Information
References
Contents
Download
[1]PALADEGE.: The fine structure of blood capillaries. J Appl Physiol, 24, 1424 (1953)
[2]S. N.: The microvascular endothelium: segmental differentiations; transcytosis, selective distribution of anionic sites. Advances in Inflammation Research, 61-70 (1979)
[3]K. E. Mostov, J. P. Kraehenbuhl and G. Blobel: Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc Natl Acad Sci U S A, 77(12), 7257-61 (1980)
[4]M. Simionescu, D. Popov and A. Sima: Endothelial transcytosis in health and disease. Cell Tissue Res, 335(1), 27-40 (2009)
[5]P. Tuma and A. L. Hubbard: Transcytosis: crossing cellular barriers. Physiol Rev, 83(3), 871-932 (2003)
[6]A. El-Sayed and H. Harashima: Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther, 21(6), 1118-30 (2013)
[7]T. F. Roth and K. R. Porter: Yolk Protein Uptake in the Oocyte of the Mosquito Aedes Aegypti. L. J Cell Biol, 20, 313-32 (1964)
[8]T. Kirchhausen, D. Owen and S. C. Harrison: Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol, 6(5), a016725 (2014)
[9]J. E. Preston, N. Joan Abbott and D. J. Begley: Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol, 71, 147-63 (2014)
[10]N. Ariotti and R. G. Parton: SnapShot: caveolae, caveolins, and cavins. Cell, 154(3), 704-704 e1 (2013)
[11]S. Engel, T. Heger, R. Mancini, F. Herzog, J. Kartenbeck, A. Hayer and A. Helenius: Role of endosomes in simian virus 40 entry and infection. J Virol, 85(9), 4198-211 (2011)
[12]G. E. Palade, M. Simionescu and N. Simionescu: Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl, 463, 11-32 (1979)
[13]B. Razani, J. A. Engelman, X. B. Wang, W. Schubert, X. L. Zhang, C. B. Marks, F. Macaluso, R. G. Russell, M. Li, R. G. Pestell, D. Di Vizio, H. Hou, Jr., B. Kneitz, G. Lagaud, G. J. Christ, W. Edelmann and M. P. Lisanti: Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 276(41), 38121-38 (2001)
[14]E. Dobrinskikh, K. Okamura, J. B. Kopp, R. B. Doctor and J. Blaine: Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol, 306(9), F941-51 (2014)
[15]H. H. Li, J. Li, K. J. Wasserloos, C. Wallace, M. G. Sullivan, P. M. Bauer, D. B. Stolz, J. S. Lee, S. C. Watkins, C. M. St Croix, B. R. Pitt and L. M. Zhang: Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells. PLoS One, 8(11), e81903 (2013)
[16]Z. J. Cheng, R. D. Singh, D. K. Sharma, E. L. Holicky, K. Hanada, D. L. Marks and R. E. Pagano: Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell, 17(7), 3197-210 (2006)
[17]S. M. Armstrong, V. Khajoee, C. Wang, T. Wang, J. Tigdi, J. Yin, W. M. Kuebler, M. Gillrie, S. P. Davis, M. Ho and W. L. Lee: Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. Am J Pathol, 180(3), 1308-23 (2012)
[18]P. G. Frank, S. Pavlides, M. W. Cheung, K. Daumer and M. P. Lisanti: Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol, 295(1), C242-8 (2008)
[19]P. G. Frank, A. Pedraza, D. E. Cohen and M. P. Lisanti: Adenovirus-mediated expression of caveolin-1 in mouse liver increases plasma high-density lipoprotein levels. Biochemistry, 40(36), 10892-900 (2001)
[20]S. Matveev, A. Uittenbogaard, D. van Der Westhuyzen and E. J. Smart: Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. Eur J Biochem, 268(21), 5609-16 (2001)
[21]Y. Zhang, X. Yang, F. Bian, P. Wu, S. Xing, G. Xu, W. Li, J. Chi, C. Ouyang, T. Zheng, D. Wu, Y. Li and S. Jin: TNF-alpha promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-kappaB and PPAR-gamma. J Mol Cell Cardiol, 72, 85-94 (2014)
[22]F. Bian, X. Yang, F. Zhou, P. H. Wu, S. Xing, G. Xu, W. Li, J. Chi, C. Ouyang, Y. Zhang, B. Xiong, Y. Li, T. Zheng, D. Wu, X. Chen and S. Jin: C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br J Pharmacol, 171(10), 2671-84 (2014)
[23]W. Li, X. Yang, S. Xing, F. Bian, W. Yao, X. Bai, T. Zheng, G. Wu and S. Jin: Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. Oxid Med Cell Longev, 2014, 823071 (2014)
[24]D. Jelinek, R. A. Heidenreich, R. A. Orlando and W. S. Garver: The Niemann-Pick C1 and caveolin-1 proteins interact to modulate efflux of low density lipoprotein-derived cholesterol from late endocytic compartments. J Mol Biochem, 3(1), 14-26 (2014)
[25]A. Nistor and M. Simionescu: Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium. Am Rev Respir Dis, 134(6), 1266-72 (1986)
[26]S. Kim and D. P. Giddens: Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium. J Biomech Eng, 137(4), 041007 (2015)
[27]C. C. Michel, M. N. Nanjee, W. L. Olszewski and N. E. Miller: LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans. J Lipid Res, 56(1), 122-8 (2015)
[28]P. M. Azizi, R. E. Zyla, S. Guan, C. Wang, J. Liu, S. S. Bolz, B. Heit, A. Klip and W. L. Lee: Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Mol Biol Cell, 26(4), 740-50 (2015)
[29]H. Wang, A. X. Wang, K. Aylor and E. J. Barrett: Caveolin-1 phosphorylation regulates vascular endothelial insulin uptake and is impaired by insulin resistance in rats. Diabetologia, 58(6), 1344-53 (2015)
[30]K. J. Kim and A. B. Malik: Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol, 284(2), L247-59 (2003)
[31]R. Bahhady, K. J. Kim, Z. Borok, E. D. Crandall and W. C. Shen: Characterization of protein factor(s) in rat bronchoalveolar lavage fluid that enhance insulin transport via transcytosis across primary rat alveolar epithelial cell monolayers. Eur J Pharm Biopharm, 69(3), 808-16 (2008)
[32]B. Schroeder and M. A. McNiven: Importance of endocytic pathways in liver function and disease. Compr Physiol, 4(4), 1403-17 (2014)
[33]J. Chang, A. Paillard, C. Passirani, M. Morille, J. P. Benoit, D. Betbeder and E. Garcion: Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res, 29(6), 1495-505 (2012)
[34]B. Ji, J. Maeda, M. Higuchi, K. Inoue, H. Akita, H. Harashima and T. Suhara: Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci, 78(8), 851-5 (2006)
[35]R. L. Roberts and A. Sandra: Transport of transferrin across the blood-thymus barrier in young rats. Tissue Cell, 26(5), 757-66 (1994)
[36]C. Puri: Loss of myosin VI no insert isoform (NoI) induces a defect in clathrin-mediated endocytosis and leads to caveolar endocytosis of transferrin receptor. J Biol Chem, 284(50), 34998-5014 (2009)
[37]I. Tabas, K. J. Williams and J. Boren: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation, 116(16), 1832-44 (2007)
[38]P. G. Frank, H. Lee, D. S. Park, N. N. Tandon, P. E. Scherer and M. P. Lisanti: Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol, 24(1), 98-105 (2004)
[39]P. F. Nievelstein, A. M. Fogelman, G. Mottino and J. S. Frank: Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler Thromb, 11(6), 1795-805 (1991)
[40]E. Vasile, M. Simionescu and N. Simionescu: Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol, 96(6), 1677-89 (1983)
[41]J. Ba, H. Peng, Y. Chen and Y. Gao: Effects and mechanism analysis of vascular endothelial growth factor and salvianolic acid B on 125I-low density lipoprotein permeability of the rabbit aortary endothelial cells. Cell Biochem Biophys, 70(3), 1533-8 (2014)
[42]W. T. Chao, S. S. Fan, J. K. Chen and V. C. Yang: Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. J Lipid Res, 44(6), 1094-9 (2003)
[43]C. Mineo, H. Deguchi, J. H. Griffin and P. W. Shaul: Endothelial and antithrombotic actions of HDL. Circ Res, 98(11), 1352-64 (2006)
[44]Q. Hu, X. J. Zhang, C. X. Liu, X. P. Wang and Y. Zhang: PPARgamma1-induced caveolin-1 enhances cholesterol efflux and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Vasc Res, 47(1), 69-79 (2010)
[45]D. Popov and M. Simionescu: Cellular mechanisms and signalling pathways activated by high glucose and AGE-albumin in the aortic endothelium. Arch Physiol Biochem, 112(4-5), 265-73 (2006)
[46]H. Wang, A. X. Wang, K. Aylor and E. J. Barrett: Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes, 62(12), 4030-42 (2013)
[47]P. Stralfors: Caveolins and caveolae, roles in insulin signalling and diabetes. Adv Exp Med Biol, 729, 111-26 (2012)
[48]J. K. Jin, B. H. Ahn, Y. J. Na, J. I. Kim, Y. S. Kim, E. K. Choi, Y. G. Ko, K. C. Chung, P. B. Kozlowski and S. Min do: Phospholipase D1 is associated with amyloid precursor protein in Alzheimer’s disease. Neurobiol Aging, 28(7), 1015-27 (2007)
[49]M. J. Kang, Y. H. Chung, C. I. Hwang, M. Murata, T. Fujimoto, I. H. Mook-Jung, C. I. Cha and W. Y. Park: Caveolin-1 upregulation in senescent neurons alters amyloid precursor protein processing. Exp Mol Med, 38(2), 126-33 (2006)
[50]P. Candela, F. Gosselet, J. Saint-Pol, E. Sevin, M. C. Boucau, E. Boulanger, R. Cecchelli and L. Fenart: Apical-to-basolateral transport of amyloid-beta peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis, 22(3), 849-59 (2010)
[51]I. E. Andras, S. Y. Eum and M. Toborek: Lipid rafts and functional caveolae regulate HIV-induced amyloid beta accumulation in brain endothelial cells. Biochem Biophys Res Commun, 421(2), 177-83 (2012)
[52]S. K. Jang, J. M. Yu, S. T. Kim, G. H. Kim, W. Park da, I. Lee do and S. S. Joo: An Abeta42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Abeta-degrading enzymes in microglia. Eur J Pharmacol, 758, 1-10 (2015)
[53]Y. L. Lan, J. Zhao and S. Li: Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer’s disease. J Alzheimers Dis, 43(4), 1137-48 (2015)
[54]L. Ghitescu, A. Fixman, M. Simionescu and N. Simionescu: Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol, 102(4), 1304-11 (1986)
[55]M. Simionescu, A. Gafencu and F. Antohe: Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech, 57(5), 269-88 (2002)
[56]M. Drab, P. Verkade, M. Elger, M. Kasper, M. Lohn, B. Lauterbach, J. Menne, C. Lindschau, F. Mende, F. C. Luft, A. Schedl, H. Haller and T. V. Kurzchalia: Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539), 2449-52 (2001)
[57]W. Schubert, P. G. Frank, B. Razani, D. S. Park, C. W. Chow and M. P. Lisanti: Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem, 276(52), 48619-22 (2001)
[58]M. R. Siddiqui, Y. A. Komarova, S. M. Vogel, X. Gao, M. G. Bonini, J. Rajasingh, Y. Y. Zhao, V. Brovkovych and A. B. Malik: Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability. J Cell Biol, 193(5), 841-50 (2011)
[59]D. I. Mundy, A. M. Lopez, K. S. Posey, J. C. Chuang, C. M. Ramirez, P. E. Scherer and S. D. Turley: Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1. Biochim Biophys Acta, 1841(7), 995-1002 (2014)
[60]H. Y. Kim, S. Kim, H. J. Pyun, J. Maeng and K. Lee: Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells. Mol Pharm, 12(1), 194-203 (2015)
[61]A. R. Prewitt, S. Ghose, A. L. Frump, A. Datta, E. D. Austin, A. K. Kenworthy and M. P. de Caestecker: Heterozygous null bone morphogenetic protein receptor type 2 mutations promote SRC kinase-dependent caveolar trafficking defects and endothelial dysfunction in pulmonary arterial hypertension. J Biol Chem, 290(2), 960-71 (2015)
[62]Y. Sun, G. Hu, X. Zhang and R. D. Minshall: Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res, 105(7), 676-85, 15 p following 685 (2009)
[63]C. Y. Xia, Z. Zhang, Y. X. Xue, P. Wang and Y. H. Liu: Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J Neurooncol, 94(1), 41-50 (2009)
[64]Z. Li, Y. H. Liu, Y. X. Xue, L. B. Liu and P. Wang: Low-dose endothelial monocyte-activating polypeptide-ii increases permeability of blood-tumor barrier by caveolae-mediated transcellular pathway. J Mol Neurosci, 52(3), 313-22 (2014)
[65]Y. Song, P. Wang, J. Ma and Y. Xue: C-terminus of human BKca channel alpha subunit enhances the permeability of the brain endothelial cells by interacting with caveolin-1 and triggering caveolin-1 intracellular trafficking. Neuromolecular Med, 16(2), 499-509 (2014)
[66]Z. H. Yang, L. B. Liu, L. N. Zhao, Y. H. Liu and Y. X. Xue: Permeability of the blood-tumor barrier is enhanced by combining vascular endothelial growth factor with papaverine. J Neurosci Res, 92(6), 703-13 (2014)
[67]Y. Zhao, N. S. Mangalmurti, Z. Xiong, B. Prakash, F. Guo, D. B. Stolz and J. S. Lee: Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells. PLoS One, 6(12), e29624 (2011)
[68]P. Hillyer and D. Male: Expression of chemokines on the surface of different human endothelia. Immunol Cell Biol, 83(4), 375-82 (2005)
[69]D. Sagar, A. Lamontagne, C. A. Foss, Z. K. Khan, M. G. Pomper and P. Jain: Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood-brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation, 9, 245 (2012)
[70]J. Rejman, V. Oberle, I. S. Zuhorn and D. Hoekstra: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J, 377(Pt 1), 159-69 (2004)
[71]S. Grosse, Y. Aron, G. Thevenot, D. Francois, M. Monsigny and I. Fajac: Potocytosis and cellular exit of complexes as cellular pathways for gene delivery by polycations. J Gene Med, 7(10), 1275-86 (2005)
[72]M. E. Hwang, R. K. Keswani and D. W. Pack: Dependence of PEI and PAMAM Gene Delivery on Clathrin- and Caveolin-Dependent Trafficking Pathways. Pharm Res, 32(6), 2051-9 (2015)
[73]W. Ke, K. Shao, R. Huang, L. Han, Y. Liu, J. Li, Y. Kuang, L. Ye, J. Lou and C. Jiang: Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials, 30(36), 6976-85 (2009)
[74]A. W. Wong, S. J. Scales and D. E. Reilly: DNA internalized via caveolae requires microtubule-dependent, Rab7-independent transport to the late endocytic pathway for delivery to the nucleus. J Biol Chem, 282(31), 22953-63 (2007)
[75]W. De Haes, G. Van Mol, C. Merlin, S. C. De Smedt, G. Vanham and J. Rejman: Internalization of mRNA lipoplexes by dendritic cells. Mol Pharm, 9(10), 2942-9 (2012)
[76]M. M. Adil, Z. S. Erdman and E. Kokkoli: Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in alpha (5)beta(1) integrin bearing DLD-1 colorectal cancer cells. Langmuir, 30(13), 3802-10 (2014)
[77]C. Liu, W. Yu, Z. Chen, J. Zhang and N. Zhang: cNGR conjugated poly(lactic acid)-poly(ethylene glycol) nanoparticles for targeted gene delivery. J Control Release, 152 Suppl 1, e155-7 (2011)
[78]A. Chrastina, K. A. Massey and J. E. Schnitzer: Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 3(4), 421-37 (2011)
[79]F. Di Costanzo, S. Gasperoni and V. Rotella: Targeted delivery of albumin bound paclitaxel in the treatment of advanced breast cancer. Onco Targets Ther, 2, 179-88 (2009)
[80]E. Roger, F. Lagarce, E. Garcion and J. P. Benoit: Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release, 140(2), 174-81 (2009)
[81]K. Simons and E. Ikonen: Functional rafts in cell membranes. Nature, 387(6633), 569-72 (1997)
[82]L. J. Pike: Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res, 47(7), 1597-8
[83]F. Mollinedo and C. Gajate: Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul, 57, 130-46 (2015)
[84]M. Hamoudane, S. Maffioli, R. Cordera, D. Maggi and B. Salani: Caveolin-1 and polymerase I and transcript release factor: new players in insulin-like growth factor-I receptor signaling. J Endocrinol Invest, 36(3), 204-8 (2013)
[85]A. Rutkovskiy, M. Bliksoen, V. Hillestad, M. Amin, G. Czibik, G. Valen, J. Vaage, M. Amiry-Moghaddam and K. O. Stenslokken: Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J Mol Cell Cardiol, 56, 22-33 (2013)
[86]C. Meye, J. Schumann, A. Wagner and P. Gross: Effects of homocysteine on the levels of caveolin-1 and eNOS in caveolae of human coronary artery endothelial cells. Atherosclerosis, 190(2), 256-63 (2007)
[87]L. Liu, A. V. Ivanov, M. E. Gable, F. Jolivel, G. A. Morrill and A. Askari: Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Biochemistry, 50(40), 8664-73 (2011)
[88]N. Chaudhary, G. A. Gomez, M. T. Howes, H. P. Lo, K. A. McMahon, J. A. Rae, N. L. Schieber, M. M. Hill, K. Gaus, A. S. Yap and R. G. Parton: Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol, 12(4), e1001832 (2014)
[89]B. M. Castro, M. Prieto and L. C. Silva: Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res, 54, 53-67 (2014)
[90]F. M. Goni, J. Sot and A. Alonso: Biophysical properties of sphingosine, ceramides and other simple sphingolipids. Biochem Soc Trans, 42(5), 1401-8 (2014)
[91]T. H. Beckham, J. C. Cheng, S. T. Marrison, J. S. Norris and X. Liu: Interdiction of sphingolipid metabolism to improve standard cancer therapies. Adv Cancer Res, 117, 1-36 (2013)
[92]J. Vinten, A. H. Johnsen, P. Roepstorff, J. Harpoth and J. Tranum-Jensen: Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta, 1717(1), 34-40 (2005)
[93]C. Regazzetti, K. Dumas, S. Lacas-Gervais, F. Pastor, P. Peraldi, S. Bonnafous, I. Dugail, S. Le Lay, P. Valet, Y. Le Marchand-Brustel, A. Tran, P. Gual, J. F. Tanti, M. Cormont and S. Giorgetti-Peraldi: Hypoxia inhibits Cavin-1 and Cavin-2 expression and down-regulates caveolae in adipocytes. Endocrinology, 156(3), 789-801 (2015)
[94]Z. D. Nassar, M. M. Hill, R. G. Parton and M. O. Parat: Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol, 10(9), 529-36 (2013)
[95]R. Burgener, M. Wolf, T. Ganz and M. Baggiolini: Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem J, 269(3), 729-34 (1990)
[96]C. Mineo, Y. S. Ying, C. Chapline, S. Jaken and R. G. Anderson: Targeting of protein kinase Calpha to caveolae. J Cell Biol, 141(3), 601-10 (1998)
[97]C. G. Hansen, N. A. Bright, G. Howard and B. J. Nichols: SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol, 11(7), 807-14 (2009)
[98]S. Gustincich, P. Vatta, S. Goruppi, M. Wolf, S. Saccone, G. Della Valle, M. Baggiolini and C. Schneider: The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics, 57(1), 120-9 (1999)
[99]K. A. McMahon, H. Zajicek, W. P. Li, M. J. Peyton, J. D. Minna, V. J. Hernandez, K. Luby-Phelps and R. G. Anderson: SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J, 28(8), 1001-15 (2009)
[100]L. Liu, C. G. Hansen, B. J. Honeyman, B. J. Nichols and P. F. Pilch: Cavin-3 knockout mice show that cavin-3 is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance. PLoS One, 9(7), e102935 (2014)
[101]T. Ogata, T. Ueyama, K. Isodono, M. Tagawa, N. Takehara, T. Kawashima, K. Harada, T. Takahashi, T. Shioi, H. Matsubara and H. Oh: MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol, 28(10), 3424-36 (2008)
[102]M. Bastiani, L. Liu, M. M. Hill, M. P. Jedrychowski, S. J. Nixon, H. P. Lo, D. Abankwa, R. Luetterforst, M. Fernandez-Rojo, M. R. Breen, S. P. Gygi, J. Vinten, P. J. Walser, K. N. North, J. F. Hancock, P. F. Pilch and R. G. Parton: MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol, 185(7), 1259-73 (2009)
[103]T. Ogata, D. Naito, N. Nakanishi, Y. K. Hayashi, T. Taniguchi, K. Miyagawa, T. Hamaoka, N. Maruyama, S. Matoba, K. Ikeda, H. Yamada, H. Oh and T. Ueyama: MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by alpha1-adrenergic receptors. Proc Natl Acad Sci U S A, 111(10), 3811-6 (2014)
[104]D. N. Predescu, R. Neamu, C. Bardita, M. Wang and S. A. Predescu: Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1s expression in mouse lung endothelium. Biochem Res Int, 2012, 672705 (2012)
[105]M. Kirkham, S. J. Nixon, M. T. Howes, L. Abi-Rached, D. E. Wakeham, M. Hanzal-Bayer, C. Ferguson, M. M. Hill, M. Fernandez-Rojo, D. A. Brown, J. F. Hancock, F. M. Brodsky and R. G. Parton: Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci, 121(Pt 12), 2075-86 (2008)
[106]O. O. Glebov, N. A. Bright and B. J. Nichols: Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol, 8(1), 46-54 (2006)
[107]M. Meister, A. Zuk and R. Tikkanen: Role of dynamin and clathrin in the cellular trafficking of flotillins. FEBS J, 281(13), 2956-76 (2014)
[108]G. J. Doherty and R. Lundmark: GRAF1-dependent endocytosis. Biochem Soc Trans, 37(Pt 5), 1061-5 (2009)
[109]R. Lundmark, G. J. Doherty, M. T. Howes, K. Cortese, Y. Vallis, R. G. Parton and H. T. McMahon: The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol, 18(22), 1802-8 (2008)
[110]M. T. Howes, M. Kirkham, J. Riches, K. Cortese, P. J. Walser, F. Simpson, M. M. Hill, A. Jones, R. Lundmark, M. R. Lindsay, D. J. Hernandez-Deviez, G. Hadzic, A. McCluskey, R. Bashir, L. Liu, P. Pilch, H. McMahon, P. J. Robinson, J. F. Hancock, S. Mayor and R. G. Parton: Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Cell Biol, 190(4), 675-91 (2010)
[111]M. Krauss, J. Y. Jia, A. Roux, R. Beck, F. T. Wieland, P. De Camilli and V. Haucke: Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem, 283(41), 27717-23 (2008)
[112]O. Heikkila, P. Susi, T. Tevaluoto, H. Harma, V. Marjomaki, T. Hyypia and S. Kiljunen: Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J Virol, 84(7), 3666-81 (2010)
[113]K. Nishi and K. Saigo: Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. J Biol Chem, 282(37), 27503-17 (2007)
[114]F. D. Brown, A. L. Rozelle, H. L. Yin, T. Balla and J. G. Donaldson: Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol, 154(5), 1007-17 (2001)
[115]E. Frittoli, A. Palamidessi, A. Pizzigoni, L. Lanzetti, M. Garre, F. Troglio, A. Troilo, M. Fukuda, P. P. Di Fiore, G. Scita and S. Confalonieri: The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell, 19(4), 1304-16 (2008)
[116]M. Vidal-Quadras, M. Gelabert-Baldrich, D. Soriano-Castell, A. Llado, C. Rentero, M. Calvo, A. Pol, C. Enrich and F. Tebar: Rac1 and calmodulin interactions modulate dynamics of ARF6-dependent endocytosis. Traffic, 12(12), 1879-96 (2011)
[117]A. Grassart, A. Dujeancourt, P. B. Lazarow, A. Dautry-Varsat and N. Sauvonnet: Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Rep, 9(4), 356-62 (2008)
[118]A. C. Braun, J. Hendrick, S. A. Eisler, S. Schmid, A. Hausser and M. A. Olayioye: The Rho-specific GAP protein DLC3 coordinates endocytic membrane trafficking. J Cell Sci, 128(7), 1386-99 (2015)
[119]F. Tebar, M. Gelabert-Baldrich, M. Hoque, R. Cairns, C. Rentero, A. Pol, T. Grewal and C. Enrich: Annexins and endosomal signaling. Methods Enzymol, 535, 55-74 (2014)
[120]P. Raynal and H. B. Pollard: Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta, 1197(1), 63-93 (1994)
[121]S. Arur, U. E. Uche, K. Rezaul, M. Fong, V. Scranton, A. E. Cowan, W. Mohler and D. K. Han: Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell, 4(4), 587-98 (2003)
[122]F. Tzelepis, M. Verway, J. Daoud, J. Gillard, K. Hassani-Ardakani, J. Dunn, J. Downey, M. E. Gentile, J. Jaworska, A. M. Sanchez, Y. Nedelec, H. Vali, M. Tabrizian, A. S. Kristof, I. L. King, L. B. Barreiro and M. Divangahi: Annexin1 regulates DC efferocytosis and cross-presentation during Mycobacterium tuberculosis infection. J Clin Invest, 125(2), 752-68 (2015)
[123]P. Drucker, M. Pejic, H. J. Galla and V. Gerke: Lipid segregation and membrane budding induced by the peripheral membrane binding protein annexin A2. J Biol Chem, 288(34), 24764-76 (2013)
[124]N. A. Gokhale, A. Abraham, M. A. Digman, E. Gratton and W. Cho: Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2-p11 heterotetramer. J Biol Chem, 280(52), 42831-40 (2005)
[125]N. Zobiack, U. Rescher, C. Ludwig, D. Zeuschner and V. Gerke: The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol Biol Cell, 14(12), 4896-908 (2003)
[126]K. Yamashita, H. Nagai and S. Toyokuni: Receptor role of the annexin A2 in the mesothelial endocytosis of crocidolite fibers. Lab Invest, 95(7), 749-64 (2015)
[127]R. Cornely, C. Rentero, C. Enrich, T. Grewal and K. Gaus: Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life, 63(11), 1009-17 (2011)
[128]L. Cubells, S. Vila de Muga, F. Tebar, P. Wood, R. Evans, M. Ingelmo-Torres, M. Calvo, K. Gaus, A. Pol, T. Grewal and C. Enrich: Annexin A6-induced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic, 8(11), 1568-89 (2007)
[129]M. Koese, C. Rentero, B. P. Kota, M. Hoque, R. Cairns, P. Wood, S. Vila de Muga, M. Reverter, A. Alvarez-Guaita, K. Monastyrskaya, W. E. Hughes, A. Swarbrick, F. Tebar, R. J. Daly, C. Enrich and T. Grewal: Annexin A6 is a scaffold for PKCalpha to promote EGFR inactivation. Oncogene, 32(23), 2858-72 (2013)
[130]A. Kamal, Y. Ying and R. G. Anderson: Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J Cell Biol, 142(4), 937-47 (1998)
[131]J. Wang, Y. Wang, H. Wang, X. Hao, Y. Wu and J. Guo: Selection of Reference Genes for Gene Expression Studies in Porcine Whole Blood and Peripheral Blood Mononuclear Cells under Polyinosinic:Polycytidylic Acid Stimulation. Asian-Australas J Anim Sci, 27(4), 471-8 (2014)
[132]V. Goebeler, D. Ruhe, V. Gerke and U. Rescher: Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett, 580(10), 2430-4 (2006)
[133]L. C. Wilsie, A. M. Gonzales and R. A. Orlando: Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, non-clathrin-mediated pathway. Lipids Health Dis, 5, 23 (2006)
[134]I. V. Fuki, K. M. Kuhn, I. R. Lomazov, V. L. Rothman, G. P. Tuszynski, R. V. Iozzo, T. L. Swenson, E. A. Fisher and K. J. Williams: The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest, 100(6), 1611-22 (1997)
[135]S. Paris, A. Burlacu and Y. Durocher: Opposing roles of syndecan-1 and syndecan-2 in polyethyleneimine-mediated gene delivery. J Biol Chem, 283(12), 7697-704 (2008)
[136]K. Chen and K. J. Williams: Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. J Biol Chem, 288(20), 13988-99 (2013)
[137]E. Tkachenko, E. Lutgens, R. V. Stan and M. Simons: Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway. J Cell Sci, 117(Pt 15), 3189-99 (2004)
[138]B. B. Boyanovsky, P. Shridas, M. Simons, D. R. van der Westhuyzen and N. R. Webb: Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL. J Lipid Res, 50(4), 641-50 (2009)
[139]J. E. McLaren, D. R. Michael, I. A. Guschina, J. L. Harwood and D. P. Ramji: Eicosapentaenoic acid and docosahexaenoic acid regulate modified LDL uptake and macropinocytosis in human macrophages. Lipids, 46(11), 1053-61 (2011)
[140]A. J. Roberts, B. S. Goodman and S. L. Reck-Peterson: Reconstitution of dynein transport to the microtubule plus end by kinesin. Elife, 3, e02641 (2014)
[141]M. Schuster, S. Kilaru, G. Fink, J. Collemare, Y. Roger and G. Steinberg: Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell, 22(19), 3645-57 (2011)
[142]S. Baumann, T. Pohlmann, M. Jungbluth, A. Brachmann and M. Feldbrugge: Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci, 125(Pt 11), 2740-52 (2012)
[143]J. Zhang, L. Zhuang, Y. Lee, J. F. Abenza, M. A. Penalva and X. Xiang: The microtubule plus-end localization of Aspergillus dynein is important for dynein-early-endosome interaction but not for dynein ATPase activation. J Cell Sci, 123(Pt 20), 3596-604 (2010)
[144]V. M. D’souza, L. M. Bareford, A. Ray and P. W. Swaan: Cytoskeletal scaffolds regulate riboflavin endocytosis and recycling in placental trophoblasts. J Nutr Biochem, 17(12), 821-9 (2006)
[145]F. J. Kull and S. A. Endow: Force generation by kinesin and myosin cytoskeletal motor proteins. J Cell Sci, 126(Pt 1), 9-19 (2013)
[146]O. L. Mooren, B. J. Galletta and J. A. Cooper: Roles for actin assembly in endocytosis. Annu Rev Biochem, 81, 661-86 (2012)
[147]E. Granger, G. McNee, V. Allan and P. Woodman: The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol, 31, 20-9 (2014)
[148]M. Zhao, S. Wu, Q. Zhou, S. Vivona, D. J. Cipriano, Y. Cheng and A. T. Brunger: Mechanistic insights into the recycling machine of the SNARE complex. Nature, 518(7537), 61-7 (2015)
[149]P. Kumar, S. Guha and U. Diederichsen: SNARE protein analog-mediated membrane fusion. J Pept Sci (2015)
[150]Y. Park, W. Vennekate, H. Yavuz, J. Preobraschenski, J. M. Hernandez, D. Riedel, P. J. Walla and R. Jahn: alpha-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery. J Biol Chem, 289(23), 16326-35 (2014)
[151]J. B. Bock, H. T. Matern, A. A. Peden and R. H. Scheller: A genomic perspective on membrane compartment organization. Nature, 409(6822), 839-41 (2001)
[152]F. Filippini, V. Rossi, T. Galli, A. Budillon, M. D’Urso and M. D’Esposito: Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends Biochem Sci, 26(7), 407-9 (2001)
[153]J. Meng, J. Wang, G. Lawrence and J. O. Dolly: Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci, 120(Pt 16), 2864-74 (2007)
[154]L. Peng, M. Adler, A. Demogines, A. Borrell, H. Liu, L. Tao, W. H. Tepp, S. C. Zhang, E. A. Johnson, S. L. Sawyer and M. Dong: Widespread sequence variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins. PLoS Pathog, 10(7), e1004177 (2014)
[155]S. Schoch, F. Deak, A. Konigstorfer, M. Mozhayeva, Y. Sara, T. C. Sudhof and E. T. Kavalali: SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science, 294(5544), 1117-22 (2001)
[156]M. Bal, J. Leitz, A. L. Reese, D. M. Ramirez, M. Durakoglugil, J. Herz, L. M. Monteggia and E. T. Kavalali: Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron, 80(4), 934-46 (2013)
[157]A. Rezaei Farimani, M. Saidijam, M. T. Goodarzi, R. Yadegar Azari, S. Asadi, S. Zarei and N. Shabab: Effect of Resveratrol Supplementation on the SNARE Proteins Expression in Adipose Tissue of Stroptozotocin-Nicotinamide Induced Type 2 Diabetic Rats. Iran J Med Sci, 40(3), 248-55 (2015)
[158]J. B. Sadler, N. J. Bryant and G. W. Gould: Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Mol Biol Cell, 26(3), 530-6 (2015)
[159]R. W. Schwenk, E. Dirkx, W. A. Coumans, A. Bonen, A. Klip, J. F. Glatz and J. J. Luiken: Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia, 53(10), 2209-19 (2010)
[160]A. J. Rose, J. Jeppesen, B. Kiens and E. A. Richter: Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 297(5), R1228-37 (2009)
[161]K. C. Williams, R. E. McNeilly and M. G. Coppolino: SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell, 25(13), 2061-70 (2014)
[162]S. W. Messenger, M. A. Falkowski, D. D. Thomas, E. K. Jones, W. Hong, H. Y. Gaisano, N. M. Boulis and G. E. Groblewski: Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem, 289(40), 28040-53 (2014)
[163]B. May-Mederake: Early intervention and assessment of speech and language development in young children with cochlear implants. Int J Pediatr Otorhinolaryngol, 76(7), 939-46 (2012)
[164]N. Thayanidhi, Y. Liang, H. Hasegawa, D. C. Nycz, V. Oorschot, J. Klumperman and J. C. Hay: R-SNARE ykt6 resides in membrane-associated protease-resistant protein particles and modulates cell cycle progression when over-expressed. Biol Cell, 104(7), 397-417 (2012)
[165]L. Xie, D. Zhu, S. Dolai, T. Liang, T. Qin, Y. Kang, H. Xie, Y. C. Huang and H. Y. Gaisano: Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells. Diabetologia, 58(6), 1250-9 (2015)
[166]S. Nagamatsu, H. Sawa, Y. Nakamichi, Y. Kondo, S. Matsushima and T. Watanabe: Non-functional role of syntaxin 2 in insulin exocytosis by pancreatic beta cells. Cell Biochem Funct, 15(4), 237-42 (1997)
[167]D. Zhu, E. Koo, E. Kwan, Y. Kang, S. Park, H. Xie, S. Sugita and H. Y. Gaisano: Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia, 56(2), 359-69 (2013)
[168]S. H. Low, X. Li, M. Miura, N. Kudo, B. Quinones and T. Weimbs: Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev Cell, 4(5), 753-9 (2003)
[169]I. Naegelen, S. Plancon, N. Nicot, T. Kaoma, A. Muller, L. Vallar, E. J. Tschirhart and S. Brechard: An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1alpha, IL-1beta, IL-12b, and CCL4 from differentiated HL-60 cells. J Leukoc Biol, 97(3), 557-71 (2015)
[170]S. Ye, Z. A. Karim, R. Al Hawas, J. E. Pessin, A. H. Filipovich and S. W. Whiteheart: Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood, 120(12), 2484-92 (2012)
[171]E. M. Golebiewska, M. T. Harper, C. M. Williams, J. S. Savage, R. Goggs, G. Fischer von Mollard and A. W. Poole: Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. J Biol Chem, 290(3), 1536-45 (2015)
[172]Z. Lin, D. Zhao, Y. Wang, W. Zhao, X. Yin, X. Zhou, Z. Zhang and L. Yang: Downregulation of beta-Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein: Proteomics-Based Identification in Early-Stage Prion Disease. Neurodegener Dis (2015)
[173]E. Matveeva and S. W. Whiteheart: The effects of SNAP/SNARE complexes on the ATPase of NSF. FEBS Lett, 435(2-3), 211-4 (1998)
[174]P. Chavrier, R. G. Parton, H. P. Hauri, K. Simons and M. Zerial: Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell, 62(2), 317-29 (1990)
[175]H. McLauchlan, J. Newell, N. Morrice, A. Osborne, M. West and E. Smythe: A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr Biol, 8(1), 34-45 (1998)
[176]M. C. Gimenez, J. F. Rodriguez Aguirre, M. I. Colombo and L. R. Delgui: Infectious bursal disease virus uptake involves macropinocytosis and trafficking to early endosomes in a Rab5-dependent manner. Cell Microbiol, 17(7), 988-1007 (2015)
[177]A. Wandinger-Ness and M. Zerial: Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol, 6(11), a022616 (2014)
[178]Y. Sun, T. T. Chiu, K. P. Foley, P. J. Bilan and A. Klip: Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell, 25(7), 1159-70 (2014)
[179]B. Short, C. Preisinger, J. Schaletzky, R. Kopajtich and F. A. Barr: The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol, 12(20), 1792-5 (2002)
[180]I. Jordens, M. Marsman, C. Kuijl and J. Neefjes: Rab proteins, connecting transport and vesicle fusion. Traffic, 6(12), 1070-7 (2005)
[181]M. Kurowska, N. Goudin, N. T. Nehme, M. Court, J. Garin, A. Fischer, G. de Saint Basile and G. Menasche: Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood, 119(17), 3879-89 (2012)
[182]H. M. McBride, V. Rybin, C. Murphy, A. Giner, R. Teasdale and M. Zerial: Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell, 98(3), 377-86 (1999)
[183]S. Schoch, P. E. Castillo, T. Jo, K. Mukherjee, M. Geppert, Y. Wang, F. Schmitz, R. C. Malenka and T. C. Sudhof: RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature, 415(6869), 321-6 (2002)
[184]P. Burkhardt, C. M. Stegmann, B. Cooper, T. H. Kloepper, C. Imig, F. Varoqueaux, M. C. Wahl and D. Fasshauer: Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. Proc Natl Acad Sci U S A, 108(37), 15264-9 (2011)
[185]D. Parisotto, M. Pfau, A. Scheutzow, K. Wild, M. P. Mayer, J. Malsam, I. Sinning and T. H. Sollner: An extended helical conformation in domain 3a of Munc18-1 provides a template for SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex assembly. J Biol Chem, 289(14), 9639-50 (2014)
[186]N. R. Bin, C. H. Jung, B. Kim, P. Chandrasegram, E. Turlova, D. Zhu, H. Y. Gaisano, H. S. Sun and S. Sugita: Chaperoning of closed syntaxin-3 through Lys46 and Glu59 in domain 1 of Munc18 proteins is indispensable for mast cell exocytosis. J Cell Sci, 128(10), 1946-60 (2015)
[187]C. Brochetta, R. Suzuki, F. Vita, M. R. Soranzo, J. Claver, L. C. Madjene, T. Attout, J. Vitte, N. Varin-Blank, G. Zabucchi, J. Rivera and U. Blank: Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. J Immunol, 192(1), 41-51 (2014)
[188]A. Rehman, J. K. Archbold, S. H. Hu, S. J. Norwood, B. M. Collins and J. L. Martin: Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly. IUCrJ, 1(Pt 6), 505-13 (2014)
[189]M. Dudenhoffer-Pfeifer, C. Schirra, V. Pattu, M. Halimani, M. Maier-Peuschel, M. R. Marshall, U. Matti, U. Becherer, J. Dirks, M. Jung, P. Lipp, M. Hoth, M. Sester, E. Krause and J. Rettig: Different Munc13 isoforms function as priming factors in lytic granule release from murine cytotoxic T lymphocytes. Traffic, 14(7), 798-809 (2013)
[190]C. Ma, L. Su, A. B. Seven, Y. Xu and J. Rizo: Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339(6118), 421-5 (2013)
[191]Y. J. Kaeser-Woo, X. Yang and T. C. Sudhof: C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis. J Neurosci, 32(8), 2877-85 (2012)
[192]P. Cao, X. Yang and T. C. Sudhof: Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins. J Neurosci, 33(4), 1714-27 (2013)
[193]R. A. Jorquera, S. Huntwork-Rodriguez, Y. Akbergenova, R. W. Cho and J. T. Littleton: Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci, 32(50), 18234-45 (2012)
[194]R. W. Cho, Y. Song and J. T. Littleton: Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol Cell Neurosci, 45(4), 389-97 (2010)
[195]T. Murase, N. Imaeda, N. Kondoh and T. Tsubota: Ceramide enhances acrosomal exocytosis triggered by calcium and the calcium ionophore A23187 in boar spermatozoa. J Reprod Dev, 50(6), 667-74 (2004)
[196]J. Rohrbough, E. Rushton, L. Palanker, E. Woodruff, H. J. Matthies, U. Acharya, J. K. Acharya and K. Broadie: Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci, 24(36), 7789-803 (2004)
[197]R. Bhatia, K. Matsushita, M. Yamakuchi, C. N. Morrell, W. Cao and C. J. Lowenstein: Ceramide triggers Weibel-Palade body exocytosis. Circ Res, 95(3), 319-24 (2004)
[198]H. J. Jeon, D. H. Lee, M. S. Kang, M. O. Lee, K. M. Jung, S. Y. Jung and D. K. Kim: Dopamine release in PC12 cells is mediated by Ca(2+)-dependent production of ceramide via sphingomyelin pathway. J Neurochem, 95(3), 811-20 (2005)
[199]D. E. Saslowsky, Y. M. te Welscher, D. J. Chinnapen, J. S. Wagner, J. Wan, E. Kern and W. I. Lencer: Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J Biol Chem, 288(36), 25804-9 (2013)
[200]K. P. Foley and A. Klip: Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide. Biol Open, 3(5), 314-25 (2014)
[201]A. E. Cremesti, F. M. Goni and R. Kolesnick: Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett, 531(1), 47-53 (2002)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Lipid rafts, ceramide and molecular transcytosis
1 Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
2 Department of Pharmacy, Hubei University of Arts and Science Affiliated Xiangyang Central Hospital, Xiangyang, 441000, Hubei, China
3 Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
4 Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology. The Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation of Hubei Province. Wuhan, 430030, China
Abstract
Transcytosis, a widely described process concerning transport of macromolecules between the apical and basolateral sides in various cell types, is extremely important for multicellular organisms to selectively exchange materials in different microenvironments while maintaining cellular and body homeostasis. Uncontrolled transcytosis is involved in a wide range of pathophysiological processes. Lipid rafts (LRs), the sphingolipid and cholesterol-enriched membrane microdomains, enable to form different functional membrane macrodomains or platforms upon stimulations. In particular, ceramide-enriched membrane microdomains play extremely critical roles in LRs clustering or platform formations. Notably, various transcytosis-related molecules are tightly correlated with LRs and ceramide. We attempt to summarize the basic and advanced information about the roles of different types of transcytosis in human health and diseases, and the types and functions of LRs involved in transcytosis, as well as multiple transcytosis-related molecules associated with LRs and ceramide. It is hoped that all information and discussions could provide much more comprehensive insights into the understanding of the association of LRs with transcytosis, as well as shed some new light on the translational significance in this area.
Keywords
- Transcytosis
- Lipid Raft
- Ceramide
- Atherosclerosis
- Review
References
- [1] PALADEGE.: The fine structure of blood capillaries. J Appl Physiol, 24, 1424 (1953)
- [2] S. N.: The microvascular endothelium: segmental differentiations; transcytosis, selective distribution of anionic sites. Advances in Inflammation Research, 61-70 (1979)
- [3] K. E. Mostov, J. P. Kraehenbuhl and G. Blobel: Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc Natl Acad Sci U S A, 77(12), 7257-61 (1980)
- [4] M. Simionescu, D. Popov and A. Sima: Endothelial transcytosis in health and disease. Cell Tissue Res, 335(1), 27-40 (2009)
- [5] P. Tuma and A. L. Hubbard: Transcytosis: crossing cellular barriers. Physiol Rev, 83(3), 871-932 (2003)
- [6] A. El-Sayed and H. Harashima: Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther, 21(6), 1118-30 (2013)
- [7] T. F. Roth and K. R. Porter: Yolk Protein Uptake in the Oocyte of the Mosquito Aedes Aegypti. L. J Cell Biol, 20, 313-32 (1964)
- [8] T. Kirchhausen, D. Owen and S. C. Harrison: Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol, 6(5), a016725 (2014)
- [9] J. E. Preston, N. Joan Abbott and D. J. Begley: Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol, 71, 147-63 (2014)
- [10] N. Ariotti and R. G. Parton: SnapShot: caveolae, caveolins, and cavins. Cell, 154(3), 704-704 e1 (2013)
- [11] S. Engel, T. Heger, R. Mancini, F. Herzog, J. Kartenbeck, A. Hayer and A. Helenius: Role of endosomes in simian virus 40 entry and infection. J Virol, 85(9), 4198-211 (2011)
- [12] G. E. Palade, M. Simionescu and N. Simionescu: Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl, 463, 11-32 (1979)
- [13] B. Razani, J. A. Engelman, X. B. Wang, W. Schubert, X. L. Zhang, C. B. Marks, F. Macaluso, R. G. Russell, M. Li, R. G. Pestell, D. Di Vizio, H. Hou, Jr., B. Kneitz, G. Lagaud, G. J. Christ, W. Edelmann and M. P. Lisanti: Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 276(41), 38121-38 (2001)
- [14] E. Dobrinskikh, K. Okamura, J. B. Kopp, R. B. Doctor and J. Blaine: Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol, 306(9), F941-51 (2014)
- [15] H. H. Li, J. Li, K. J. Wasserloos, C. Wallace, M. G. Sullivan, P. M. Bauer, D. B. Stolz, J. S. Lee, S. C. Watkins, C. M. St Croix, B. R. Pitt and L. M. Zhang: Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells. PLoS One, 8(11), e81903 (2013)
- [16] Z. J. Cheng, R. D. Singh, D. K. Sharma, E. L. Holicky, K. Hanada, D. L. Marks and R. E. Pagano: Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Mol Biol Cell, 17(7), 3197-210 (2006)
- [17] S. M. Armstrong, V. Khajoee, C. Wang, T. Wang, J. Tigdi, J. Yin, W. M. Kuebler, M. Gillrie, S. P. Davis, M. Ho and W. L. Lee: Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. Am J Pathol, 180(3), 1308-23 (2012)
- [18] P. G. Frank, S. Pavlides, M. W. Cheung, K. Daumer and M. P. Lisanti: Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol, 295(1), C242-8 (2008)
- [19] P. G. Frank, A. Pedraza, D. E. Cohen and M. P. Lisanti: Adenovirus-mediated expression of caveolin-1 in mouse liver increases plasma high-density lipoprotein levels. Biochemistry, 40(36), 10892-900 (2001)
- [20] S. Matveev, A. Uittenbogaard, D. van Der Westhuyzen and E. J. Smart: Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. Eur J Biochem, 268(21), 5609-16 (2001)
- [21] Y. Zhang, X. Yang, F. Bian, P. Wu, S. Xing, G. Xu, W. Li, J. Chi, C. Ouyang, T. Zheng, D. Wu, Y. Li and S. Jin: TNF-alpha promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: crosstalk between NF-kappaB and PPAR-gamma. J Mol Cell Cardiol, 72, 85-94 (2014)
- [22] F. Bian, X. Yang, F. Zhou, P. H. Wu, S. Xing, G. Xu, W. Li, J. Chi, C. Ouyang, Y. Zhang, B. Xiong, Y. Li, T. Zheng, D. Wu, X. Chen and S. Jin: C-reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells. Br J Pharmacol, 171(10), 2671-84 (2014)
- [23] W. Li, X. Yang, S. Xing, F. Bian, W. Yao, X. Bai, T. Zheng, G. Wu and S. Jin: Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. Oxid Med Cell Longev, 2014, 823071 (2014)
- [24] D. Jelinek, R. A. Heidenreich, R. A. Orlando and W. S. Garver: The Niemann-Pick C1 and caveolin-1 proteins interact to modulate efflux of low density lipoprotein-derived cholesterol from late endocytic compartments. J Mol Biochem, 3(1), 14-26 (2014)
- [25] A. Nistor and M. Simionescu: Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium. Am Rev Respir Dis, 134(6), 1266-72 (1986)
- [26] S. Kim and D. P. Giddens: Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium. J Biomech Eng, 137(4), 041007 (2015)
- [27] C. C. Michel, M. N. Nanjee, W. L. Olszewski and N. E. Miller: LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans. J Lipid Res, 56(1), 122-8 (2015)
- [28] P. M. Azizi, R. E. Zyla, S. Guan, C. Wang, J. Liu, S. S. Bolz, B. Heit, A. Klip and W. L. Lee: Clathrin-dependent entry and vesicle-mediated exocytosis define insulin transcytosis across microvascular endothelial cells. Mol Biol Cell, 26(4), 740-50 (2015)
- [29] H. Wang, A. X. Wang, K. Aylor and E. J. Barrett: Caveolin-1 phosphorylation regulates vascular endothelial insulin uptake and is impaired by insulin resistance in rats. Diabetologia, 58(6), 1344-53 (2015)
- [30] K. J. Kim and A. B. Malik: Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol, 284(2), L247-59 (2003)
- [31] R. Bahhady, K. J. Kim, Z. Borok, E. D. Crandall and W. C. Shen: Characterization of protein factor(s) in rat bronchoalveolar lavage fluid that enhance insulin transport via transcytosis across primary rat alveolar epithelial cell monolayers. Eur J Pharm Biopharm, 69(3), 808-16 (2008)
- [32] B. Schroeder and M. A. McNiven: Importance of endocytic pathways in liver function and disease. Compr Physiol, 4(4), 1403-17 (2014)
- [33] J. Chang, A. Paillard, C. Passirani, M. Morille, J. P. Benoit, D. Betbeder and E. Garcion: Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res, 29(6), 1495-505 (2012)
- [34] B. Ji, J. Maeda, M. Higuchi, K. Inoue, H. Akita, H. Harashima and T. Suhara: Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci, 78(8), 851-5 (2006)
- [35] R. L. Roberts and A. Sandra: Transport of transferrin across the blood-thymus barrier in young rats. Tissue Cell, 26(5), 757-66 (1994)
- [36] C. Puri: Loss of myosin VI no insert isoform (NoI) induces a defect in clathrin-mediated endocytosis and leads to caveolar endocytosis of transferrin receptor. J Biol Chem, 284(50), 34998-5014 (2009)
- [37] I. Tabas, K. J. Williams and J. Boren: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation, 116(16), 1832-44 (2007)
- [38] P. G. Frank, H. Lee, D. S. Park, N. N. Tandon, P. E. Scherer and M. P. Lisanti: Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol, 24(1), 98-105 (2004)
- [39] P. F. Nievelstein, A. M. Fogelman, G. Mottino and J. S. Frank: Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler Thromb, 11(6), 1795-805 (1991)
- [40] E. Vasile, M. Simionescu and N. Simionescu: Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol, 96(6), 1677-89 (1983)
- [41] J. Ba, H. Peng, Y. Chen and Y. Gao: Effects and mechanism analysis of vascular endothelial growth factor and salvianolic acid B on 125I-low density lipoprotein permeability of the rabbit aortary endothelial cells. Cell Biochem Biophys, 70(3), 1533-8 (2014)
- [42] W. T. Chao, S. S. Fan, J. K. Chen and V. C. Yang: Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. J Lipid Res, 44(6), 1094-9 (2003)
- [43] C. Mineo, H. Deguchi, J. H. Griffin and P. W. Shaul: Endothelial and antithrombotic actions of HDL. Circ Res, 98(11), 1352-64 (2006)
- [44] Q. Hu, X. J. Zhang, C. X. Liu, X. P. Wang and Y. Zhang: PPARgamma1-induced caveolin-1 enhances cholesterol efflux and attenuates atherosclerosis in apolipoprotein E-deficient mice. J Vasc Res, 47(1), 69-79 (2010)
- [45] D. Popov and M. Simionescu: Cellular mechanisms and signalling pathways activated by high glucose and AGE-albumin in the aortic endothelium. Arch Physiol Biochem, 112(4-5), 265-73 (2006)
- [46] H. Wang, A. X. Wang, K. Aylor and E. J. Barrett: Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes, 62(12), 4030-42 (2013)
- [47] P. Stralfors: Caveolins and caveolae, roles in insulin signalling and diabetes. Adv Exp Med Biol, 729, 111-26 (2012)
- [48] J. K. Jin, B. H. Ahn, Y. J. Na, J. I. Kim, Y. S. Kim, E. K. Choi, Y. G. Ko, K. C. Chung, P. B. Kozlowski and S. Min do: Phospholipase D1 is associated with amyloid precursor protein in Alzheimer’s disease. Neurobiol Aging, 28(7), 1015-27 (2007)
- [49] M. J. Kang, Y. H. Chung, C. I. Hwang, M. Murata, T. Fujimoto, I. H. Mook-Jung, C. I. Cha and W. Y. Park: Caveolin-1 upregulation in senescent neurons alters amyloid precursor protein processing. Exp Mol Med, 38(2), 126-33 (2006)
- [50] P. Candela, F. Gosselet, J. Saint-Pol, E. Sevin, M. C. Boucau, E. Boulanger, R. Cecchelli and L. Fenart: Apical-to-basolateral transport of amyloid-beta peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis, 22(3), 849-59 (2010)
- [51] I. E. Andras, S. Y. Eum and M. Toborek: Lipid rafts and functional caveolae regulate HIV-induced amyloid beta accumulation in brain endothelial cells. Biochem Biophys Res Commun, 421(2), 177-83 (2012)
- [52] S. K. Jang, J. M. Yu, S. T. Kim, G. H. Kim, W. Park da, I. Lee do and S. S. Joo: An Abeta42 uptake and degradation via Rg3 requires an activation of caveolin, clathrin and Abeta-degrading enzymes in microglia. Eur J Pharmacol, 758, 1-10 (2015)
- [53] Y. L. Lan, J. Zhao and S. Li: Update on the neuroprotective effect of estrogen receptor alpha against Alzheimer’s disease. J Alzheimers Dis, 43(4), 1137-48 (2015)
- [54] L. Ghitescu, A. Fixman, M. Simionescu and N. Simionescu: Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol, 102(4), 1304-11 (1986)
- [55] M. Simionescu, A. Gafencu and F. Antohe: Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech, 57(5), 269-88 (2002)
- [56] M. Drab, P. Verkade, M. Elger, M. Kasper, M. Lohn, B. Lauterbach, J. Menne, C. Lindschau, F. Mende, F. C. Luft, A. Schedl, H. Haller and T. V. Kurzchalia: Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 293(5539), 2449-52 (2001)
- [57] W. Schubert, P. G. Frank, B. Razani, D. S. Park, C. W. Chow and M. P. Lisanti: Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem, 276(52), 48619-22 (2001)
- [58] M. R. Siddiqui, Y. A. Komarova, S. M. Vogel, X. Gao, M. G. Bonini, J. Rajasingh, Y. Y. Zhao, V. Brovkovych and A. B. Malik: Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability. J Cell Biol, 193(5), 841-50 (2011)
- [59] D. I. Mundy, A. M. Lopez, K. S. Posey, J. C. Chuang, C. M. Ramirez, P. E. Scherer and S. D. Turley: Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann-Pick type C1. Biochim Biophys Acta, 1841(7), 995-1002 (2014)
- [60] H. Y. Kim, S. Kim, H. J. Pyun, J. Maeng and K. Lee: Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells. Mol Pharm, 12(1), 194-203 (2015)
- [61] A. R. Prewitt, S. Ghose, A. L. Frump, A. Datta, E. D. Austin, A. K. Kenworthy and M. P. de Caestecker: Heterozygous null bone morphogenetic protein receptor type 2 mutations promote SRC kinase-dependent caveolar trafficking defects and endothelial dysfunction in pulmonary arterial hypertension. J Biol Chem, 290(2), 960-71 (2015)
- [62] Y. Sun, G. Hu, X. Zhang and R. D. Minshall: Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ Res, 105(7), 676-85, 15 p following 685 (2009)
- [63] C. Y. Xia, Z. Zhang, Y. X. Xue, P. Wang and Y. H. Liu: Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J Neurooncol, 94(1), 41-50 (2009)
- [64] Z. Li, Y. H. Liu, Y. X. Xue, L. B. Liu and P. Wang: Low-dose endothelial monocyte-activating polypeptide-ii increases permeability of blood-tumor barrier by caveolae-mediated transcellular pathway. J Mol Neurosci, 52(3), 313-22 (2014)
- [65] Y. Song, P. Wang, J. Ma and Y. Xue: C-terminus of human BKca channel alpha subunit enhances the permeability of the brain endothelial cells by interacting with caveolin-1 and triggering caveolin-1 intracellular trafficking. Neuromolecular Med, 16(2), 499-509 (2014)
- [66] Z. H. Yang, L. B. Liu, L. N. Zhao, Y. H. Liu and Y. X. Xue: Permeability of the blood-tumor barrier is enhanced by combining vascular endothelial growth factor with papaverine. J Neurosci Res, 92(6), 703-13 (2014)
- [67] Y. Zhao, N. S. Mangalmurti, Z. Xiong, B. Prakash, F. Guo, D. B. Stolz and J. S. Lee: Duffy antigen receptor for chemokines mediates chemokine endocytosis through a macropinocytosis-like process in endothelial cells. PLoS One, 6(12), e29624 (2011)
- [68] P. Hillyer and D. Male: Expression of chemokines on the surface of different human endothelia. Immunol Cell Biol, 83(4), 375-82 (2005)
- [69] D. Sagar, A. Lamontagne, C. A. Foss, Z. K. Khan, M. G. Pomper and P. Jain: Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood-brain barrier through paracellular transmigration and ERK activation. J Neuroinflammation, 9, 245 (2012)
- [70] J. Rejman, V. Oberle, I. S. Zuhorn and D. Hoekstra: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J, 377(Pt 1), 159-69 (2004)
- [71] S. Grosse, Y. Aron, G. Thevenot, D. Francois, M. Monsigny and I. Fajac: Potocytosis and cellular exit of complexes as cellular pathways for gene delivery by polycations. J Gene Med, 7(10), 1275-86 (2005)
- [72] M. E. Hwang, R. K. Keswani and D. W. Pack: Dependence of PEI and PAMAM Gene Delivery on Clathrin- and Caveolin-Dependent Trafficking Pathways. Pharm Res, 32(6), 2051-9 (2015)
- [73] W. Ke, K. Shao, R. Huang, L. Han, Y. Liu, J. Li, Y. Kuang, L. Ye, J. Lou and C. Jiang: Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials, 30(36), 6976-85 (2009)
- [74] A. W. Wong, S. J. Scales and D. E. Reilly: DNA internalized via caveolae requires microtubule-dependent, Rab7-independent transport to the late endocytic pathway for delivery to the nucleus. J Biol Chem, 282(31), 22953-63 (2007)
- [75] W. De Haes, G. Van Mol, C. Merlin, S. C. De Smedt, G. Vanham and J. Rejman: Internalization of mRNA lipoplexes by dendritic cells. Mol Pharm, 9(10), 2942-9 (2012)
- [76] M. M. Adil, Z. S. Erdman and E. Kokkoli: Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in alpha (5)beta(1) integrin bearing DLD-1 colorectal cancer cells. Langmuir, 30(13), 3802-10 (2014)
- [77] C. Liu, W. Yu, Z. Chen, J. Zhang and N. Zhang: cNGR conjugated poly(lactic acid)-poly(ethylene glycol) nanoparticles for targeted gene delivery. J Control Release, 152 Suppl 1, e155-7 (2011)
- [78] A. Chrastina, K. A. Massey and J. E. Schnitzer: Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 3(4), 421-37 (2011)
- [79] F. Di Costanzo, S. Gasperoni and V. Rotella: Targeted delivery of albumin bound paclitaxel in the treatment of advanced breast cancer. Onco Targets Ther, 2, 179-88 (2009)
- [80] E. Roger, F. Lagarce, E. Garcion and J. P. Benoit: Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release, 140(2), 174-81 (2009)
- [81] K. Simons and E. Ikonen: Functional rafts in cell membranes. Nature, 387(6633), 569-72 (1997)
- [82] L. J. Pike: Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res, 47(7), 1597-8
- [83] F. Mollinedo and C. Gajate: Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul, 57, 130-46 (2015)
- [84] M. Hamoudane, S. Maffioli, R. Cordera, D. Maggi and B. Salani: Caveolin-1 and polymerase I and transcript release factor: new players in insulin-like growth factor-I receptor signaling. J Endocrinol Invest, 36(3), 204-8 (2013)
- [85] A. Rutkovskiy, M. Bliksoen, V. Hillestad, M. Amin, G. Czibik, G. Valen, J. Vaage, M. Amiry-Moghaddam and K. O. Stenslokken: Aquaporin-1 in cardiac endothelial cells is downregulated in ischemia, hypoxia and cardioplegia. J Mol Cell Cardiol, 56, 22-33 (2013)
- [86] C. Meye, J. Schumann, A. Wagner and P. Gross: Effects of homocysteine on the levels of caveolin-1 and eNOS in caveolae of human coronary artery endothelial cells. Atherosclerosis, 190(2), 256-63 (2007)
- [87] L. Liu, A. V. Ivanov, M. E. Gable, F. Jolivel, G. A. Morrill and A. Askari: Comparative properties of caveolar and noncaveolar preparations of kidney Na+/K+-ATPase. Biochemistry, 50(40), 8664-73 (2011)
- [88] N. Chaudhary, G. A. Gomez, M. T. Howes, H. P. Lo, K. A. McMahon, J. A. Rae, N. L. Schieber, M. M. Hill, K. Gaus, A. S. Yap and R. G. Parton: Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol, 12(4), e1001832 (2014)
- [89] B. M. Castro, M. Prieto and L. C. Silva: Ceramide: a simple sphingolipid with unique biophysical properties. Prog Lipid Res, 54, 53-67 (2014)
- [90] F. M. Goni, J. Sot and A. Alonso: Biophysical properties of sphingosine, ceramides and other simple sphingolipids. Biochem Soc Trans, 42(5), 1401-8 (2014)
- [91] T. H. Beckham, J. C. Cheng, S. T. Marrison, J. S. Norris and X. Liu: Interdiction of sphingolipid metabolism to improve standard cancer therapies. Adv Cancer Res, 117, 1-36 (2013)
- [92] J. Vinten, A. H. Johnsen, P. Roepstorff, J. Harpoth and J. Tranum-Jensen: Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta, 1717(1), 34-40 (2005)
- [93] C. Regazzetti, K. Dumas, S. Lacas-Gervais, F. Pastor, P. Peraldi, S. Bonnafous, I. Dugail, S. Le Lay, P. Valet, Y. Le Marchand-Brustel, A. Tran, P. Gual, J. F. Tanti, M. Cormont and S. Giorgetti-Peraldi: Hypoxia inhibits Cavin-1 and Cavin-2 expression and down-regulates caveolae in adipocytes. Endocrinology, 156(3), 789-801 (2015)
- [94] Z. D. Nassar, M. M. Hill, R. G. Parton and M. O. Parat: Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol, 10(9), 529-36 (2013)
- [95] R. Burgener, M. Wolf, T. Ganz and M. Baggiolini: Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem J, 269(3), 729-34 (1990)
- [96] C. Mineo, Y. S. Ying, C. Chapline, S. Jaken and R. G. Anderson: Targeting of protein kinase Calpha to caveolae. J Cell Biol, 141(3), 601-10 (1998)
- [97] C. G. Hansen, N. A. Bright, G. Howard and B. J. Nichols: SDPR induces membrane curvature and functions in the formation of caveolae. Nat Cell Biol, 11(7), 807-14 (2009)
- [98] S. Gustincich, P. Vatta, S. Goruppi, M. Wolf, S. Saccone, G. Della Valle, M. Baggiolini and C. Schneider: The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics, 57(1), 120-9 (1999)
- [99] K. A. McMahon, H. Zajicek, W. P. Li, M. J. Peyton, J. D. Minna, V. J. Hernandez, K. Luby-Phelps and R. G. Anderson: SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J, 28(8), 1001-15 (2009)
- [100] L. Liu, C. G. Hansen, B. J. Honeyman, B. J. Nichols and P. F. Pilch: Cavin-3 knockout mice show that cavin-3 is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance. PLoS One, 9(7), e102935 (2014)
- [101] T. Ogata, T. Ueyama, K. Isodono, M. Tagawa, N. Takehara, T. Kawashima, K. Harada, T. Takahashi, T. Shioi, H. Matsubara and H. Oh: MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol Cell Biol, 28(10), 3424-36 (2008)
- [102] M. Bastiani, L. Liu, M. M. Hill, M. P. Jedrychowski, S. J. Nixon, H. P. Lo, D. Abankwa, R. Luetterforst, M. Fernandez-Rojo, M. R. Breen, S. P. Gygi, J. Vinten, P. J. Walser, K. N. North, J. F. Hancock, P. F. Pilch and R. G. Parton: MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J Cell Biol, 185(7), 1259-73 (2009)
- [103] T. Ogata, D. Naito, N. Nakanishi, Y. K. Hayashi, T. Taniguchi, K. Miyagawa, T. Hamaoka, N. Maruyama, S. Matoba, K. Ikeda, H. Yamada, H. Oh and T. Ueyama: MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by alpha1-adrenergic receptors. Proc Natl Acad Sci U S A, 111(10), 3811-6 (2014)
- [104] D. N. Predescu, R. Neamu, C. Bardita, M. Wang and S. A. Predescu: Impaired caveolae function and upregulation of alternative endocytic pathways induced by experimental modulation of intersectin-1s expression in mouse lung endothelium. Biochem Res Int, 2012, 672705 (2012)
- [105] M. Kirkham, S. J. Nixon, M. T. Howes, L. Abi-Rached, D. E. Wakeham, M. Hanzal-Bayer, C. Ferguson, M. M. Hill, M. Fernandez-Rojo, D. A. Brown, J. F. Hancock, F. M. Brodsky and R. G. Parton: Evolutionary analysis and molecular dissection of caveola biogenesis. J Cell Sci, 121(Pt 12), 2075-86 (2008)
- [106] O. O. Glebov, N. A. Bright and B. J. Nichols: Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol, 8(1), 46-54 (2006)
- [107] M. Meister, A. Zuk and R. Tikkanen: Role of dynamin and clathrin in the cellular trafficking of flotillins. FEBS J, 281(13), 2956-76 (2014)
- [108] G. J. Doherty and R. Lundmark: GRAF1-dependent endocytosis. Biochem Soc Trans, 37(Pt 5), 1061-5 (2009)
- [109] R. Lundmark, G. J. Doherty, M. T. Howes, K. Cortese, Y. Vallis, R. G. Parton and H. T. McMahon: The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr Biol, 18(22), 1802-8 (2008)
- [110] M. T. Howes, M. Kirkham, J. Riches, K. Cortese, P. J. Walser, F. Simpson, M. M. Hill, A. Jones, R. Lundmark, M. R. Lindsay, D. J. Hernandez-Deviez, G. Hadzic, A. McCluskey, R. Bashir, L. Liu, P. Pilch, H. McMahon, P. J. Robinson, J. F. Hancock, S. Mayor and R. G. Parton: Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J Cell Biol, 190(4), 675-91 (2010)
- [111] M. Krauss, J. Y. Jia, A. Roux, R. Beck, F. T. Wieland, P. De Camilli and V. Haucke: Arf1-GTP-induced tubule formation suggests a function of Arf family proteins in curvature acquisition at sites of vesicle budding. J Biol Chem, 283(41), 27717-23 (2008)
- [112] O. Heikkila, P. Susi, T. Tevaluoto, H. Harma, V. Marjomaki, T. Hyypia and S. Kiljunen: Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and Arf6 but not by caveolin-1 or clathrin. J Virol, 84(7), 3666-81 (2010)Cited within: 0Google Scholar
- [113] K. Nishi and K. Saigo: Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6. J Biol Chem, 282(37), 27503-17 (2007)
- [114] F. D. Brown, A. L. Rozelle, H. L. Yin, T. Balla and J. G. Donaldson: Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol, 154(5), 1007-17 (2001)
- [115] E. Frittoli, A. Palamidessi, A. Pizzigoni, L. Lanzetti, M. Garre, F. Troglio, A. Troilo, M. Fukuda, P. P. Di Fiore, G. Scita and S. Confalonieri: The primate-specific protein TBC1D3 is required for optimal macropinocytosis in a novel ARF6-dependent pathway. Mol Biol Cell, 19(4), 1304-16 (2008)
- [116] M. Vidal-Quadras, M. Gelabert-Baldrich, D. Soriano-Castell, A. Llado, C. Rentero, M. Calvo, A. Pol, C. Enrich and F. Tebar: Rac1 and calmodulin interactions modulate dynamics of ARF6-dependent endocytosis. Traffic, 12(12), 1879-96 (2011)
- [117] A. Grassart, A. Dujeancourt, P. B. Lazarow, A. Dautry-Varsat and N. Sauvonnet: Clathrin-independent endocytosis used by the IL-2 receptor is regulated by Rac1, Pak1 and Pak2. EMBO Rep, 9(4), 356-62 (2008)
- [118] A. C. Braun, J. Hendrick, S. A. Eisler, S. Schmid, A. Hausser and M. A. Olayioye: The Rho-specific GAP protein DLC3 coordinates endocytic membrane trafficking. J Cell Sci, 128(7), 1386-99 (2015)
- [119] F. Tebar, M. Gelabert-Baldrich, M. Hoque, R. Cairns, C. Rentero, A. Pol, T. Grewal and C. Enrich: Annexins and endosomal signaling. Methods Enzymol, 535, 55-74 (2014)
- [120] P. Raynal and H. B. Pollard: Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta, 1197(1), 63-93 (1994)
- [121] S. Arur, U. E. Uche, K. Rezaul, M. Fong, V. Scranton, A. E. Cowan, W. Mohler and D. K. Han: Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell, 4(4), 587-98 (2003)
- [122] F. Tzelepis, M. Verway, J. Daoud, J. Gillard, K. Hassani-Ardakani, J. Dunn, J. Downey, M. E. Gentile, J. Jaworska, A. M. Sanchez, Y. Nedelec, H. Vali, M. Tabrizian, A. S. Kristof, I. L. King, L. B. Barreiro and M. Divangahi: Annexin1 regulates DC efferocytosis and cross-presentation during Mycobacterium tuberculosis infection. J Clin Invest, 125(2), 752-68 (2015)
- [123] P. Drucker, M. Pejic, H. J. Galla and V. Gerke: Lipid segregation and membrane budding induced by the peripheral membrane binding protein annexin A2. J Biol Chem, 288(34), 24764-76 (2013)
- [124] N. A. Gokhale, A. Abraham, M. A. Digman, E. Gratton and W. Cho: Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2-p11 heterotetramer. J Biol Chem, 280(52), 42831-40 (2005)
- [125] N. Zobiack, U. Rescher, C. Ludwig, D. Zeuschner and V. Gerke: The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol Biol Cell, 14(12), 4896-908 (2003)
- [126] K. Yamashita, H. Nagai and S. Toyokuni: Receptor role of the annexin A2 in the mesothelial endocytosis of crocidolite fibers. Lab Invest, 95(7), 749-64 (2015)
- [127] R. Cornely, C. Rentero, C. Enrich, T. Grewal and K. Gaus: Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life, 63(11), 1009-17 (2011)
- [128] L. Cubells, S. Vila de Muga, F. Tebar, P. Wood, R. Evans, M. Ingelmo-Torres, M. Calvo, K. Gaus, A. Pol, T. Grewal and C. Enrich: Annexin A6-induced alterations in cholesterol transport and caveolin export from the Golgi complex. Traffic, 8(11), 1568-89 (2007)
- [129] M. Koese, C. Rentero, B. P. Kota, M. Hoque, R. Cairns, P. Wood, S. Vila de Muga, M. Reverter, A. Alvarez-Guaita, K. Monastyrskaya, W. E. Hughes, A. Swarbrick, F. Tebar, R. J. Daly, C. Enrich and T. Grewal: Annexin A6 is a scaffold for PKCalpha to promote EGFR inactivation. Oncogene, 32(23), 2858-72 (2013)
- [130] A. Kamal, Y. Ying and R. G. Anderson: Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J Cell Biol, 142(4), 937-47 (1998)
- [131] J. Wang, Y. Wang, H. Wang, X. Hao, Y. Wu and J. Guo: Selection of Reference Genes for Gene Expression Studies in Porcine Whole Blood and Peripheral Blood Mononuclear Cells under Polyinosinic:Polycytidylic Acid Stimulation. Asian-Australas J Anim Sci, 27(4), 471-8 (2014)
- [132] V. Goebeler, D. Ruhe, V. Gerke and U. Rescher: Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett, 580(10), 2430-4 (2006)
- [133] L. C. Wilsie, A. M. Gonzales and R. A. Orlando: Syndecan-1 mediates internalization of apoE-VLDL through a low density lipoprotein receptor-related protein (LRP)-independent, non-clathrin-mediated pathway. Lipids Health Dis, 5, 23 (2006)
- [134] I. V. Fuki, K. M. Kuhn, I. R. Lomazov, V. L. Rothman, G. P. Tuszynski, R. V. Iozzo, T. L. Swenson, E. A. Fisher and K. J. Williams: The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest, 100(6), 1611-22 (1997)
- [135] S. Paris, A. Burlacu and Y. Durocher: Opposing roles of syndecan-1 and syndecan-2 in polyethyleneimine-mediated gene delivery. J Biol Chem, 283(12), 7697-704 (2008)
- [136] K. Chen and K. J. Williams: Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. J Biol Chem, 288(20), 13988-99 (2013)
- [137] E. Tkachenko, E. Lutgens, R. V. Stan and M. Simons: Fibroblast growth factor 2 endocytosis in endothelial cells proceed via syndecan-4-dependent activation of Rac1 and a Cdc42-dependent macropinocytic pathway. J Cell Sci, 117(Pt 15), 3189-99 (2004)
- [138] B. B. Boyanovsky, P. Shridas, M. Simons, D. R. van der Westhuyzen and N. R. Webb: Syndecan-4 mediates macrophage uptake of group V secretory phospholipase A2-modified LDL. J Lipid Res, 50(4), 641-50 (2009)
- [139] J. E. McLaren, D. R. Michael, I. A. Guschina, J. L. Harwood and D. P. Ramji: Eicosapentaenoic acid and docosahexaenoic acid regulate modified LDL uptake and macropinocytosis in human macrophages. Lipids, 46(11), 1053-61 (2011)
- [140] A. J. Roberts, B. S. Goodman and S. L. Reck-Peterson: Reconstitution of dynein transport to the microtubule plus end by kinesin. Elife, 3, e02641 (2014)
- [141] M. Schuster, S. Kilaru, G. Fink, J. Collemare, Y. Roger and G. Steinberg: Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell, 22(19), 3645-57 (2011)
- [142] S. Baumann, T. Pohlmann, M. Jungbluth, A. Brachmann and M. Feldbrugge: Kinesin-3 and dynein mediate microtubule-dependent co-transport of mRNPs and endosomes. J Cell Sci, 125(Pt 11), 2740-52 (2012)
- [143] J. Zhang, L. Zhuang, Y. Lee, J. F. Abenza, M. A. Penalva and X. Xiang: The microtubule plus-end localization of Aspergillus dynein is important for dynein-early-endosome interaction but not for dynein ATPase activation. J Cell Sci, 123(Pt 20), 3596-604 (2010)
- [144] V. M. D’souza, L. M. Bareford, A. Ray and P. W. Swaan: Cytoskeletal scaffolds regulate riboflavin endocytosis and recycling in placental trophoblasts. J Nutr Biochem, 17(12), 821-9 (2006)
- [145] F. J. Kull and S. A. Endow: Force generation by kinesin and myosin cytoskeletal motor proteins. J Cell Sci, 126(Pt 1), 9-19 (2013)
- [146] O. L. Mooren, B. J. Galletta and J. A. Cooper: Roles for actin assembly in endocytosis. Annu Rev Biochem, 81, 661-86 (2012)
- [147] E. Granger, G. McNee, V. Allan and P. Woodman: The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol, 31, 20-9 (2014)
- [148] M. Zhao, S. Wu, Q. Zhou, S. Vivona, D. J. Cipriano, Y. Cheng and A. T. Brunger: Mechanistic insights into the recycling machine of the SNARE complex. Nature, 518(7537), 61-7 (2015)
- [149] P. Kumar, S. Guha and U. Diederichsen: SNARE protein analog-mediated membrane fusion. J Pept Sci (2015)
- [150] Y. Park, W. Vennekate, H. Yavuz, J. Preobraschenski, J. M. Hernandez, D. Riedel, P. J. Walla and R. Jahn: alpha-SNAP interferes with the zippering of the SNARE protein membrane fusion machinery. J Biol Chem, 289(23), 16326-35 (2014)
- [151] J. B. Bock, H. T. Matern, A. A. Peden and R. H. Scheller: A genomic perspective on membrane compartment organization. Nature, 409(6822), 839-41 (2001)
- [152] F. Filippini, V. Rossi, T. Galli, A. Budillon, M. D’Urso and M. D’Esposito: Longins: a new evolutionary conserved VAMP family sharing a novel SNARE domain. Trends Biochem Sci, 26(7), 407-9 (2001)
- [153] J. Meng, J. Wang, G. Lawrence and J. O. Dolly: Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci, 120(Pt 16), 2864-74 (2007)
- [154] L. Peng, M. Adler, A. Demogines, A. Borrell, H. Liu, L. Tao, W. H. Tepp, S. C. Zhang, E. A. Johnson, S. L. Sawyer and M. Dong: Widespread sequence variations in VAMP1 across vertebrates suggest a potential selective pressure from botulinum neurotoxins. PLoS Pathog, 10(7), e1004177 (2014)
- [155] S. Schoch, F. Deak, A. Konigstorfer, M. Mozhayeva, Y. Sara, T. C. Sudhof and E. T. Kavalali: SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science, 294(5544), 1117-22 (2001)
- [156] M. Bal, J. Leitz, A. L. Reese, D. M. Ramirez, M. Durakoglugil, J. Herz, L. M. Monteggia and E. T. Kavalali: Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron, 80(4), 934-46 (2013)
- [157] A. Rezaei Farimani, M. Saidijam, M. T. Goodarzi, R. Yadegar Azari, S. Asadi, S. Zarei and N. Shabab: Effect of Resveratrol Supplementation on the SNARE Proteins Expression in Adipose Tissue of Stroptozotocin-Nicotinamide Induced Type 2 Diabetic Rats. Iran J Med Sci, 40(3), 248-55 (2015)
- [158] J. B. Sadler, N. J. Bryant and G. W. Gould: Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Mol Biol Cell, 26(3), 530-6 (2015)
- [159] R. W. Schwenk, E. Dirkx, W. A. Coumans, A. Bonen, A. Klip, J. F. Glatz and J. J. Luiken: Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia, 53(10), 2209-19 (2010)
- [160] A. J. Rose, J. Jeppesen, B. Kiens and E. A. Richter: Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 297(5), R1228-37 (2009)
- [161] K. C. Williams, R. E. McNeilly and M. G. Coppolino: SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1-matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol Biol Cell, 25(13), 2061-70 (2014)
- [162] S. W. Messenger, M. A. Falkowski, D. D. Thomas, E. K. Jones, W. Hong, H. Y. Gaisano, N. M. Boulis and G. E. Groblewski: Vesicle associated membrane protein 8 (VAMP8)-mediated zymogen granule exocytosis is dependent on endosomal trafficking via the constitutive-like secretory pathway. J Biol Chem, 289(40), 28040-53 (2014)
- [163] B. May-Mederake: Early intervention and assessment of speech and language development in young children with cochlear implants. Int J Pediatr Otorhinolaryngol, 76(7), 939-46 (2012)
- [164] N. Thayanidhi, Y. Liang, H. Hasegawa, D. C. Nycz, V. Oorschot, J. Klumperman and J. C. Hay: R-SNARE ykt6 resides in membrane-associated protease-resistant protein particles and modulates cell cycle progression when over-expressed. Biol Cell, 104(7), 397-417 (2012)
- [165] L. Xie, D. Zhu, S. Dolai, T. Liang, T. Qin, Y. Kang, H. Xie, Y. C. Huang and H. Y. Gaisano: Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells. Diabetologia, 58(6), 1250-9 (2015)
- [166] S. Nagamatsu, H. Sawa, Y. Nakamichi, Y. Kondo, S. Matsushima and T. Watanabe: Non-functional role of syntaxin 2 in insulin exocytosis by pancreatic beta cells. Cell Biochem Funct, 15(4), 237-42 (1997)
- [167] D. Zhu, E. Koo, E. Kwan, Y. Kang, S. Park, H. Xie, S. Sugita and H. Y. Gaisano: Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells. Diabetologia, 56(2), 359-69 (2013)
- [168] S. H. Low, X. Li, M. Miura, N. Kudo, B. Quinones and T. Weimbs: Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev Cell, 4(5), 753-9 (2003)
- [169] I. Naegelen, S. Plancon, N. Nicot, T. Kaoma, A. Muller, L. Vallar, E. J. Tschirhart and S. Brechard: An essential role of syntaxin 3 protein for granule exocytosis and secretion of IL-1alpha, IL-1beta, IL-12b, and CCL4 from differentiated HL-60 cells. J Leukoc Biol, 97(3), 557-71 (2015)
- [170] S. Ye, Z. A. Karim, R. Al Hawas, J. E. Pessin, A. H. Filipovich and S. W. Whiteheart: Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood, 120(12), 2484-92 (2012)
- [171] E. M. Golebiewska, M. T. Harper, C. M. Williams, J. S. Savage, R. Goggs, G. Fischer von Mollard and A. W. Poole: Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. J Biol Chem, 290(3), 1536-45 (2015)
- [172] Z. Lin, D. Zhao, Y. Wang, W. Zhao, X. Yin, X. Zhou, Z. Zhang and L. Yang: Downregulation of beta-Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein: Proteomics-Based Identification in Early-Stage Prion Disease. Neurodegener Dis (2015)
- [173] E. Matveeva and S. W. Whiteheart: The effects of SNAP/SNARE complexes on the ATPase of NSF. FEBS Lett, 435(2-3), 211-4 (1998)
- [174] P. Chavrier, R. G. Parton, H. P. Hauri, K. Simons and M. Zerial: Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell, 62(2), 317-29 (1990)
- [175] H. McLauchlan, J. Newell, N. Morrice, A. Osborne, M. West and E. Smythe: A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr Biol, 8(1), 34-45 (1998)
- [176] M. C. Gimenez, J. F. Rodriguez Aguirre, M. I. Colombo and L. R. Delgui: Infectious bursal disease virus uptake involves macropinocytosis and trafficking to early endosomes in a Rab5-dependent manner. Cell Microbiol, 17(7), 988-1007 (2015)
- [177] A. Wandinger-Ness and M. Zerial: Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol, 6(11), a022616 (2014)
- [178] Y. Sun, T. T. Chiu, K. P. Foley, P. J. Bilan and A. Klip: Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell, 25(7), 1159-70 (2014)
- [179] B. Short, C. Preisinger, J. Schaletzky, R. Kopajtich and F. A. Barr: The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol, 12(20), 1792-5 (2002)
- [180] I. Jordens, M. Marsman, C. Kuijl and J. Neefjes: Rab proteins, connecting transport and vesicle fusion. Traffic, 6(12), 1070-7 (2005)
- [181] M. Kurowska, N. Goudin, N. T. Nehme, M. Court, J. Garin, A. Fischer, G. de Saint Basile and G. Menasche: Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood, 119(17), 3879-89 (2012)
- [182] H. M. McBride, V. Rybin, C. Murphy, A. Giner, R. Teasdale and M. Zerial: Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell, 98(3), 377-86 (1999)
- [183] S. Schoch, P. E. Castillo, T. Jo, K. Mukherjee, M. Geppert, Y. Wang, F. Schmitz, R. C. Malenka and T. C. Sudhof: RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature, 415(6869), 321-6 (2002)
- [184] P. Burkhardt, C. M. Stegmann, B. Cooper, T. H. Kloepper, C. Imig, F. Varoqueaux, M. C. Wahl and D. Fasshauer: Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. Proc Natl Acad Sci U S A, 108(37), 15264-9 (2011)
- [185] D. Parisotto, M. Pfau, A. Scheutzow, K. Wild, M. P. Mayer, J. Malsam, I. Sinning and T. H. Sollner: An extended helical conformation in domain 3a of Munc18-1 provides a template for SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex assembly. J Biol Chem, 289(14), 9639-50 (2014)
- [186] N. R. Bin, C. H. Jung, B. Kim, P. Chandrasegram, E. Turlova, D. Zhu, H. Y. Gaisano, H. S. Sun and S. Sugita: Chaperoning of closed syntaxin-3 through Lys46 and Glu59 in domain 1 of Munc18 proteins is indispensable for mast cell exocytosis. J Cell Sci, 128(10), 1946-60 (2015)
- [187] C. Brochetta, R. Suzuki, F. Vita, M. R. Soranzo, J. Claver, L. C. Madjene, T. Attout, J. Vitte, N. Varin-Blank, G. Zabucchi, J. Rivera and U. Blank: Munc18-2 and syntaxin 3 control distinct essential steps in mast cell degranulation. J Immunol, 192(1), 41-51 (2014)
- [188] A. Rehman, J. K. Archbold, S. H. Hu, S. J. Norwood, B. M. Collins and J. L. Martin: Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly. IUCrJ, 1(Pt 6), 505-13 (2014)
- [189] M. Dudenhoffer-Pfeifer, C. Schirra, V. Pattu, M. Halimani, M. Maier-Peuschel, M. R. Marshall, U. Matti, U. Becherer, J. Dirks, M. Jung, P. Lipp, M. Hoth, M. Sester, E. Krause and J. Rettig: Different Munc13 isoforms function as priming factors in lytic granule release from murine cytotoxic T lymphocytes. Traffic, 14(7), 798-809 (2013)
- [190] C. Ma, L. Su, A. B. Seven, Y. Xu and J. Rizo: Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 339(6118), 421-5 (2013)
- [191] Y. J. Kaeser-Woo, X. Yang and T. C. Sudhof: C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis. J Neurosci, 32(8), 2877-85 (2012)
- [192] P. Cao, X. Yang and T. C. Sudhof: Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins. J Neurosci, 33(4), 1714-27 (2013)
- [193] R. A. Jorquera, S. Huntwork-Rodriguez, Y. Akbergenova, R. W. Cho and J. T. Littleton: Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J Neurosci, 32(50), 18234-45 (2012)
- [194] R. W. Cho, Y. Song and J. T. Littleton: Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol Cell Neurosci, 45(4), 389-97 (2010)
- [195] T. Murase, N. Imaeda, N. Kondoh and T. Tsubota: Ceramide enhances acrosomal exocytosis triggered by calcium and the calcium ionophore A23187 in boar spermatozoa. J Reprod Dev, 50(6), 667-74 (2004)
- [196] J. Rohrbough, E. Rushton, L. Palanker, E. Woodruff, H. J. Matthies, U. Acharya, J. K. Acharya and K. Broadie: Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci, 24(36), 7789-803 (2004)
- [197] R. Bhatia, K. Matsushita, M. Yamakuchi, C. N. Morrell, W. Cao and C. J. Lowenstein: Ceramide triggers Weibel-Palade body exocytosis. Circ Res, 95(3), 319-24 (2004)
- [198] H. J. Jeon, D. H. Lee, M. S. Kang, M. O. Lee, K. M. Jung, S. Y. Jung and D. K. Kim: Dopamine release in PC12 cells is mediated by Ca(2+)-dependent production of ceramide via sphingomyelin pathway. J Neurochem, 95(3), 811-20 (2005)
- [199] D. E. Saslowsky, Y. M. te Welscher, D. J. Chinnapen, J. S. Wagner, J. Wan, E. Kern and W. I. Lencer: Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J Biol Chem, 288(36), 25804-9 (2013)
- [200] K. P. Foley and A. Klip: Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide. Biol Open, 3(5), 314-25 (2014)
- [201] A. E. Cremesti, F. M. Goni and R. Kolesnick: Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett, 531(1), 47-53 (2002)
