Deeter, R Goodrich, E Johnson, D Munday, R Mueller, D Kunz, D Jones, V Reese, SA Summers, PV Anandh Babu, WL Holland, QJ Zhang, ED Abel, JD Symons: Ceramide initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo. Diabetes (2015)
- [32] PL Li, DX Zhang, AP Zou, WB Campbell: Effect of ceramide on KCa channel activity and vascular tone in coronary arteries. Hypertension 33(6), 1441-1446 (1999)
- [33] T Zheng, W Li, J Wang, BT Altura, BM Altura: C2-ceramide attenuates phenylephrine-induced vasoconstriction and elevation in (Ca2+)i in rat aortic smooth muscle. Lipids 34(7), 689-695 (1999)
- [34] T Zheng, W Li, J Wang, BT Altura, BM Altura: Effects of neutral sphingomyelinase on phenylephrine-induced vasoconstriction and (Ca2+) mobilization in rat aortic smooth muscle. Eur J Pharmacol 391(1-2), 127-135 (2000)
- [35] JS Jin, CS Tsai, X Si, RC Webb: Endothelium dependent and independent relaxations induced by ceramide in vascular smooth muscles. Chin J Physiol 42(1), 47-51 (1999)
- [36] C Berry, R Touyz, AF Dominiczak, RC Webb, DG Johns: Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281(6), H2337-H2365 (2001)
- [37] J Igarashi, T Michel: Sphingosine-1-phosphate and modulation of vascular tone. Cardiovasc Res 82(2), 212-220 (2009)
- [38] M Schuchardt, M Tolle, J Prufer, M van der Giet: Pharmacological relevance and potential of sphingosine 1-phosphate in the vascular system. Br J Pharmacol 163(6), 1140-1162 (2011)
- [39] M Tolle, B Levkau, P Keul, V Brinkmann, G Giebing, G Schonfelder, M Schafers, K von Wnuck Lipinski, J Jankowski, V Jankowski, J Chun, W Zidek, M Van der Giet: Immunomodulator FTY720 Induces eNOS-dependent arterial vasodilatation via the lysophospholipid receptor S1P3. Circ Res 96(8), 913-920 (2005)
- [40] EQ Scherer, D Lidington, E Oestreicher, WArnold, U Pohl, SS Bolz: Sphingosine-1-phosphate modulates spiral modiolar artery tone: Apotential role in vascular-based inner ear pathologies? Cardiovasc Res 70(1), 79-87 (2006)
- [41] PC Wilson, WR Fitzgibbon, SM Garrett, AA Jaffa, LM Luttrell, MW Brands, HM El-Shewy: Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. Mol Endocrinol 29(6), 896-908 (2015)
- [42] DKerage, DN Brindley, DG Hemmings: Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta 35 Suppl, S86-92 (2014)
- [43] PL Jernigan, AT Makley, RS Hoehn, MJ Edwards, TA Pritts: The role of sphingolipids in endothelial barrier function. Biol Chem 396(6-7), 681-691 (2015)
- [44] J Igarashi, HS Thatte, P Prabhakar, DE Golan, T Michel: Calcium-independent activation of endothelial nitric oxide synthase by ceramide. Proc Natl Acad Sci U S A 96(22), 12583-12588 (1999)
- [45] BA Wilkerson, KM Argraves: The role of sphingosine-1-phosphate in endothelial barrier function. Biochim Biophys Acta 1841(10), 1403-1412 (2014)
- [46] JF Lee, Q Zeng, H Ozaki, L Wang, AR Hand, T Hla, E Wang, MJ Lee: Dual roles of tight junction-associated protein, zonula occludens-1, in sphingosine 1-phosphate-mediated endothelial chemotaxis and barrier integrity. J Biol Chem 281(39), 29190-29200 (2006)
- [47] MM Young, M Kester, HG Wang: Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 54(1), 5-19 (2013)
- [48] A Haimovitz-Friedman, RN Kolesnick, Z Fuks: Ceramide signaling in apoptosis. Br Med Bull 53(3), 539-553 (1997)
- [49] N Ueda: Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 16(3), 5076-5124 (2015)
- [50] H Grassme, J Riethmuller, E Gulbins: Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 46(3-4), 161-170 (2007)
- [51] O Cuvillier, G Pirianov, B Kleuser, PG Vanek, OA Coso, S Gutkind, S Spiegel: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381 (6585), 800-803 (1996)
- [52] DM Zheng, T Kitamura, K Ikejima, N Enomoto, S Yamashina, S Suzuki, Y Takei, N Sato: Sphingosine 1-phosphate protects rat liver sinusoidal endothelial cells from ethanol-induced apoptosis: Role of intracellular calcium and nitric oxide. Hepatology 44(5), 1278-1287 (2006)
- [53] R Alemany, CJ van Koppen, K Danneberg, M Ter Braak, D Meyer Zu Heringdorf: Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 374(5-6), 413-428 (2007)
- [54] GR De Meyer, MO Grootaert, CF Michiels, A Kurdi, DM Schrijvers, W Martinet: Autophagy in vascular disease. Circ Res 116(3), 468-479 (2015)
- [55] YLi, S Li, X Qin, W Hou, H Dong, L Yao, L Xiong: The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 5, e1245 (2014)
- [56] XLi, M Xu, AL Pitzer, M Xia, KM Boini, PL Li, Y Zhang: Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med (Berl) 92(5), 473-485 (2014)
- [57] FC Luft: Acid sphingomyelinase, autophagy, and atherosclerosis. J Mol Med (Berl) 92(5), 429-431 (2014)
- [58] CUllio, J Casas, UT Brunk, G Sala, G Fabrias, R Ghidoni, G Bonelli, FM Baccino, R Autelli: Sphingosine mediates TNFalpha-induced lysosomal membrane permeabilization and ensuing programmed cell death in hepatoma cells. J Lipid Res 53(6), 1134-1143 (2012)
- [59] K Tachibana, C Kitanaka: (Autophagy and autophagic cell death). Tanpakushitsu Kakusan Koso 51(10 Suppl), 1519-1524 (2006)
- [60] RD Sentelle, CE Senkal, W Jiang, S Ponnusamy, S Gencer, SP Selvam, VK Ramshesh, YK Peterson, JJ Lemasters, ZM Szulc, J Bielawski, B Ogretmen: Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 8(10), 831-838 (2012)
- [61] S Lepine, JC Allegood, Y Edmonds, S Milstien, S Spiegel: Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286(52), 44380-44390 (2011)
- [62] NHa, N Sonenberg: Upstream and downstream of mTOR. Genes Dev 18(16), 1926-1945 (2004)
- [63] N Auge, N Andrieu, A Negre-Salvayre, JC Thiers, T Levade, R Salvayre: The sphingomyelin-ceramide signaling pathway is involved in oxidized low density lipoprotein-induced cell proliferation.J Biol Chem 271(32), 19251-19255 (1996)
- [64] N Auge, F Maupas-Schwalm, M Elbaz, JC Thiers, A Waysbort, S Itohara, HW Krell, R Salvayre, A Negre-Salvayre: Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 110(5), 571-578 (2004)
- [65] N Auge, M Nikolova-Karakashian, S Carpentier, S Parthasarathy, A Negre-Salvayre, R Salvayre, Jr AH Merrill, T Levade: Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274(31), 21533-21538 (1999)
- [66] BW Wattenberg, SM Pitson, DM Raben: The sphingosine and diacylglycerol kinase superfamily of signaling kinases: localization as a key to signaling function. J Lipid Res 47(6), 1128-1139 (2006)
- [67] TJ Kim, YJ Kang, Y Lim, HW Lee, K Bae, YS Lee, JM Yoo, HS Yoo, YP Yun: Ceramide 1-phosphate induces neointimal formation via cell proliferation and cell cycle progression upstream of ERK1/2 in vascular smooth muscle cells. Exp Cell Res 317(14), 2041-2051 (2011)
- [68] V Hinkovska-Galcheva, JA Shayman: Ceramide-1-phosphate in phagocytosis and calcium homeostasis. Adv Exp Med Biol 688, 131-140 (2010)
- [69] S Chatterjee, D Bedja, S Mishra, C Amuzie, A Avolio, DA Kass, D Berkowitz, M Renehan: Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/-mice and rabbits fed a high-fat and-cholesterol diet. Circulation 129(23), 2403-2413 (2014)
- [70] S Chatterjee: Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol 18(10), 1523-1533 (1998)
- [71] K Mizugishi, T Yamashita, A Olivera, GF Miller, S Spiegel, RL Proia: Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25(24), 11113-11121 (2005)
- [72] M Kono, Y Mi, Y Liu, T Sasaki, ML Allende, YP Wu, T Yamashita, RL Proia: The sphingosine-1-phosphate receptors S1P1, S1P2, and S1P3 function coordinately during embryonic angiogenesis. J Biol Chem 279(28), 29367-29373 (2004)
- [73] H Ren, M Panchatcharam, P Mueller, D Escalante-Alcalde, AJ Morris, SS Smyth: Lipid phosphate phosphatase (LPP3) and vascular development. Biochim Biophys Acta 1831(1), 126-132 (2013)
- [74] M Adada, D Canals, YA Hannun, LM Obeid: Sphingolipid regulation of ezrin, radixin, and moesin proteins family: implications for cell dynamics. Biochim Biophys Acta 1841(5), 727-737 (2014)
- [75] WF Marasas, RT Riley, KA Hendricks, VL Stevens, TW Sadler, J Gelineau-van Waes, SA Missmer, J Cabrera, O Torres, WC Gelderblom, J Allegood, C Martinez, J Maddox, JD Miller, L Starr, MC Sullards, AV Roman, KA Voss, E Wang, Jr AH Merrill: Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134(4), 711-716 (2004)
- [76] LS Tang, BJ Wlodarczyk, DR Santillano, RC Miranda, RH Finnell: Developmental consequences of abnormal folate transport during murine heart morphogenesis. Birth Defects Res A Clin Mol Teratol 70(7), 449-458 (2004)
- [77] O Oyama, N Sugimoto, X Qi, N Takuwa, K Mizugishi, J Koizumi, Y Takuwa: The lysophospholipid mediator sphingosine-1-phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice. Cardiovasc Res 78(2), 301-307 (2008)
- [78] T Yabu, H Tomimoto, Y Taguchi, S Yamaoka, Y Igarashi, T Okazaki: Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood 106(1), 125-134 (2005)
- [79] GJ Czarnota, R Karshafian, PN Burns, S Wong, A Al Mahrouki, JW Lee, A Caissie, W Tran, C Kim, M Furukawa, E Wong, A Giles: Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc Natl Acad Sci U S A 109(30), E2033-2041 (2012)
- [80] H Yazama, K Kitatani, K Fujiwara, M Kato, M Hashimoto-Nishimura, K Kawamoto, K Hasegawa, H Kitano, A Bielawska, J Bielawski, T Okazaki: Dietary glucosylceramides suppress tumor growth in a mouse xenograft model of head and neck squamous cell carcinoma by the inhibition of angiogenesis through an increase in ceramide. Int J Clin Oncol 20(3), 438-446 (2015)
- [81] HJ Abuhusain, A Matin, Q Qiao, H Shen, N Kain, BW Day, BW Stringer, B Daniels, MA Laaksonen, C Teo, KL McDonald, AS Don: Ametabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem 288(52), 37355-37364 (2013)
- [82] SS Chae, JH Paik, H Furneaux, T Hla: Requirement for sphingosine 1–phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. J Clin Invest 114(8), 1082-1089 (2004)
- [83] B Visentin, JA Vekich, BJ Sibbald, AL Cavalli, KM Moreno, RG Matteo, WA Garland, Y Lu, S Yu, HS. Hall, V Kundra, GB Mills, RA Sabbadini: Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9(3), 225-238 (2006)
- [84] S Poitevin, D Cussac, AS Leroyer, V Albinet, G Sarlon-Bartoli, B Guillet, L Hubert, N Andrieu-Abadie, B Couderc, A Parini, F Dignat-George, F Sabatier: Sphingosine kinase 1 expressed by endothelial colony-forming cells has a critical role in their revascularization activity. Cardiovasc Res 103(1), 121-130 (2014)
- [85] LJ Spijkers, RF van den Akker, BJ Janssen, JJ Debets, JG De Mey, ES Stroes, BJ van den Born, DS Wijesinghe, CE Chalfant, L MacAleese, GB Eijkel, RM Heeren, AE Alewijnse, SL Peters: Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One 6(7), e21817 (2011)
- [86] LJ Spijkers, BJ Janssen, J Nelissen, MJ Meens, D Wijesinghe, CE Chalfant, JG De Mey, AE Alewijnse, SL Peters: Antihypertensive treatment differentially affects vascular sphingolipid biology in spontaneously hypertensive rats. PLoS One 6(12), e29222 (2011)
- [87] SH Hsiao, PD Constable, GW Smith, WM Haschek: Effects of exogenous sphinganine, sphingosine, and sphingosine-1-phosphate on relaxation and contraction of porcine thoracic aortic and pulmonary arterial rings. Toxicol Sci 86(1), 194-199 (2005)
- [88] J Bismuth, P Lin, Q Yao, C Chen: Ceramide: a common pathway for atherosclerosis? Atherosclerosis 196(2), 497-504 (2008)
- [89] C Pavoine, F Pecker: Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. Cardiovasc Res 82(2), 175-183 (2009)
- [90] ZS Kaplan, SP Jackson: The role of platelets in atherothrombosis. Hematology Am Soc Hematol Educ Program 2011, 51-61 (2011)
- [91] Z Li, Y Fan, J Liu, Y Li, C Huan, HH Bui, MS Kuo, TS Park, G Cao, XC Jiang: Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler Thromb Vasc Biol 32(7), 1577-1584 (2012)
- [92] P Keul, M Tolle, S Lucke, K von Wnuck Lipinski, G Heusch, M Schuchardt, M van der Giet, B Levkau: The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27(3), 607-613 (2007)
- [93] BM Altura, NC Shah, GJ Shah, A Zhang, W Li, T Zheng, JL Perez-Albela, BT Altura: Short-term Mg deficiency upregulates protein kinase C isoforms in cardiovascular tissues and cells; relation to NF-kB, cytokines, ceramide salvage sphingolipid pathway and PKC-zeta: hypothesis and review. Int J Clin Exp Med 7(1), 1-21 (2014)
- [94] NC Shah, GJ Shah, Z Li, XC Jiang, BT Altura, BM Altura: Short-term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging. Int J Clin Exp Med 7(3), 497-514 (2014)
- [95] T Zheng, W Li, BT Altura, NC Shah, BM Altura: Sphingolipids regulate (Mg2+)o uptake and (Mg2+)i content in vascular smooth muscle cells: potential mechanisms and importance to membrane transport of Mg2+. Am J Physiol Heart Circ Physiol 300(2), H486-492 (2011)
- [96] J Ohanian, A Liao, SP Forman, V Ohanian: Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2(5) (2014)
- [97] X Huang, BR Withers, RC Dickson: Sphingolipids and lifespan regulation. Biochim Biophys Acta 1841(5), 657-664 (2014)
