Information
References
Contents
Download
[1]S. W. Ryter, S. J. Lee, A. Smith and A. M. Choi: Autophagy in vascular disease. Proc Am Thorac Soc, 7(1), 40-7 (2010)
[2]Z. Xie and D. J. Klionsky: Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 9(10), 1102-9 (2007)
[3]F. Reggiori and D. J. Klionsky: Autophagy in the eukaryotic cell. Eukaryot Cell, 1(1), 11-21 (2002)
[4]D. J. Klionsky and S. D. Emr: Autophagy as a regulated pathway of cellular degradation. Science, 290(5497), 1717-21 (2000)
[5]Y. M. Wei, X. Li, M. Xu, J. M. Abais, Y. Chen, C. R. Riebling, K. M. Boini, P. L. Li and Y. Zhang: Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cell Physiol Biochem, 31(6), 925-37 (2013)
[6]P. Lacolley, V. Regnault, A. Nicoletti, Z. Li and J. B. Michel: The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res, 95(2), 194-204 (2012)
[7]X. Li, M. Xu, A. L. Pitzer, M. Xia, K. M. Boini, P. L. Li and Y. Zhang: Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med (Berl), 92(5), 473-85 (2014)
[8]K. Oiwa and H. Sakakibara: Recent progress in dynein structure and mechanism. Curr Opin Cell Biol, 17(1), 98-103 (2005)
[9]R. Vallee: Molecular analysis of the microtubule motor dynein. Proc Natl Acad Sci U S A, 90(19), 8769-72 (1993)
[10]M. Yamamoto, S. O. Suzuki and M. Himeno: The effects of dynein inhibition on the autophagic pathway in glioma cells. Neuropathology, 30(1), 1-6 (2010)
[11]L. Jahreiss, F. M. Menzies and D. C. Rubinsztein: The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic, 9(4), 574-87 (2008)
[12]M. Xu, X. X. Li, J. Xiong, M. Xia, E. Gulbins, Y. Zhang and P. L. Li: Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes. Biochim Biophys Acta, 1833(12), 3228-36 (2013)
[13]S. X. Lin and C. A. Collins: Regulation of the intracellular distribution of cytoplasmic dynein by serum factors and calcium. J Cell Sci, 105 (Pt 2), 579-88 (1993)
[14]K. A. Lesich, C. B. Kelsch, K. L. Ponichter, B. J. Dionne, L. Dang and C. B. Lindemann: The calcium response of mouse sperm flagella: role of calcium ions in the regulation of dynein activity. Biol Reprod, 86(4), 105 (2012)
[15]E. G. Teggatz, G. Zhang, A. Y. Zhang, F. Yi, N. Li, A. P. Zou and P. L. Li: Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries. Microvasc Res, 70(1-2), 65-75 (2005)
[16]F. Zhang, S. Jin, F. Yi and P. L. Li: TRP-ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J Cell Mol Med, 13(9B), 3174-85 (2009)
[17]F. Zhang, G. Zhang, A. Y. Zhang, M. J. Koeberl, E. Wallander and P. L. Li: Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes. Am J Physiol Heart Circ Physiol, 291(1), H274-82 (2006)
[18]Y. Zhang, M. Xu, M. Xia, X. Li, K. M. Boini, M. Wang, E. Gulbins, P. H. Ratz and P. L. Li: Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res, 102(1), 68-78 (2014)
[19]X. Li, W. Q. Han, K. M. Boini, M. Xia, Y. Zhang and P. L. Li: TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice. J Mol Med (Berl), 91(1), 25-36 (2013)
[20]M. Xu, Y. Zhang, M. Xia, X. X. Li, J. K. Ritter, F. Zhang and P. L. Li: NAD(P)H oxidase-dependent intracellular and extracellular O2*- production in coronary arterial myocytes from CD38 knockout mice. Free Radic Biol Med, 52(2), 357-65 (2012)
[21]K. M. Boini, M. Xia, C. Li, C. Zhang, L. P. Payne, J. M. Abais, J. L. Poklis, P. B. Hylemon and P. L. Li: Acid sphingomyelinase gene deficiency ameliorates the hyperhomocysteinemia-induced glomerular injury in mice. Am J Pathol, 179(5), 2210-9 (2011)
[22]M. Xu, X. Li, S. W. Walsh, Y. Zhang, J. M. Abais, K. M. Boini and P. L. Li: Intracellular two-phase Ca2+ release and apoptosis controlled by TRP-ML1 channel activity in coronary arterial myocytes. Am J Physiol Cell Physiol, 304(5), C458-66 (2013)
[23]F. Zhang, M. Xu, W. Q. Han and P. L. Li: Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1(-/-) cells. Am J Physiol Cell Physiol, 301(2), C421-30 (2011)
[24]G. Zhang, F. Zhang, R. Muh, F. Yi, K. Chalupsky, H. Cai and P. L. Li: Autocrine/paracrine pattern of superoxide production through NAD(P)H oxidase in coronary arterial myocytes. Am J Physiol Heart Circ Physiol, 292(1), H483-95 (2007)
[25]N. A. Bright, M. J. Gratian and J. P. Luzio: Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr Biol, 15(4), 360-5 (2005)
[26]V. Zinchuk, O. Zinchuk and T. Okada: Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem, 40(4), 101-11 (2007)
[27]B. M. Paschal, H. S. Shpetner and R. B. Vallee: Purification of brain cytoplasmic dynein and characterization of its in vitro properties. Methods Enzymol, 196, 181-91 (1991)
[28]S. Kumar, I. H. Lee and M. Plamann: Two approaches to isolate cytoplasmic dynein ATPase from Neurospora crassa. Biochimie, 82(3), 229-36 (2000)
[29]M. A. Lyons and A. J. Brown: 7-Ketocholesterol. Int J Biochem Cell Biol, 31(3-4), 369-75 (1999)
[30]N. Stadler, R. A. Lindner and M. J. Davies: Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper. Arterioscler Thromb Vasc Biol, 24(5), 949-54 (2004)
[31]W. Martinet, D. M. Schrijvers, J. P. Timmermans and H. Bult: Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol, 154(6), 1236-46 (2008)
[32]R. Kochl, X. W. Hu, E. Y. Chan and S. A. Tooze: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic, 7(2), 129-45 (2006)
[33]D. C. Rubinsztein, B. Ravikumar, A. Acevedo-Arozena, S. Imarisio, C. J. O’Kane and S. D. Brown: Dyneins, autophagy, aggregation and neurodegeneration. Autophagy, 1(3), 177-8 (2005)
[34]K. A. Christensen, J. T. Myers and J. A. Swanson: pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci, 115(Pt 3), 599-607 (2002)
[35]P. R. Pryor, B. M. Mullock, N. A. Bright, S. R. Gray and J. P. Luzio: The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol, 149(5), 1053-62 (2000)
[36]E. Lloyd-Evans, H. Waller-Evans, K. Peterneva and F. M. Platt: Endolysosomal calcium regulation and disease. Biochem Soc Trans, 38(6), 1458-64 (2010)
[37]J. M. Cancela, G. C. Churchill and A. Galione: Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature, 398(6722), 74-6 (1999)
[38]A. Galione: NAADP, a new intracellular messenger that mobilizes Ca2+ from acidic stores. Biochem Soc Trans, 34(Pt 5), 922-6 (2006)
[39]M. Taniguchi, K. Kitatani, T. Kondo, M. Hashimoto-Nishimura, S. Asano, A. Hayashi, S. Mitsutake, Y. Igarashi, H. Umehara, H. Takeya, J. Kigawa and T. Okazaki: Regulation of autophagy and its associated cell death by “sphingolipid rheostat”: reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J Biol Chem, 287(47), 39898-910 (2012)
[40]K. Glunde, S. E. Guggino, M. Solaiyappan, A. P. Pathak, Y. Ichikawa and Z. M. Bhujwalla: Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia, 5(6), 533-45 (2003)
[41]K. Trajkovic, A. S. Dhaunchak, J. T. Goncalves, D. Wenzel, A. Schneider, G. Bunt, K. A. Nave and M. Simons: Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J Cell Biol, 172(6), 937-48 (2006)
[42]D. Shen, X. Wang, X. Li, X. Zhang, Z. Yao, S. Dibble, X. P. Dong, T. Yu, A. P. Lieberman, H. D. Showalter and H. Xu: Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun, 3, 731 (2012)
[43]S. Vergarajauregui, P. S. Connelly, M. P. Daniels and R. Puertollano: Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet, 17(17), 2723-37 (2008)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Regulation of dynein-mediated autophagosomes trafficking by ASM in CASMCs
1 Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
2 Laboratory of Chinese Herbal Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
3 Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
Abstract
Acid sphingomyelinase (ASM; gene symbol Smpd1) has been shown to play a crucial role in autophagy maturation by controlling lysosomal fusion with autophagosomes in coronary arterial smooth muscle cells (CASMCs). However, the underlying molecular mechanism by which ASM controls autophagolysosomal fusion remains unknown. In primary cultured CASMCs, lysosomal Ca2+ induced by 7-ketocholesterol (7-Ket, an atherogenic stimulus and autophagy inducer) was markedly attenuated by ASM deficiency or TRPML1 gene silencing suggesting that ASM signaling is required for TRPML1 channel activity and subsequent lysosomal Ca2+ release. In these CASMCs, ASM deficiency or TRPML1 gene silencing markedly inhibited 7-Ket-induced dynein activation. In addition, 7-Ket-induced autophagosome trafficking, an event associated with lysosomal Ca2+ release and dynein activity, was significantly inhibited in ASM-deficient (Smpd1-/-) CASMCs compared to that in Smpd1+/+ CASMCs. Finally, overexpression of TRPML1 proteins restored 7-Ket-induced lysosomal Ca2+ release and autophagosome trafficking in Smpd1-/- CASMCs. Collectively, these results suggest that ASM plays a critical role in regulating lysosomal TRPML1-Ca2+ signaling and subsequent dynein-mediated autophagosome trafficking, which leads its role in controlling autophagy maturation in CASMCs under atherogenic stimulation.
Keywords
- Smooth Muscle Cells
- Autophagy Maturation
- Sphingomyelinase
- Lysosomal Ca2+
References
- [1] S. W. Ryter, S. J. Lee, A. Smith and A. M. Choi: Autophagy in vascular disease. Proc Am Thorac Soc, 7(1), 40-7 (2010)
- [2] Z. Xie and D. J. Klionsky: Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 9(10), 1102-9 (2007)
- [3] F. Reggiori and D. J. Klionsky: Autophagy in the eukaryotic cell. Eukaryot Cell, 1(1), 11-21 (2002)
- [4] D. J. Klionsky and S. D. Emr: Autophagy as a regulated pathway of cellular degradation. Science, 290(5497), 1717-21 (2000)
- [5] Y. M. Wei, X. Li, M. Xu, J. M. Abais, Y. Chen, C. R. Riebling, K. M. Boini, P. L. Li and Y. Zhang: Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cell Physiol Biochem, 31(6), 925-37 (2013)
- [6] P. Lacolley, V. Regnault, A. Nicoletti, Z. Li and J. B. Michel: The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res, 95(2), 194-204 (2012)
- [7] X. Li, M. Xu, A. L. Pitzer, M. Xia, K. M. Boini, P. L. Li and Y. Zhang: Control of autophagy maturation by acid sphingomyelinase in mouse coronary arterial smooth muscle cells: protective role in atherosclerosis. J Mol Med (Berl), 92(5), 473-85 (2014)
- [8] K. Oiwa and H. Sakakibara: Recent progress in dynein structure and mechanism. Curr Opin Cell Biol, 17(1), 98-103 (2005)
- [9] R. Vallee: Molecular analysis of the microtubule motor dynein. Proc Natl Acad Sci U S A, 90(19), 8769-72 (1993)
- [10] M. Yamamoto, S. O. Suzuki and M. Himeno: The effects of dynein inhibition on the autophagic pathway in glioma cells. Neuropathology, 30(1), 1-6 (2010)
- [11] L. Jahreiss, F. M. Menzies and D. C. Rubinsztein: The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic, 9(4), 574-87 (2008)
- [12] M. Xu, X. X. Li, J. Xiong, M. Xia, E. Gulbins, Y. Zhang and P. L. Li: Regulation of autophagic flux by dynein-mediated autophagosomes trafficking in mouse coronary arterial myocytes. Biochim Biophys Acta, 1833(12), 3228-36 (2013)
- [13] S. X. Lin and C. A. Collins: Regulation of the intracellular distribution of cytoplasmic dynein by serum factors and calcium. J Cell Sci, 105 (Pt 2), 579-88 (1993)
- [14] K. A. Lesich, C. B. Kelsch, K. L. Ponichter, B. J. Dionne, L. Dang and C. B. Lindemann: The calcium response of mouse sperm flagella: role of calcium ions in the regulation of dynein activity. Biol Reprod, 86(4), 105 (2012)
- [15] E. G. Teggatz, G. Zhang, A. Y. Zhang, F. Yi, N. Li, A. P. Zou and P. L. Li: Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries. Microvasc Res, 70(1-2), 65-75 (2005)
- [16] F. Zhang, S. Jin, F. Yi and P. L. Li: TRP-ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J Cell Mol Med, 13(9B), 3174-85 (2009)
- [17] F. Zhang, G. Zhang, A. Y. Zhang, M. J. Koeberl, E. Wallander and P. L. Li: Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes. Am J Physiol Heart Circ Physiol, 291(1), H274-82 (2006)
- [18] Y. Zhang, M. Xu, M. Xia, X. Li, K. M. Boini, M. Wang, E. Gulbins, P. H. Ratz and P. L. Li: Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res, 102(1), 68-78 (2014)
- [19] X. Li, W. Q. Han, K. M. Boini, M. Xia, Y. Zhang and P. L. Li: TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice. J Mol Med (Berl), 91(1), 25-36 (2013)
- [20] M. Xu, Y. Zhang, M. Xia, X. X. Li, J. K. Ritter, F. Zhang and P. L. Li: NAD(P)H oxidase-dependent intracellular and extracellular O2*- production in coronary arterial myocytes from CD38 knockout mice. Free Radic Biol Med, 52(2), 357-65 (2012)
- [21] K. M. Boini, M. Xia, C. Li, C. Zhang, L. P. Payne, J. M. Abais, J. L. Poklis, P. B. Hylemon and P. L. Li: Acid sphingomyelinase gene deficiency ameliorates the hyperhomocysteinemia-induced glomerular injury in mice. Am J Pathol, 179(5), 2210-9 (2011)
- [22] M. Xu, X. Li, S. W. Walsh, Y. Zhang, J. M. Abais, K. M. Boini and P. L. Li: Intracellular two-phase Ca2+ release and apoptosis controlled by TRP-ML1 channel activity in coronary arterial myocytes. Am J Physiol Cell Physiol, 304(5), C458-66 (2013)
- [23] F. Zhang, M. Xu, W. Q. Han and P. L. Li: Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1(-/-) cells. Am J Physiol Cell Physiol, 301(2), C421-30 (2011)
- [24] G. Zhang, F. Zhang, R. Muh, F. Yi, K. Chalupsky, H. Cai and P. L. Li: Autocrine/paracrine pattern of superoxide production through NAD(P)H oxidase in coronary arterial myocytes. Am J Physiol Heart Circ Physiol, 292(1), H483-95 (2007)
- [25] N. A. Bright, M. J. Gratian and J. P. Luzio: Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr Biol, 15(4), 360-5 (2005)
- [26] V. Zinchuk, O. Zinchuk and T. Okada: Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta Histochem Cytochem, 40(4), 101-11 (2007)
- [27] B. M. Paschal, H. S. Shpetner and R. B. Vallee: Purification of brain cytoplasmic dynein and characterization of its in vitro properties. Methods Enzymol, 196, 181-91 (1991)
- [28] S. Kumar, I. H. Lee and M. Plamann: Two approaches to isolate cytoplasmic dynein ATPase from Neurospora crassa. Biochimie, 82(3), 229-36 (2000)
- [29] M. A. Lyons and A. J. Brown: 7-Ketocholesterol. Int J Biochem Cell Biol, 31(3-4), 369-75 (1999)
- [30] N. Stadler, R. A. Lindner and M. J. Davies: Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper. Arterioscler Thromb Vasc Biol, 24(5), 949-54 (2004)
- [31] W. Martinet, D. M. Schrijvers, J. P. Timmermans and H. Bult: Interactions between cell death induced by statins and 7-ketocholesterol in rabbit aorta smooth muscle cells. Br J Pharmacol, 154(6), 1236-46 (2008)
- [32] R. Kochl, X. W. Hu, E. Y. Chan and S. A. Tooze: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic, 7(2), 129-45 (2006)
- [33] D. C. Rubinsztein, B. Ravikumar, A. Acevedo-Arozena, S. Imarisio, C. J. O’Kane and S. D. Brown: Dyneins, autophagy, aggregation and neurodegeneration. Autophagy, 1(3), 177-8 (2005)
- [34] K. A. Christensen, J. T. Myers and J. A. Swanson: pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci, 115(Pt 3), 599-607 (2002)
- [35] P. R. Pryor, B. M. Mullock, N. A. Bright, S. R. Gray and J. P. Luzio: The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol, 149(5), 1053-62 (2000)
- [36] E. Lloyd-Evans, H. Waller-Evans, K. Peterneva and F. M. Platt: Endolysosomal calcium regulation and disease. Biochem Soc Trans, 38(6), 1458-64 (2010)
- [37] J. M. Cancela, G. C. Churchill and A. Galione: Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature, 398(6722), 74-6 (1999)
- [38] A. Galione: NAADP, a new intracellular messenger that mobilizes Ca2+ from acidic stores. Biochem Soc Trans, 34(Pt 5), 922-6 (2006)
- [39] M. Taniguchi, K. Kitatani, T. Kondo, M. Hashimoto-Nishimura, S. Asano, A. Hayashi, S. Mitsutake, Y. Igarashi, H. Umehara, H. Takeya, J. Kigawa and T. Okazaki: Regulation of autophagy and its associated cell death by “sphingolipid rheostat”: reciprocal role of ceramide and sphingosine 1-phosphate in the mammalian target of rapamycin pathway. J Biol Chem, 287(47), 39898-910 (2012)
- [40] K. Glunde, S. E. Guggino, M. Solaiyappan, A. P. Pathak, Y. Ichikawa and Z. M. Bhujwalla: Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia, 5(6), 533-45 (2003)
- [41] K. Trajkovic, A. S. Dhaunchak, J. T. Goncalves, D. Wenzel, A. Schneider, G. Bunt, K. A. Nave and M. Simons: Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J Cell Biol, 172(6), 937-48 (2006)
- [42] D. Shen, X. Wang, X. Li, X. Zhang, Z. Yao, S. Dibble, X. P. Dong, T. Yu, A. P. Lieberman, H. D. Showalter and H. Xu: Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun, 3, 731 (2012)
- [43] S. Vergarajauregui, P. S. Connelly, M. P. Daniels and R. Puertollano: Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet, 17(17), 2723-37 (2008)
