Information
References
Contents
Download
[1]Y Shaib, HB El-Serag: The epidemiology of cholangiocarcinoma. Semin Liver Dis 24, 115-125 (2004)
[2]T Patel: Cholangiocarcinoma--controversies and challenges. Nat Rev Gastroenterol Hepatol 8, 189-200 (2011)
[3]AE Sirica: Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 41, 5-15 (2005)
[4]T Patel: Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2, 10 (2002)
[5]KN Lazaridis, GJ Gores: Cholangiocarcinoma. Gastroenterology 128, 1655-1667 (2005)
[6]SA Khan, HC Thomas, BR Davidson, SD Taylor-Robinson: Cholangiocarcinoma. Lancet 366, 1303-1314 (2005)
[7]DJ van Leeuwen, JW Reeders: Primary sclerosing cholangitis and cholangiocarcinoma as a diagnostic and therapeutic dilemma. Ann Oncol 10 Suppl 4, 89-93 (1999)
[8]PC de Groen, GJ Gores, NF LaRusso, LL Gunderson, DM Nagorney: Biliary tract cancers. NEJM 341, 1368-1378 (1999)
[9]M Jaiswal, NF LaRusso, LJ Burgart, GJ Gores GJ: Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 60, 184-190(2000)
[10]JS Goydos, AM Brumfield, E Frezza, A Booth, MT Lotze, SE Carty. Marked elevation of serum interleukin-6 in patients with cholangiocarcinoma: validation of utility as a clinical marker. Ann Surg 227, 398-404 (1998)
[11]P Tangkijvanich, D Thong-ngam, A Theamboonlers, O Hanvivatvong, P Kullavanijaya, Y Poovorawan: Diagnostic role of serum interleukin 6 and CA 19-9 in patients with cholangiocarcinoma. Hepatogastroenterology 51, 15-19 (2004)
[12]K Okada, Y Shimizu, S Nambu, K Higuchi, A Watanabe: Interleukin-6 functions as an autocrine growth factor in a cholangiocarcinoma cell line. J Gastroenterol Hepatol 9, 462-467 (1994)
[13]F Meng, Y Yamagiwa, Y Ueno, T Patel: Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol 44, 1055-1065 (2006)
[14]Y Yamagiwa, F Meng, T Patel: Interleukin-6 decreases senescence and increases telomerase activity in malignant human cholangiocytes. Life Sci 78, 2494-2502 (2006)
[15]H Isomoto, S Kobayashi, NW Werneburg, SF Bronk, ME Guicciardi, DA Frank, GJ Gores: Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology 42, 1329-1338 (2005)
[16]H Dokduang, A Techasen, N Namwat, N Khuntikeo, C Pairojkul, Y Murakami, W Loilome, P Yongvanit: STATs profiling reveals predominantly-activated STAT3 in cholangiocarcinoma genesis and progression. J Hepatobiliary Pancreat Sci 21, 767-776 (2014)
[17]JH Yoon, AE Canbay, NW Werneburg, SP Lee, GJ Gores: Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology 39, 732-738 (2004)
[18]N Ishimura, SF Bronk, GJ Gores: Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J Physiol Gastrointest Liver Physiol 287, G88-95 (2004)
[19]S Aishima, Y Mano, Y Tanaka, Y Kubo, K Shirabe, Y Maehara, Y Oda: Different roles of inducible nitric oxide synthase and cyclooxygenase-2 in carcinogenesis and metastasis of intrahepatic cholangiocarcinoma. Hum Pathol 44, 1031-1037 (2013)
[20]W Chan-On, ML Nairismagi, CK Ong, WK Lim, S Dima, C Pairojkul, KH Lim, JR McPherson, I Cutcutache, HL Heng, L Ooi, A Chung, P Chow, PC Cheow, SY Lee, SP Choo, IB Tan, D Duda, A Nastase, SS Myint, BH Wong, A Gan, V Rajasegaran, CC Ng, S Nagarajan, A Jusakul, S Zhang, P Vohra, W Yu, D Huang, P Sithithaworn, P Yongvanit, S Wongkham, N Khuntikeo, V Bhudhisawasdi, I Popescu, SG Rozen, P Tan, BT The: Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 45, 1474-1478 (2013)
[21]D Lee, IG Do, K Choi, CO Sung, KT Jang, D Choi, JS Heo, SH Choi, J Kim, JY Park, HJ Cha, JW Joh, KY Choi, DS Kim: The expression of phospho-AKT1 and phospho-MTOR is associated with a favorable prognosis independent of PTEN expression in intrahepatic cholangiocarcinomas. Mod Pathol 25, 131-139 (2012)
[22]M Simbolo, M Fassan, A Ruzzenente, A Mafficini, LD Wood, V Corbo, D Melisi, G Malleo, C Vicentini, G Malpeli, D Antonello, N Sperandio, P Capelli, A Tomezzoli, C Iacono, RT Lawlor, C Bassi, RH Hruban, A Guglielmi, G Tortora, F de Braud, A Scarpa A. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget 5, 2839-2852 (2014)
[23]B Herberger, H Puhalla, M Lehnert, F Wrba, S Novak, A Brandstetter, B Gruenberger, T Gruenberger, R Pirker, M Filipits: Activated mammalian target of rapamycin is an adverse prognostic factor in patients with biliary tract adenocarcinoma. Clin Cancer Res 13, 4795-4799 (2007)
[24]JY Chung, SM Hong, BY Choi, H Cho, E Yu, SM Hewitt: The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma. Clin Cancer Res 15, 660-667 (2009)
[25]RF Xu, JP Sun, SR Zhang, GS Zhu, LB Li, YL Liao, JM Xie, WJ Liao: KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients. Biomed Pharmacother 65, 22-26 (2011)
[26]MO Riener, M Bawohl, PA Clavien, W Jochum: Rare PIK3CA hotspot mutations in carcinomas of the biliary tract. Genes Chromosomes Cancer 47, 363-367 (2008)
[27]R Roskoski Jr: The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 319, 1-11 (2004)
[28]N Normanno, C Bianco, L Strizzi, M Mancino, MR Maiello, A De Luca, F Caponigro, DS Salomon: The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets 6, 243-257 (2005)
[29]K Nakazawa, Y Dobashi, S Suzuki, H Fujii, Y Takeda, A Ooi: Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J Pathol 206, 356-365 (2005)
[30]Y Ito, T Takeda, Y Sasaki, M Sakon, T Yamada, S Ishiguro, S Imaoka, M Tsujimoto, S Higashiyama, M Monden, N Matsuura: Expression and clinical significance of the erbB family in intrahepatic cholangiocellular carcinoma. Pathol Res Pract 197, 95-100 (2001)
[31]A Nonomura, G Ohta, Y Nakanuma, R Izumi, Y Mizukami, F Matsubara, M Hayashi, K Watanabe, N Takayanagi: Simultaneous detection of epidermal growth factor receptor (EGF-R), epidermal growth factor (EGF) and ras p21 in cholangiocarcinoma by an immunocytochemical method. Liver 8, 157-166 (1988)
[32]A Altimari, M Fiorentino, E Gabusi, E Gruppioni, B Corti, A D’Errico, WF Grigioni: Investigation of ErbB1 and ErbB2 expression for therapeutic targeting in primary liver tumours. Dig LiverDis 35, 332-338 (2003)
[33]EM Brunt, PE Swanson: Immunoreactivity for c-erbB-2 oncopeptide in benign and malignant diseases of the liver. Am J Clin Pathol 97, S53-61 (1992)
[34]SI Aishima, KI Taguchi, K Sugimachi, M Shimada, M Tsuneyoshi: c-erbB-2 and c-Met expression relates to cholangiocarcinogenesis and progression of intrahepatic cholangiocarcinoma. Histopathology 40, 269-278 (2002)
[35]K Endo, BI Yoon, C Pairojkul, AJ Demetris, AE Sirica: ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. Hepatology 36, 439-450 (2002)
[36]WC Su, SC Shiesh, HS Liu, CY Chen, NH Chow, XZ Lin: Expression of oncogene products HER2/Neu and Ras and fibrosis-related growth factors bFGF, TGF-beta, and PDGF in bile from biliary malignancies and inflammatory disorders. Dig Dis Sci 46, 1387-1392 (2001)
[37]F Leone, G Cavalloni, Y Pignochino, I Sarotto, R Ferraris, W Piacibello, T Venesio, L Capussotti, M Risio, M Aglietta: Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin Cancer Res 12, 1680-1685 (2006)
[38]GY Gwak, JH Yoon, CM Shin, YJ Ahn, JK Chung, YA Kim, TY Kim, HS Lee: Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J Cancer Res Clin Oncol 131, 649-652 (2005)
[39]M Li, Z Zhang, X Li, J Ye, X Wu, Z Tan, C Liu, B Shen, XA Wang, W Wu, D Zhou, D Zhang, T Wang, B Liu, K Qu, Q Ding, H Weng, J Mu, Y Shu, R Bao, Y Cao, P Chen, T Liu, L Jiang, Y Hu, P Dong, J Gu, W Lu, W Shi, J Lu, W Gong, Z Tang, Y Zhang, X Wang, YE Chin, X Weng, H Zhang, W Tang, Y Zheng, L He, H Wang, Y Liu: Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet 46, 872-876 (2014)
[40]T Ueki, J Fujimoto, T Suzuki, H Yamamoto, E Okamoto: Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology 25, 862-866 (1997)
[41]T Terada, Y Nakanuma, AE Sirica: Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum Pathol 29, 175-180 (1998)
[42]M Goggins, M Shekher, K Turnacioglu, CJ Yeo, RH Hruban, SE Kern: Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58, 5329-5332 (1998)
[43]M Nagai, Y Kawarada, M Watanabe, T Iwase, T Muneyuki, K Yamao, K Fukutome, R Yatani: Analysis of microsatellite instability, TGF-beta type II receptor gene mutations and hMSH2 and hMLH1 allele losses in pancreaticobiliary maljunction-associated biliary tract tumors. Anticancer Res 19, 1765-1768 (1999)
[44]S Yazumi, K Ko, N Watanabe, H Shinohara, K Yoshikawa, T Chiba, R Takahashi: Disrupted transforming growth factor-beta signaling and deregulated growth in human biliary tract cancer cells. Int J Cancer 86, 782-789 (2000)
[45]N Turner, R Grose. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10, 116-129 (2010)
[46]Y Arai, Y Totoki, F Hosoda, T Shirota, N Hama, H Nakamura, H Ojima, K Furuta, K Shimada, T Okusaka, T Kosuge, T Shibata: Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 59, 1427-1434 (2014)
[47]YM Wu, F Su, S Kalyana-Sundaram, N Khazanov, B Ateeq, X Cao, RJ Lonigro, P Vats, R Wang, SF Lin, AJ Cheng, LP Kunju, J Siddiqui, SA Tomlins, P Wyngaard, S Sadis, S Roychowdhury, MH Hussain, FY Feng, MM Zalupski, M Talpaz, KJ Pienta, DR Rhodes, DR Robinson, AM Chinnaiyan: Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 3, 636-647 (2013)
[48]II Wistuba, AF Gazdar: Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer 4, 695-706 (2004)
[49]M Watanabe, M Asaka, J Tanaka, M Kurosawa, M Kasai, T Miyazaki: Point mutation of K-ras gene codon 12 in biliary tract tumors. Gastroenterology 107, 1147-1153 (1994)
[50]K Ohashi, Y Nakajima, H Kanehiro, M Tsutsumi, J Taki, Y Aomatsu, A Yoshimura, S Ko, T Kin, K Yagura K: Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology. Gastroenterology 109, 1612-1617 (1995)
[51]YK Kang, WH Kim, HW Lee, HK Lee, YI Kim: Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest 79, 477-483 (1999)
[52]J Albores-Saavedra, NV Adsay, JM Crawford JM, et al. Carcinoma of the gallbladder and extrahepatic bile ducts. In: World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Digestive System. Eds: FT Bosman, F Carneiro, RH Hruban, ND Theise. IARC Press: Lyon (2010)
[53]A Tannapfel, F Sommerer, M Benicke, A Katalinic, D Uhlmann, H Witzigmann, J Hauss, C Wittekind: Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52, 706-712 (2003)
[54]AA Saetta, P Papanastasiou, NV Michalopoulos, F Gigelou, P Korkolopoulou, T Bei, E Patsouris: Mutational analysis of BRAF in gallbladder carcinomas in association with K-ras and p53 mutations and microsatellite instability. Virchows Arch 445, 179-182 (2004)
[55]SC Chuang, KT Lee, KB Tsai, PC Sheen, E Nagai, K Mizumoto, M Tanaka: Immunohistochemical study of DPC4 and p53 proteins in gallbladder and bile duct cancers. World J Surg 28, 995-1000 (2004)
[56]SA Hahn, D Bartsch, A Schroers, H Galehdari, M Becker, A Ramaswamy, I Schwarte-Waldhoff, H Maschek, W Schmiegel: Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res 58, 1124-1126 (1998)
[57]X Xu, S Kobayashi, W Qiao, C Li, C Xiao, S Radaeva, B Stiles, RH Wang, N Ohara, T Yoshino, D LeRoith, MS Torbenson, GJ Gores, H Wu, B Gao, CX Deng: Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J Clin Invest 116, 1843-1852 (2006)
[58]CJ Sherr: Cancer cell cycles. Science 274, 1672-1677 (1996)
[59]WR Jarnagin, DS Klimstra, M Hezel, M Gonen, Y Fong, K Roggin, K Cymes, RP DeMatteo, M D’Angelica, LH Blumgart, B Singh: Differential cell cycle-regulatory protein expression in biliary tract adenocarcinoma: correlation with anatomic site, pathologic variables, and clinical outcome. J Clin Oncol 24, 1152-1160 (2006)
[60]A Ishikawa, M Sasaki, Y Sato, S Ohira, MF Chen, SF Huang, K Oda, Y Nimura, Y Nakanuma: Frequent p16ink4a inactivation is an early and frequent event of intraductal papillary neoplasm of the liver arising in hepatolithiasis. Hum Pathol 35, 1505-1514 (2004)
[61]AK Virmani, C Muller, A Rathi, S Zoechbauer-Mueller, M Mathis, AF Gazdar: Aberrant methylation during cervical carcinogenesis. Clin Cancer Res 7, 584-589 (2001)
[62]A Tannapfel, M Benicke, A Katalinic, D Uhlmann, F Kockerling, J Hauss, C Wittekind: Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut 47, 721-727 (2000)
[63]EP Berthiaume, J Wands: The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis 24, 127-137 (2004)
[64]S Furubo, K Harada, T Shimonishi, K Katayanagi, W Tsui, Y Nakanuma: Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma. Histopathology 35, 230-240 (1999)
[65]Y Jiao, TM Pawlik, RA Anders, FM Selaru, MM Streppel, DJ Lucas, N Niknafs, VB Guthrie, A Maitra, P Argani, GJ Offerhaus, JC Roa, LR Roberts, GJ Gores, I Popescu, ST Alexandrescu, S Dima, M Fassan, M Simbolo, A Mafficini, P Capelli, RT Lawlor, A Ruzzenente, A Guglielmi, G Tortora, F de Braud, A Scarpa, W Jarnagin, D Klimstra, R Karchin, VE Velculescu, RH Hruban, B Vogelstein, KW Kinzler, N Papadopoulos, LD Wood: Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 45, 1470-1473 (2013)
[66]S Zhao, Y Lin, W Xu, W Jiang, Z Zha, P Wang, W Yu, Z Li, L Gong, Y Peng, J Ding, Q Lei, KL Guan, Y Xiong: Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324, 261-265 (2009)
[67]L Dang, DW White, S Gross, BD Bennett, MA Bittinger, EM Driggers, VR Fantin, HG Jang, S Jin, MC Keenan, KM Marks, RM Prins, PS Ward, KE Yen, LM Liau, JD Rabinowitz, LC Cantley, CB Thompson, MG Vander Heiden, SM Su: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739-744 (2009)
[68]DR Borger, KK Tanabe, KC Fan, HU Lopez, VR Fantin, KS Straley, DP Schenkein, AF Hezel, M Ancukiewicz, HM Liebman, EL Kwak, JW Clark, DP Ryan, V Deshpande, D Dias-Santagata, LW Ellisen, AX Zhu, AJ Iafrate: Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17, 72-79 (2012)
[69]PS Ward, J Patel, DR Wise, O Abdel-Wahab, BD Bennett, HA Coller, JR Cross, VR Fantin, CV Hedvat, AE Perl, JD Rabinowitz, M Carroll, SM Su, KA Sharp, RL Levine, CB Thompson: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225-234 (2010)
[70]DR Borger, L Goyal, T Yau, RT Poon, M Ancukiewicz, V Deshpande, DC Christiani, HM Liebman, H Yang, H Kim, K Yen, JE Faris, AJ Iafrate, EL Kwak, JW Clark, JN Allen, LS Blaszkowsky, JE Murphy, SK Saha, TS Hong, JY Wo, CR Ferrone, KK Tanabe, N Bardeesy, KS Straley, S Agresta, DP Schenkein, LW Ellisen, DP Ryan, AX Zhu: Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma. Clin Cancer Res 20, 1884-1890 (2014)
[71]ML Suva, N Riggi, BE Bernstein: Epigenetic reprogramming in cancer. Science 339, 1567-1570 (2013)
[72]I Varela, P Tarpey, K Raine, D Huang, CK Ong, P Stephens, H Davies, D Jones, ML Lin, J Teague, G Bignell, A Butler, J Cho, GL Dalgliesh, D Galappaththige, C Greenman, C Hardy, M Jia, C Latimer, KW Lau, J Marshall, S McLaren, A Menzies, L Mudie, L Stebbings, DA Largaespada, LF Wessels, S Richard, RJ Kahnoski, J Anema, DA Tuveson, PA Perez-Mancera, V Mustonen, A Fischer, DJ Adams, A Rust, W Chan-on, C Subimerb, K Dykema, K Furge, PJ Campbell, BT Teh, MR Stratton, PA Futreal. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539-542 (2011)
[73]M Thompson: Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie 91, 309-319 (2009)
[74]R Chandrasekaran, M Thompson: Polybromo-1-bromodomains bind histone H3 at specific acetyl-lysine positions. Biochem Biophys Res Commun 355, 661-666 (2007)
[75]CR Churi, R Shroff, Y Wang, A Rashid, HC Kang, J Weatherly, M Zuo, R Zinner, D Hong, F Meric-Bernstam, F Janku, CH Crane, L Mishra, JN Vauthey, RA Wolff, G Mills, M Javle: Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PloS one 9, e115383 (2014)
[76]D Wilsker, A Patsialou, SD Zumbrun, S Kim, Y Chen, PB Dallas, E Moran: The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res 32, 1345-1353 (2004)
[77]A Bheda, J Shackelford, JS Pagano: Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PloS one 4, e6764 (2009)
[78]RA Greenberg, B Sobhian, S Pathania, SB Cantor, Y Nakatani, DM Livingston: Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 20, 34-46 (2006)
[79]H Nishikawa, W Wu, A Koike, R Kojima, H Gomi, M Fukuda, T Ohta: BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res 69, 111-119 (2009)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
New genomic landscapes and therapeutic targets for biliary tract cancers
1 ARC-Net Research Centre, University and Hospital Trust of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
2 ARC-Net Research Centre and Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
3 Department of Surgery and Oncology, University of Verona, Piazzale L. Scuro 2, 37134 Verona, Italy
Abstract
Biliary tract cancers (BTCs) are a heterogeneous group of neoplasms characterized by a dismal prognosis. At variance with most solid tumors, no effective molecular targeted agent has been currently approved for BTCs treatment and their molecular landscape has only been recently investigated. Comprehensive mutational profiling studies identified IDH1/2 and BAP1 as characteristic of intrahepatic cholangiocarcinomas, while extrahepatic cholangiocarcinomas and gallbladder carcinomas were characterized by frequent KRAS and TP53 alterations. Moreover, targeted next-generation sequencing has uncovered alterations in several key cellular pathways. BTC-specific alterations include disorders of major regulators of cell cycle and chromatin remodeling processes, as well as deregulation of the mTOR-, TGF-beta/Smad- and receptor tyrosine kinases signaling. The next step will be the correlation of these findings with clinical trials to identify predictive biomarkers for the development of personalized therapies. This will permit early access for BTC patients to innovative drugs.
Keywords
- Cholangiocarcinoma
- Molecular Profiling
- Targeted Therapy
- Review
References
- [1] Y Shaib, HB El-Serag: The epidemiology of cholangiocarcinoma. Semin Liver Dis 24, 115-125 (2004)
- [2] T Patel: Cholangiocarcinoma--controversies and challenges. Nat Rev Gastroenterol Hepatol 8, 189-200 (2011)
- [3] AE Sirica: Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 41, 5-15 (2005)
- [4] T Patel: Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2, 10 (2002)
- [5] KN Lazaridis, GJ Gores: Cholangiocarcinoma. Gastroenterology 128, 1655-1667 (2005)
- [6] SA Khan, HC Thomas, BR Davidson, SD Taylor-Robinson: Cholangiocarcinoma. Lancet 366, 1303-1314 (2005)
- [7] DJ van Leeuwen, JW Reeders: Primary sclerosing cholangitis and cholangiocarcinoma as a diagnostic and therapeutic dilemma. Ann Oncol 10 Suppl 4, 89-93 (1999)
- [8] PC de Groen, GJ Gores, NF LaRusso, LL Gunderson, DM Nagorney: Biliary tract cancers. NEJM 341, 1368-1378 (1999)
- [9] M Jaiswal, NF LaRusso, LJ Burgart, GJ Gores GJ: Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 60, 184-190(2000)
- [10] JS Goydos, AM Brumfield, E Frezza, A Booth, MT Lotze, SE Carty. Marked elevation of serum interleukin-6 in patients with cholangiocarcinoma: validation of utility as a clinical marker. Ann Surg 227, 398-404 (1998)
- [11] P Tangkijvanich, D Thong-ngam, A Theamboonlers, O Hanvivatvong, P Kullavanijaya, Y Poovorawan: Diagnostic role of serum interleukin 6 and CA 19-9 in patients with cholangiocarcinoma. Hepatogastroenterology 51, 15-19 (2004)
- [12] K Okada, Y Shimizu, S Nambu, K Higuchi, A Watanabe: Interleukin-6 functions as an autocrine growth factor in a cholangiocarcinoma cell line. J Gastroenterol Hepatol 9, 462-467 (1994)
- [13] F Meng, Y Yamagiwa, Y Ueno, T Patel: Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol 44, 1055-1065 (2006)
- [14] Y Yamagiwa, F Meng, T Patel: Interleukin-6 decreases senescence and increases telomerase activity in malignant human cholangiocytes. Life Sci 78, 2494-2502 (2006)
- [15] H Isomoto, S Kobayashi, NW Werneburg, SF Bronk, ME Guicciardi, DA Frank, GJ Gores: Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology 42, 1329-1338 (2005)
- [16] H Dokduang, A Techasen, N Namwat, N Khuntikeo, C Pairojkul, Y Murakami, W Loilome, P Yongvanit: STATs profiling reveals predominantly-activated STAT3 in cholangiocarcinoma genesis and progression. J Hepatobiliary Pancreat Sci 21, 767-776 (2014)
- [17] JH Yoon, AE Canbay, NW Werneburg, SP Lee, GJ Gores: Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology 39, 732-738 (2004)
- [18] N Ishimura, SF Bronk, GJ Gores: Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J Physiol Gastrointest Liver Physiol 287, G88-95 (2004)
- [19] S Aishima, Y Mano, Y Tanaka, Y Kubo, K Shirabe, Y Maehara, Y Oda: Different roles of inducible nitric oxide synthase and cyclooxygenase-2 in carcinogenesis and metastasis of intrahepatic cholangiocarcinoma. Hum Pathol 44, 1031-1037 (2013)
- [20] W Chan-On, ML Nairismagi, CK Ong, WK Lim, S Dima, C Pairojkul, KH Lim, JR McPherson, I Cutcutache, HL Heng, L Ooi, A Chung, P Chow, PC Cheow, SY Lee, SP Choo, IB Tan, D Duda, A Nastase, SS Myint, BH Wong, A Gan, V Rajasegaran, CC Ng, S Nagarajan, A Jusakul, S Zhang, P Vohra, W Yu, D Huang, P Sithithaworn, P Yongvanit, S Wongkham, N Khuntikeo, V Bhudhisawasdi, I Popescu, SG Rozen, P Tan, BT The: Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 45, 1474-1478 (2013)
- [21] D Lee, IG Do, K Choi, CO Sung, KT Jang, D Choi, JS Heo, SH Choi, J Kim, JY Park, HJ Cha, JW Joh, KY Choi, DS Kim: The expression of phospho-AKT1 and phospho-MTOR is associated with a favorable prognosis independent of PTEN expression in intrahepatic cholangiocarcinomas. Mod Pathol 25, 131-139 (2012)
- [22] M Simbolo, M Fassan, A Ruzzenente, A Mafficini, LD Wood, V Corbo, D Melisi, G Malleo, C Vicentini, G Malpeli, D Antonello, N Sperandio, P Capelli, A Tomezzoli, C Iacono, RT Lawlor, C Bassi, RH Hruban, A Guglielmi, G Tortora, F de Braud, A Scarpa A. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget 5, 2839-2852 (2014)
- [23] B Herberger, H Puhalla, M Lehnert, F Wrba, S Novak, A Brandstetter, B Gruenberger, T Gruenberger, R Pirker, M Filipits: Activated mammalian target of rapamycin is an adverse prognostic factor in patients with biliary tract adenocarcinoma. Clin Cancer Res 13, 4795-4799 (2007)
- [24] JY Chung, SM Hong, BY Choi, H Cho, E Yu, SM Hewitt: The expression of phospho-AKT, phospho-mTOR, and PTEN in extrahepatic cholangiocarcinoma. Clin Cancer Res 15, 660-667 (2009)
- [25] RF Xu, JP Sun, SR Zhang, GS Zhu, LB Li, YL Liao, JM Xie, WJ Liao: KRAS and PIK3CA but not BRAF genes are frequently mutated in Chinese cholangiocarcinoma patients. Biomed Pharmacother 65, 22-26 (2011)
- [26] MO Riener, M Bawohl, PA Clavien, W Jochum: Rare PIK3CA hotspot mutations in carcinomas of the biliary tract. Genes Chromosomes Cancer 47, 363-367 (2008)
- [27] R Roskoski Jr: The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 319, 1-11 (2004)
- [28] N Normanno, C Bianco, L Strizzi, M Mancino, MR Maiello, A De Luca, F Caponigro, DS Salomon: The ErbB receptors and their ligands in cancer: an overview. Curr Drug Targets 6, 243-257 (2005)
- [29] K Nakazawa, Y Dobashi, S Suzuki, H Fujii, Y Takeda, A Ooi: Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J Pathol 206, 356-365 (2005)
- [30] Y Ito, T Takeda, Y Sasaki, M Sakon, T Yamada, S Ishiguro, S Imaoka, M Tsujimoto, S Higashiyama, M Monden, N Matsuura: Expression and clinical significance of the erbB family in intrahepatic cholangiocellular carcinoma. Pathol Res Pract 197, 95-100 (2001)
- [31] A Nonomura, G Ohta, Y Nakanuma, R Izumi, Y Mizukami, F Matsubara, M Hayashi, K Watanabe, N Takayanagi: Simultaneous detection of epidermal growth factor receptor (EGF-R), epidermal growth factor (EGF) and ras p21 in cholangiocarcinoma by an immunocytochemical method. Liver 8, 157-166 (1988)
- [32] A Altimari, M Fiorentino, E Gabusi, E Gruppioni, B Corti, A D’Errico, WF Grigioni: Investigation of ErbB1 and ErbB2 expression for therapeutic targeting in primary liver tumours. Dig LiverDis 35, 332-338 (2003)
- [33] EM Brunt, PE Swanson: Immunoreactivity for c-erbB-2 oncopeptide in benign and malignant diseases of the liver. Am J Clin Pathol 97, S53-61 (1992)
- [34] SI Aishima, KI Taguchi, K Sugimachi, M Shimada, M Tsuneyoshi: c-erbB-2 and c-Met expression relates to cholangiocarcinogenesis and progression of intrahepatic cholangiocarcinoma. Histopathology 40, 269-278 (2002)
- [35] K Endo, BI Yoon, C Pairojkul, AJ Demetris, AE Sirica: ERBB-2 overexpression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. Hepatology 36, 439-450 (2002)
- [36] WC Su, SC Shiesh, HS Liu, CY Chen, NH Chow, XZ Lin: Expression of oncogene products HER2/Neu and Ras and fibrosis-related growth factors bFGF, TGF-beta, and PDGF in bile from biliary malignancies and inflammatory disorders. Dig Dis Sci 46, 1387-1392 (2001)
- [37] F Leone, G Cavalloni, Y Pignochino, I Sarotto, R Ferraris, W Piacibello, T Venesio, L Capussotti, M Risio, M Aglietta: Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin Cancer Res 12, 1680-1685 (2006)
- [38] GY Gwak, JH Yoon, CM Shin, YJ Ahn, JK Chung, YA Kim, TY Kim, HS Lee: Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J Cancer Res Clin Oncol 131, 649-652 (2005)
- [39] M Li, Z Zhang, X Li, J Ye, X Wu, Z Tan, C Liu, B Shen, XA Wang, W Wu, D Zhou, D Zhang, T Wang, B Liu, K Qu, Q Ding, H Weng, J Mu, Y Shu, R Bao, Y Cao, P Chen, T Liu, L Jiang, Y Hu, P Dong, J Gu, W Lu, W Shi, J Lu, W Gong, Z Tang, Y Zhang, X Wang, YE Chin, X Weng, H Zhang, W Tang, Y Zheng, L He, H Wang, Y Liu: Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat Genet 46, 872-876 (2014)
- [40] T Ueki, J Fujimoto, T Suzuki, H Yamamoto, E Okamoto: Expression of hepatocyte growth factor and its receptor c-met proto-oncogene in hepatocellular carcinoma. Hepatology 25, 862-866 (1997)
- [41] T Terada, Y Nakanuma, AE Sirica: Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Hum Pathol 29, 175-180 (1998)
- [42] M Goggins, M Shekher, K Turnacioglu, CJ Yeo, RH Hruban, SE Kern: Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Cancer Res 58, 5329-5332 (1998)
- [43] M Nagai, Y Kawarada, M Watanabe, T Iwase, T Muneyuki, K Yamao, K Fukutome, R Yatani: Analysis of microsatellite instability, TGF-beta type II receptor gene mutations and hMSH2 and hMLH1 allele losses in pancreaticobiliary maljunction-associated biliary tract tumors. Anticancer Res 19, 1765-1768 (1999)
- [44] S Yazumi, K Ko, N Watanabe, H Shinohara, K Yoshikawa, T Chiba, R Takahashi: Disrupted transforming growth factor-beta signaling and deregulated growth in human biliary tract cancer cells. Int J Cancer 86, 782-789 (2000)
- [45] N Turner, R Grose. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10, 116-129 (2010)
- [46] Y Arai, Y Totoki, F Hosoda, T Shirota, N Hama, H Nakamura, H Ojima, K Furuta, K Shimada, T Okusaka, T Kosuge, T Shibata: Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology 59, 1427-1434 (2014)
- [47] YM Wu, F Su, S Kalyana-Sundaram, N Khazanov, B Ateeq, X Cao, RJ Lonigro, P Vats, R Wang, SF Lin, AJ Cheng, LP Kunju, J Siddiqui, SA Tomlins, P Wyngaard, S Sadis, S Roychowdhury, MH Hussain, FY Feng, MM Zalupski, M Talpaz, KJ Pienta, DR Rhodes, DR Robinson, AM Chinnaiyan: Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov 3, 636-647 (2013)
- [48] II Wistuba, AF Gazdar: Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer 4, 695-706 (2004)
- [49] M Watanabe, M Asaka, J Tanaka, M Kurosawa, M Kasai, T Miyazaki: Point mutation of K-ras gene codon 12 in biliary tract tumors. Gastroenterology 107, 1147-1153 (1994)
- [50] K Ohashi, Y Nakajima, H Kanehiro, M Tsutsumi, J Taki, Y Aomatsu, A Yoshimura, S Ko, T Kin, K Yagura K: Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology. Gastroenterology 109, 1612-1617 (1995)
- [51] YK Kang, WH Kim, HW Lee, HK Lee, YI Kim: Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest 79, 477-483 (1999)
- [52] J Albores-Saavedra, NV Adsay, JM Crawford JM, et al. Carcinoma of the gallbladder and extrahepatic bile ducts. In: World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Digestive System. Eds: FT Bosman, F Carneiro, RH Hruban, ND Theise. IARC Press: Lyon (2010)
- [53] A Tannapfel, F Sommerer, M Benicke, A Katalinic, D Uhlmann, H Witzigmann, J Hauss, C Wittekind: Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52, 706-712 (2003)
- [54] AA Saetta, P Papanastasiou, NV Michalopoulos, F Gigelou, P Korkolopoulou, T Bei, E Patsouris: Mutational analysis of BRAF in gallbladder carcinomas in association with K-ras and p53 mutations and microsatellite instability. Virchows Arch 445, 179-182 (2004)
- [55] SC Chuang, KT Lee, KB Tsai, PC Sheen, E Nagai, K Mizumoto, M Tanaka: Immunohistochemical study of DPC4 and p53 proteins in gallbladder and bile duct cancers. World J Surg 28, 995-1000 (2004)
- [56] SA Hahn, D Bartsch, A Schroers, H Galehdari, M Becker, A Ramaswamy, I Schwarte-Waldhoff, H Maschek, W Schmiegel: Mutations of the DPC4/Smad4 gene in biliary tract carcinoma. Cancer Res 58, 1124-1126 (1998)
- [57] X Xu, S Kobayashi, W Qiao, C Li, C Xiao, S Radaeva, B Stiles, RH Wang, N Ohara, T Yoshino, D LeRoith, MS Torbenson, GJ Gores, H Wu, B Gao, CX Deng: Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J Clin Invest 116, 1843-1852 (2006)
- [58] CJ Sherr: Cancer cell cycles. Science 274, 1672-1677 (1996)
- [59] WR Jarnagin, DS Klimstra, M Hezel, M Gonen, Y Fong, K Roggin, K Cymes, RP DeMatteo, M D’Angelica, LH Blumgart, B Singh: Differential cell cycle-regulatory protein expression in biliary tract adenocarcinoma: correlation with anatomic site, pathologic variables, and clinical outcome. J Clin Oncol 24, 1152-1160 (2006)
- [60] A Ishikawa, M Sasaki, Y Sato, S Ohira, MF Chen, SF Huang, K Oda, Y Nimura, Y Nakanuma: Frequent p16ink4a inactivation is an early and frequent event of intraductal papillary neoplasm of the liver arising in hepatolithiasis. Hum Pathol 35, 1505-1514 (2004)
- [61] AK Virmani, C Muller, A Rathi, S Zoechbauer-Mueller, M Mathis, AF Gazdar: Aberrant methylation during cervical carcinogenesis. Clin Cancer Res 7, 584-589 (2001)
- [62] A Tannapfel, M Benicke, A Katalinic, D Uhlmann, F Kockerling, J Hauss, C Wittekind: Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut 47, 721-727 (2000)
- [63] EP Berthiaume, J Wands: The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis 24, 127-137 (2004)
- [64] S Furubo, K Harada, T Shimonishi, K Katayanagi, W Tsui, Y Nakanuma: Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma. Histopathology 35, 230-240 (1999)
- [65] Y Jiao, TM Pawlik, RA Anders, FM Selaru, MM Streppel, DJ Lucas, N Niknafs, VB Guthrie, A Maitra, P Argani, GJ Offerhaus, JC Roa, LR Roberts, GJ Gores, I Popescu, ST Alexandrescu, S Dima, M Fassan, M Simbolo, A Mafficini, P Capelli, RT Lawlor, A Ruzzenente, A Guglielmi, G Tortora, F de Braud, A Scarpa, W Jarnagin, D Klimstra, R Karchin, VE Velculescu, RH Hruban, B Vogelstein, KW Kinzler, N Papadopoulos, LD Wood: Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 45, 1470-1473 (2013)
- [66] S Zhao, Y Lin, W Xu, W Jiang, Z Zha, P Wang, W Yu, Z Li, L Gong, Y Peng, J Ding, Q Lei, KL Guan, Y Xiong: Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324, 261-265 (2009)
- [67] L Dang, DW White, S Gross, BD Bennett, MA Bittinger, EM Driggers, VR Fantin, HG Jang, S Jin, MC Keenan, KM Marks, RM Prins, PS Ward, KE Yen, LM Liau, JD Rabinowitz, LC Cantley, CB Thompson, MG Vander Heiden, SM Su: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739-744 (2009)
- [68] DR Borger, KK Tanabe, KC Fan, HU Lopez, VR Fantin, KS Straley, DP Schenkein, AF Hezel, M Ancukiewicz, HM Liebman, EL Kwak, JW Clark, DP Ryan, V Deshpande, D Dias-Santagata, LW Ellisen, AX Zhu, AJ Iafrate: Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17, 72-79 (2012)
- [69] PS Ward, J Patel, DR Wise, O Abdel-Wahab, BD Bennett, HA Coller, JR Cross, VR Fantin, CV Hedvat, AE Perl, JD Rabinowitz, M Carroll, SM Su, KA Sharp, RL Levine, CB Thompson: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225-234 (2010)
- [70] DR Borger, L Goyal, T Yau, RT Poon, M Ancukiewicz, V Deshpande, DC Christiani, HM Liebman, H Yang, H Kim, K Yen, JE Faris, AJ Iafrate, EL Kwak, JW Clark, JN Allen, LS Blaszkowsky, JE Murphy, SK Saha, TS Hong, JY Wo, CR Ferrone, KK Tanabe, N Bardeesy, KS Straley, S Agresta, DP Schenkein, LW Ellisen, DP Ryan, AX Zhu: Circulating oncometabolite 2-hydroxyglutarate is a potential surrogate biomarker in patients with isocitrate dehydrogenase-mutant intrahepatic cholangiocarcinoma. Clin Cancer Res 20, 1884-1890 (2014)
- [71] ML Suva, N Riggi, BE Bernstein: Epigenetic reprogramming in cancer. Science 339, 1567-1570 (2013)
- [72] I Varela, P Tarpey, K Raine, D Huang, CK Ong, P Stephens, H Davies, D Jones, ML Lin, J Teague, G Bignell, A Butler, J Cho, GL Dalgliesh, D Galappaththige, C Greenman, C Hardy, M Jia, C Latimer, KW Lau, J Marshall, S McLaren, A Menzies, L Mudie, L Stebbings, DA Largaespada, LF Wessels, S Richard, RJ Kahnoski, J Anema, DA Tuveson, PA Perez-Mancera, V Mustonen, A Fischer, DJ Adams, A Rust, W Chan-on, C Subimerb, K Dykema, K Furge, PJ Campbell, BT Teh, MR Stratton, PA Futreal. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539-542 (2011)
- [73] M Thompson: Polybromo-1: the chromatin targeting subunit of the PBAF complex. Biochimie 91, 309-319 (2009)
- [74] R Chandrasekaran, M Thompson: Polybromo-1-bromodomains bind histone H3 at specific acetyl-lysine positions. Biochem Biophys Res Commun 355, 661-666 (2007)
- [75] CR Churi, R Shroff, Y Wang, A Rashid, HC Kang, J Weatherly, M Zuo, R Zinner, D Hong, F Meric-Bernstam, F Janku, CH Crane, L Mishra, JN Vauthey, RA Wolff, G Mills, M Javle: Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PloS one 9, e115383 (2014)
- [76] D Wilsker, A Patsialou, SD Zumbrun, S Kim, Y Chen, PB Dallas, E Moran: The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res 32, 1345-1353 (2004)
- [77] A Bheda, J Shackelford, JS Pagano: Expression and functional studies of ubiquitin C-terminal hydrolase L1 regulated genes. PloS one 4, e6764 (2009)
- [78] RA Greenberg, B Sobhian, S Pathania, SB Cantor, Y Nakatani, DM Livingston: Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 20, 34-46 (2006)
- [79] H Nishikawa, W Wu, A Koike, R Kojima, H Gomi, M Fukuda, T Ohta: BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res 69, 111-119 (2009)
