Information
References
Contents
Download
[1]D. Hanahan, R. A. Weinberg: Hallmarks of cancer: the next generation. Cell 144, 646–74 (2011)
[2]T. I. Lee, R. A. Young: Transcriptional Regulation and its Misregulation in Disease. Cell 152, 1237–51 (2013)
[3]E. Silverman, G. Edwalds-Gilbert, R. J. Lin: DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312, 1–16 (2003)
[4]J. M. Caruthers, D. B. McKay: Helicase structure and mechanism. Curr Opin Struct Biol 12, 123–33 (2002)
[5]N. K. Tanner, P. Linder P: DExD/H Box RNA Helicases. Mol Cell 8, 251–62 (2001)
[6]O. Cordin, J. Banroques, N. K. Tanner, P. Linder: The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006)
[7]P. Linder, E. Jankowsky: From unwinding to clamping — the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12, 505–16 (2011)
[8]P. Linder, P. F. Lasko, M. Ashburner, P. Leroy, P. J. Nielsen, K. Nishi, J. Schnier, P. P. Slonimski: Birth of the D-E-A-D box. Nature 337, 121–2 (1989)
[9]P. Linder, F. V. Fuller-Pace: Looking back on the birth of DEAD-box RNA helicases.Biochim Biophys Acta 1829, 750–5 (2013)
[10]J. Banroques, O. Cordin, M. Doère, P. Linder, N. K. Tanner: A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP-dependent binding of RNA substrates in DEAD-box proteins. Mol Cell Biol 28, 3359–71 (2008)
[11]O. Cordin, N. K. Tanner, M. Doère, P. Linder, J. Banroques: The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 23, 2478–87 (2004)
[12]N. K. Tanner: The Newly Identified Q Motif of DEAD Box Heicases IS Involved in Adenine Recognition. Cell Cycle 2, 18–9 (2003)
[13]E. Jankowsky: RNA Helicases at work: binding and rearranging. Trends Biochem Sci 36, 19–29 (2011)
[14]I. Jarmoskaite, R. Russell: DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA 2, 135–52 (2011)
[15]E. Jankowsky, A. Putnam: Duplex unwinding with DEAD-box proteins. Methods Mol Biol Clifton NJ 587, 245–64 (2010)
[16]A. A. Putnam, E. Jankowsky: DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta BBA - Gene Regul Mech 1829, 884–93 (2013)
[17]S. Rocak, P. Linder: DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5, 232–41 (2004)
[18]Y. T. Tu, A. Barrientos: The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly. Cell Rep 10, 854–64 (2015)
[19]R. Parker, U. Sheth U: P Bodies and the Control of mRNA Translation and Degradation. Mol Cell 25, 635–46 (2007)
[20]D. H. Ostareck, I. S. Naarmann-de Vries, A. Ostareck-Lederer. DDX6 and its orthologs as modulators of cellular and viral RNA expression. Wiley Interdiscip Rev RNA 5, 659–78 (2014)
[21]A. Weston, J. Sommerville: Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 34, 3082–94 (2006)
[22]S. Kervestin, A. Jacobson A: NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 13, 700–12 (2012)
[23]V. Geißler, S. Altmeyer, B. Stein, H. Uhlmann-Schiffler, H. Stahl: The RNA helicase Ddx5/p68 binds to hUpf3 and enhances NMD of Ddx17/p72 and Smg5 mRNA. Nucleic Acids Res 41, 7875–88 (2013)
[24]T. H. Coady, C. L. Lorson: SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA 2, 546–64 (2011)
[25]L. C. Amler, J. Schürmann, M. Schwab: The DDX1 gene maps within 400 kbp 5’ to MYCN and is frequently coamplified in human neuroblastoma. Genes Chromosomes Cancer 15, 134–7 (1996)
[26]R. Godbout, J. Squire: Amplification of a DEAD box protein gene in retinoblastoma cell lines. Proc Natl Acad Sci 90, 7578–82 (1993)
[27]R. Godbout, L. Li, R. Z. Liu, K. Roy: Role of DEAD box 1 in retinoblastoma and neuroblastoma. Future Oncol Lond Engl 3, 575–87 (2007)
[28]R. E. George, R. Kenyon, A. G. McGuckin, N. Kohl, P. Kogner, H. Christiansen, A. D. Pearson, J. Lunec: Analysis of candidate gene co-amplification with MYCN in neuroblastoma. Eur J Cancer Oxf Engl 33, 2037–42 (1990)
[29]C. F. Manohar, H. R. Salwen, G. M. Brodeur, S. L. Cohn: Co-amplification and concomitant high levels of expression of a DEAD box gene with MYCN in human neuroblastoma. Genes Chromosomes Cancer 14, 196–203 (1995)
[30]J. A. Squire, P. S. Thorner, S. Weitzman, J. D. Maggi, P. Dirks, J. Doyle, M. Hale, R. Godbout: Co-amplification of MYCN and a DEAD box gene (DDX1) in primary neuroblastoma. Oncogene 10, 1417–22 (1995)
[31]R. Noguera, E. Villamón, A. Berbegall, I. Machado, F. Giner, I. Tadeo, S. Navarro, A. Llombart-Bosch: Gain of MYCN region in a Wilms tumor-derived xenotransplanted cell line. Diagn Mol Pathol Am J Surg Pathol Part B 19, 33–9 (2010)
[32]F. G. Barr, F. Duan, L. M. Smith, D. Gustafson, M. Pitts, S. Hammond, J. M. Gastier-Foster: Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Genes Chromosomes Cancer 48, 661–72 (2009)
[33]D. Scott, J. Elsden, A. Pearson, J. Lunec: Genes co-amplified with MYCN in neuroblastoma: silent passengers or co-determinants of phenotype? Cancer Lett 197, 81–6 (2003)
[34]R. E. George, R. M. Kenyon, A. G. McGuckin, A. J. Malcolm, A.D. Pearson, J. Lunec: Investigation of co-amplification of the candidate genes ornithine decarboxylase, ribonucleotide reductase, syndecan-1 and a DEAD box gene, DDX1, with N-myc in neuroblastoma. United Kingdom Children’s Cancer Study Group. Oncogene 12, 1583–7 (1996)
[35]D. R. Germain, K. Graham, D. D. Glubrecht, J. C. Hugh, J. R. Mackey, R. Godbout: DEAD box 1: a novel and independent prognostic marker for early recurrence in breast cancer.Breast Cancer Res Treat 127, 53–63 (2011)
[36]A. Weber, P. Imisch, E. Bergmann, H. Christiansen: Coamplification of DDX1 Correlates With an Improved Survival Probability in Children With MYCN-Amplified Human Neuroblastoma. J Clin Oncol 22, 2681–90 (2004)
[37]N. K. Taunk, S. Goyal, H. Wu, M. S. Moran, S. Chen, B. G. Haffty: DEAD box 1 (DDX1) expression predicts for local control and overall survival in early stage, node-negative breast cancer. Cancer 118, 888–98 (2012)
[38]K. D. Preter, F. Speleman, V. Combaret, J. Lunec, J. Board, A. Pearson, A. D. Paepe, N. V. Roy, G. Laureys, J. Vandesompele: No Evidence for Correlation of DDX1 Gene Amplification With Improved Survival Probability in Patients With MYCN-Amplified Neuroblastomas. J Clin Oncol 23, 3167–8 (2005)
[39]K. D. Preter, F. Speleman, V. Combaret, J. Lunec, G. Laureys, B. H. Eussen, N. Francotte, J. Board, A. D. Pearson, A. D. Paepe, N. V. Roy, J. Vandesompele: Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay. Mod Pathol Off J U S Can Acad Pathol Inc 15, 159–66 (2002)
[40]S. Kaneko, M. Ohira, Y. Nakamura, E. Isogai, A. Nakagawara, M. Kaneko: Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma.J Cancer Res Clin Oncol 133, 185–92 (2007)
[41]D. R. de Souza, S. S. Sanabani, A. C. de Souza, V. Filho Odone, S. Epelman, I. Bendit: Prognostic impact of MYCN, DDX1, TrkA, and TrkC gene transcripts expression in neuroblastoma. Pediatr Blood Cancer 56, 749–56 (2011)
[42]F. V. Fuller-Pace: DEAD box RNA helicase functions in cancer. RNA Biol 10, 121–32 (2013)
[43]H. C. Chen, W. C. Lin, Y. G. Tsay, S. C. Lee, C. J. Chang: An RNA helicase, DDX1, interacting with poly(A) RNA and heterogeneous nuclear ribonucleoprotein K. J Biol Chem 277, 40403–9 (2002)
[44]M. Lynch, L. Chen, M. J. Ravitz, S. Mehtani, K. Korenblat, M. J. Pazin, E. V. Schmidt: hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 25, 6436–53 (2005)
[45]A. Inoue, S. Y. Sawata, K. Taira, R. Wadhwa: Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci U S A 104, 8983–8 (2007)
[46]K. Bomsztyk, I. Van Seuningen, H. Suzuki, O. Denisenko, J. Ostrowski: Diverse molecular interactions of the hnRNP K protein. FEBS Lett 403, 113–5 (1997)
[47]A. Matta, K. W. Siu, R. Ralhan: 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets 16, 515–23 (2012)
[48]K. Tanaka, S. Okamoto, Y. Ishikawa, H. Tamura, T. Hara: DDX1 is required for testicular tumorigenesis, partially through the transcriptional activation of 12p stem cell genes. Oncogene 28, 2142–51 (2009)
[49]L. Li, E. A. Monckton, R. Godbout: A role for DEAD box 1 at DNA double-strand breaks. Mol Cell Biol 28, 6413–25 (2008)
[50]C. Han, Y. Liu, G. Wan, H. J. Choi, L. Zhao, C. Ivan, X. He, A. K. Sood, X. Zhang, X. Lu: The RNA-binding protein DDX1 promotes primary microRNA maturation and inhibits ovarian tumor progression. Cell Rep 8, 1447–60 (2014)
[51]Y. Ariumi: Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 5, 423 (2014)
[52]F. Robert, J. Pelletier: Perturbations of RNA helicases in cancer. Wiley Interdiscip Rev RNA 4, 333–49 (2013)
[53]T. J. Pugh, S. D. Weeraratne, T. C. Archer, D. A. Pomeranz Krummel, D. Auclair, J. Bochicchio, M. O. Carneiro, S. L. Carter, K. Cibulskis, R. L. Erlich, H. Greulich, M. S. Lawrence, N. J. Lennon, A. McKenna, J. Meldrim, A. H. Ramos, M. G. Ross, C. Russ, E. Shefler, A. Sivachenko, B. Sogoloff, P. Stojanov, P. Tamayo, J. P. Mesirov, V. Amani: Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–10 (2012)
[54]W. Y. Tarn, T. H. Chang: The current understanding of Ded1p/DDX3 homologs from yeast to human. RNA Biol 6, 17–20 (2009)
[55]J. S. Huang, C. C. Chao, T. L. Su, S. H. Yeh, D. S. Chen, C. T. Chen, P. J. Chen, Y. S. Jou: Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 315, 950–8 (2004)
[56]M. Botlagunta, F. Vesuna, Y. Mironchik, A. Raman, A. Lisok, P. Winnard, S. Mukadam, P. Van Diest, J. H. Chen, P. Farabaugh, A. H. Patel, V. Raman: Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27, 3912–22 (2008)
[57]R. Kalluri, R. A. Weinberg: The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420–8 (2009)
[58]T. Abbas, A. Dutta: p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9, 400–14 (2009)
[59]M. Sun, L. Song, T. Zhou, G. Y. Gillespie, R. S. Jope: The role of DDX3 in regulating Snail. Biochim Biophys Acta BBA - Mol Cell Res 1813, 438–47 (2011)
[60]X. Miao, Z. L. Yang, L. Xiong, Q. Zou, Y. Yuan, J. Li, L. Liang, M. Chen, S. Chen: Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int J Clin Exp Pathol 6, 179–90 (2013)
[61]J. Fukumura, E. Noguchi, T. Sekiguchi, T. Nishimoto: A temperature-sensitive mutant of the mammalian RNA helicase, DEAD-BOX X isoform, DBX, defective in the transition from G1 to S phase. J Biochem (Tokyo) 134, 71–82 (2003)
[62]M. C. Lai, W. C. Chang, S. Y. Shieh, W. Y. Tarn: DDX3 Regulates Cell Growth through Translational Control of Cyclin E1. Mol Cell Biol 30, 5444–53 (2010)
[63]Y. J. Choi, S. G. Lee: The DEAD-box RNA helicase DDX3 interacts with DDX5, co-localizes with it in the cytoplasm during the G2/M phase of the cycle, and affects its shuttling during mRNP export. J Cell Biochem 113, 985–96 (2012)
[64]Q. Li, P. Zhang, C. Zhang, Y. Wang, R. Wan, Y. Yang, X. Guo, R. Huo, M. Lin, Z. Zhou, J. Sha: DDX3X regulates cell survival and cell cycle during mouse early embryonic development. J Biomed Res 28, 282–91 (2014)
[65]H. H. Chen, H. I. Yu, W. C. Cho, W. Y. Tarn: DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene (2014)
[66]M. Sun, L. Song, Y. Li, T. Zhou, R. S. Jope: Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ 15, 1887–900 (2008)
[67]Y. Li, H. Wang, Z. Wang, S. Makhija, D. Buchsbaum, A. LoBuglio, R. Kimberly, T. Zhou: Inducible Resistance of Tumor Cells to Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Receptor 2–Mediated Apoptosis by Generation of a Blockade at the Death Domain Function. Cancer Res 66, 8520–8 (2006)
[68]P. G. Oliver, A. F. LoBuglio, T. Zhou, A. Forero, H. Kim, K. R. Zinn, G. Zhai, Y. Li, C. H. Lee, D. J. Buchsbaum: Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Res Treat 133, 417–26 (2012)
[69]C. M. Cruciat, C. Dolde, R. E. de Groot, B. Ohkawara, C. Reinhard, H. C. Korswagen, C. Niehrs: RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science 339, 1436–41 (2013)
[70]M. Botlagunta, B. Krishnamachary, F. Vesuna, P. T. Winnard Jr, G. M. Bol, A. H. Patel, V. Raman: Expression of DDX3 Is Directly Modulated by Hypoxia Inducible Factor-1 Alpha in Breast Epithelial Cells. PLoS ONE 6, e17563 (2011)
[71]G. M. Bol, V. Raman, P. van der Groep, J. F. Vermeulen, A. H. Patel, E. van der Wall, P. J. vandiest: Expression of the RNA Helicase DDX3 and the Hypoxia Response in Breast Cancer. PLoS ONE 8, e63548 (2013)
[72]P. C. Chang, C. W. Chi, G. Y. Chau, F. Y. Li, Y. H. Tsai, J. C. Wu, Y. H. Wu Lee: DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene 25, 1991–2003 (2005)
[73]C. H. Chao, C. M. Chen, P. L. Cheng, J. W. Shih, A. P. Tsou, Y. H. Wu Lee: DDX3, a DEAD Box RNA Helicase with Tumor Growth–Suppressive Property and Transcriptional Regulation Activity of the p21waf1/cip1 Promoter, Is a Candidate Tumor Suppressor. Cancer Res 66, 6579–88 (2006)
[74]D. W. Wu, W. S. Liu, J. Wang, C. Y. Chen, Y. W. Cheng, H. Lee: Reduced p21(WAF1/CIP1) via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer. Clin Cancer Res 17, 1895–905 (2011)
[75]D. W. Wu, M. C. Lee, J. Wang, C. Y. Chen, Y. W. Cheng, H. Lee: DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene 33, 1515–26 (2014)
[76]M. Sun, T. Zhou, E. Jonasch, R. S. Jope: DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim Biophys Acta BBA - Mol Cell Res 1833, 1489–97 (2013)
[77]C. H. Lee, S. H. Lin, S. F. Yang, S. M. Yang, M. K. Chen, H. Lee, J. L. Ko, C. J. Chen, K. T. Yeh: Low/negative expression of DDX3 might predict poor prognosis in non-smoker patients with oral cancer. Oral Dis 20, 76–83 (2014)
[78]R. Janknecht: Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am J Transl Res 2, 223–34 (2010)
[79]F. V. Fuller-Pace, H. C. Moore: RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 7, 239–51 (2011)
[80]T. Y. Dai, L. Cao, Z. C. Yang, Y. S. Li, L. Tan, X. Z. Ran, C. M. Shi: P68 RNA helicase as a molecular target for cancer therapy. J Exp Clin Cancer Res 33, 64 (2014)
[81]H. Wang, X. Gao, Y. Huang, J. Yang, Z. R. Liu: P68 RNA helicase is a nucleocytoplasmic shuttling protein. Cell Res 2009 19, 1388–400 (2009)
[82]M. Causevic, R. G. Hislop, N. M. Kernohan, F. A. Carey, R. A. Kay, R. J. Steele, F. V. Fuller-Pace: Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20, 7734–43 (2001)
[83]A. A. Cohen, N. Geva-Zatorsky, E. Eden, M. Frenkel-Morgenstern, I. Issaeva, A. Sigal, R. Milo, C. Cohen-Saidon, Y. Liron, Z. Kam, L. Cohen, T. Danon, N. Perzov, U. Alon: Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–6 (2008)
[84]S. Shin, K. L. Rossow, J. P. Grande, R. Janknecht: Involvement of RNA Helicases p68 and p72 in Colon Cancer. Cancer Res 67, 7572–8 (2007)
[85]S. M. Mooney, J. P. Grande, J. L. Salisbury, R. Janknecht: Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 49, 1–10 (2010)
[86]N. C. Wortham, E. Ahamed, S. M. Nicol, R. S. Thomas, M. Periyasamy, J. Jiang, A. M. Ochocka, S. Shousha, L. Huson, S. E. Bray, R. C. Coombes, S. Ali, F. V. Fuller-Pace: The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene 28, 4053–64 (2009)
[87]E. L. Clark, A. Coulson, C. Dalgliesh, P. Rajan, S. M. Nicol, S. Fleming, R. Heer, L. Gaughan, H. Y. Leung, D. J. Elliott, F. V. Fuller-Pace, C. N. Robson: The RNA Helicase p68 Is a Novel Androgen Receptor Coactivator Involved in Splicing and Is Overexpressed in Prostate Cancer. Cancer Res 68, 7938–46 (2008)
[88]R. Wang, Z. Jiao, R. Li, H. Yue, L. Chen: p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF-κB transcription factor p50. Neuro-Oncol 14, 1116–24 (2012)
[89]S. Lin, L. Tian, H. Shen, Y. Gu, J. L. Li, Z. Chen, X. Sun, M. J. You, L. Wu: DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene 32, 4845–53 (2013)
[90]S. J. Wang, C. Zhang, Y. You, C. M. Shi: Overexpression of RNA helicase p68 protein in cutaneous squamous cell carcinoma. Clin Exp Dermatol 37, 882–8 (2012)
[91]U. H. Beier, S. Maune, J. E. Meyer, T. Görögh: Overexpression of p68 mRNA in head and neck squamous cell carcinoma cells. Anticancer Res 26, 1941–6 (2006)
[92]B. Stone, M. Schummer, P. J. Paley, L. Thompson, J. Stewart, M. Ford, M. Crawford, N. Urban, K. O’Briant, B. H. Nelson: Serologic analysis of ovarian tumor antigens reveals a bias toward antigens encoded on 17q. Int J Cancer 104, 73–84 (2003)
[93]R. S. Felix, G. W. Colleoni, O. L. Caballero, M. Yamamoto, M. S. Almeida, V. C. Andrade, M. L. F. Chauffaille, W. A. da Silva Jr, M. D. Begnami, F. A. Soares, A. J. Simpson, M. A. Zago, A. L. Vettore: SAGE analysis highlights the importance of p53csv, ddx5, mapkapk2 and ranbp2 to multiple myeloma tumorigenesis. Cancer Lett 278, 41–8 (2009)
[94]L. Yang, C. Lin, S. Y. Sun, S. Zhao, Z. R. Liu: A double tyrosine phosphorylation of P68 RNA helicase confers resistance to TRAIL-induced apoptosis. Oncogene 26, 6082–92 (2007)
[95]L. Yang, C. Lin, Z. R. Liu: Phosphorylations of DEAD Box p68 RNA Helicase Are Associated with Cancer Development and Cell Proliferation. Mol Cancer Res 3, 355–63 (2005)
[96]S. Ropero, M. Esteller: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1, 19–25(2007).
[97]N. Vo, R. H. Goodman: CREB-binding Protein and p300 in Transcriptional Regulation. J Biol Chem 276, 13505–8(2001).
[98]S. Shin, R. Janknecht: Concerted activation of the Mdm2 promoter by p72 RNA helicase and the coactivators p300 and P/CAF. J Cell Biochem 101, 1252–65 (2007)
[99]K. L. Rossow, R. Janknecht: Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22, 151–6 (2003)
[100]B. J. Wilson, G. J. Bates, S. M. Nicol, D. J. Gregory, N. D. Perkins, F. V. Fuller-Pace: The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5, 11 (2004)
[101]G. Caretti, R. L. Schiltz, F. J. Dilworth, M. Di Padova, P. Zhao, V. Ogryzko, F. V. Fuller-Pace, E. P. Hoffman, S. J. Tapscott, V. Sartorelli: The RNA Helicases p68/p72 and the Noncoding RNA SRA Are Coregulators of MyoD and Skeletal Muscle Differentiation. Dev Cell 11, 547–60 (2006)
[102]E. D. Jensen, L. Niu, G. Caretti, S. M. Nicol, N. Teplyuk, G. S. Stein, V. Sartorelli, A. J. Van Wijnen, F. V. Fuller-Pace, J. J. Westendorf: p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. J Cell Biochem 103, 1438–51 (2008)
[103]R. T. Moon, A. D. Kohn, G. V. D. Ferrari, A. Kaykas: WNT and β-catenin signaling: diseases and therapies. Nat Rev Genet 5, 691–701 (2004)
[104]L. Yang, C. Lin, Z. R. Liu: P68 RNA Helicase Mediates PDGF-Induced Epithelial Mesenchymal Transition by Displacing Axin from β-Catenin. Cell 127, 139–55 (2006)
[105]L. Yang, C. Lin, S. Zhao, H. Wang, Z. R. Liu: Phosphorylation of p68 RNA Helicase Plays a Role in Platelet-derived Growth Factor-induced Cell Proliferation by Up-regulating Cyclin D1 and c-Myc Expression. J Biol Chem 282, 16811–9 (2007)
[106]J. A. Crowell, V. E. Steele, J. R. Fay: Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther 6, 2139–48 (2007)
[107]C. C. Pritchard, W. M. Grady: Colorectal cancer molecular biology moves into clinical practice. Gut 60, 116–29 (2011)
[108]M. D. Bullock, A. Bruce, R. Sreekumar, N. Curtis, T. Cheung, I. Reading, J. N. Primrose, C. Ottensmeier, G. K. Packham, G. Thomas, A. H. Mirnezami: FOXO3 expression during colorectal cancer progression: biomarker potential reflects a tumour suppressor role. Br J Cancer 109, 387–94 (2013)
[109]M. Sarkar, V. Khare, K. K. N. Guturi, N. Das N, M. K. Ghosh: The DEAD box protein p68: a crucial regulator of AKT/FOXO3a signaling axis in oncogenesis. Oncogene (2015)
[110]S. Saha Roy, R. K. Vadlamudi: Role of Estrogen Receptor Signaling in Breast Cancer Metastasis. Int J Breast Cancer 2012, e654698 (2011)
[111]N. Normanno, M. Di Maio, E. De Maio, A. De Luca, A. de Matteis, A. Giordano, F. Perrone; NCI-Naple Breast Cancer Group: Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12, 721–47 (2005)
[112]M. Watanabe, J. Yanagisawa, H. Kitagawa, K. Takeyama, S. Ogawa, Y. Arao, M. Suzawa, Y. Kobayashi, T. Yano, H. Yoshikawa, Y. Masuhiro, S. Kato: A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 20, 1341–52 (2001)
[113]R. Métivier, G. Penot, M. R. Hübner, G. Reid, H. Brand, M. Kos, F. Gannon: Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–63 (2003)
[114]M. Mancini, A. Toker A: NFAT Proteins: Emerging Roles in Cancer Progression. Nat Rev Cancer 9, 810–20 (2009)
[115]S. Germann, L. Gratadou, E. Zonta, E. Dardenne, B. Gaudineau, M. Fougère, S. Samaan, M. Dutertre, S. Jauliac, D. Auboeuf: Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene 31, 4536–49 (2012)
[116]E. Dardenne, S. Pierredon, K. Driouch, L. Gratadou, M. Lacroix-Triki, M. P. Espinoza, E. Zonta, S. Germann, H. Mortada, J. P. Villemin, M. Dutertre, R. Lidereau, S. Vagner, D. Auboeuf: Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 19, 1139–46 (2012)
[117]A. Mazurek, W. Luo, A. Krasnitz, J. Hicks, R. S. Powers, B. Stillman: DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells. Cancer Discov 2, 812–25 (2012)
[118]K. K. N. Guturi, M. Sarkar, A. Bhowmik, N. Das, M. K. Ghosh: DEAD-box protein p68 is regulated by β-catenin/transcription factor 4 to maintain a positive feedback loop in control of breast cancer progression. Breast Cancer Res 16, 496 (2014)
[119]D. Wang, J. Huang, Z. Hu: RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol Cell Proteomics 11, M111.0.11932 (2012)
[120]R. D. Hinrichsen: Calcium and calmodulin in the control of cellular behavior and motility. Biochim Biophys Acta BBA - Rev Cancer 1155, 277–93 (1993)
[121]H. Wang, X. Gao, J. J. Yang, Z. R. Liu: Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis. Nat Commun 4, 1354 (2013)
[122]M. Nieto, S. Finn, M. Loda, W. C. Hahn: PROSTATE CANCER: Re-focusing on Androgen Receptor Signaling. Int J Biochem Cell Biol 39, 1562–8 (2007)
[123]E. L. Clark, C. Hadjimichael, R. Temperley, A. Barnard, F. V. Fuller-Pace, C. N. Robson: p68/DdX5 Supports β-Catenin & RNAP II during Androgen Receptor Mediated Transcription in Prostate Cancer. PLoS ONE 8, e54150 (2013)
[124]S. Samaan, L. C. Tranchevent, E. Dardenne, M. P. Espinoza, E. Zonta, S. Germann, L. Gratadou, M. Dutertre, D. Auboeuf: The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res 42, 2197-207 (2014)
[125]G. P. Atkinson, S. E. Nozell, E. T. Benveniste: NF-κB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 10, 575-86 (2010)
[126]V. Tosello, A. A. Ferrando: The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 4, 199–210 (2013)
[127]R. Kopan, M. X. G. Ilagan: The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 137, 216–33 (2009)
[128]C. Jung, G. Mittler, F. Oswald, T. Borggrefe: RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim Biophys Acta BBA - Mol Cell Res 1833, 1180–9 (2013)
[129]K. Suzuki, H. Matsubara: Recent Advances in p53 Research and Cancer Treatment. BioMed Res Int 2011, e978312 (2011)
[130]K. T. Bieging, S. S. Mello, L. D. Attardi: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14, 359–70 (2014)
[131]G. J. Bates, S. M. Nicol, B. J. Wilson, A. M. Jacobs, J. C. Bourdon, J. Wardrop, D. J. Gregory, D. P. Lane, N. D. Perkins, F. V. Fuller-Pace: The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24, 543–53 (2005)
[132]S. M. Nicol, S. E. Bray, H. D. Black, S. A. Lorimore, E. G. Wright, D. P. Lane, D. W. Meek, P. J. Coates, F. V. Fuller-Pace: The RNA helicase p68 (DDX5) is selectively required for the induction of p53-dependent p21 expression and cell-cycle arrest after DNA damage. Oncogene 32, 3461–9 (2013)
[133]H. Dey, Z. R. Liu: Phosphorylation of P68 RNA Helicase by P38 MAP kinase contributes to colon cancer cells apoptosis induced by oxaliplatin. BMC Cell Biol 13, 27 (2012)
[134]M. Wagner, R. Rid, C. J. Maier, R. H. Maier, M. Laimer, H. Hintner, J. W. Bauer, K. Onder: DDX5 is a multifunctional co-activator of steroid hormone receptors. Mol Cell Endocrinol 361, 80–91 (2012)
[135]S. M. Mooney, A. Goel, A. B. D’Assoro, J. L. Salisbury, R. Janknecht: Pleiotropic Effects of p300-mediated Acetylation on p68 and p72 RNA Helicase. J Biol Chem 285, 30443–52 (2010)
[136]A. M. Jacobs, S. M. Nicol, R. G. Hislop, E. G. Jaffray, R. T. Hay, F. V. Fuller-Pace: SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 26, 5866–76 (2007)
[137]Y. Akao, M. Seto, K. Yamamoto, S. Iida, S. Nakazawa, J. Inazawa, T. Abe, T. Takahashi, R. Ueda: The RCK gene associated with t(11;14) translocation is distinct from the MLL/ALL-1 gene with t(4;11) and t(11;19) translocations. Cancer Res 52, 6083–7 (1992)
[138]D. Lu, J.J. Yunis: Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. Nucleic Acids Res 20, 1967–72 (1992)
[139]Y. Akao, O. Marukawa, H. Morikawa, K. Nakao, M. Kamei, T. Hachiya, Y. Tsujimoto: The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res 55, 3444–9 (1995)
[140]K. Miyaji, Y. Nakagawa, K. Matsumoto, H. Yoshida, H. Morikawa, Y. Hongou, Y. Arisaka, H. Kojima, T. Inoue, I. Hirata, K. Katsu, Y. Akao: Overexpression of a DEAD box/RNA helicase protein, rck/p54, in human hepatocytes from patients with hepatitis C virus-related chronic hepatitis and its implication in hepatocellular carcinogenesis. J Viral Hepat 10, 241–8 (2003)
[141]Y. Nakagawa, H. Morikawa, I. Hirata, M. Shiozaki, A. Matsumoto, K. Maemura, T. Nishikawa, M. Niki, N. Tanigawa, M. Ikegami, K. Katsu, Y. Akao: Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. Br J Cancer 80, 914–7 (1999)
[142]Hashimoto K, Nakagawa Y, Morikawa H, Niki M, Egashira Y, Hirata I, K. Katsu, Y. Akao: Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines. Carcinogenesis 22, 1965–70 (2001)
[143]A. Iio, T. Takagi, K. Miki, T. Naoe, A. Nakayama, Y. Akao: DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta 1829, 1102–10 (2013)
[144]F. Lin, R. Wang, J. J. Shen, X. Wang, P. Gao, K. Dong, H. Z. Zhang: Knockdown of RCK/p54 expression by RNAi inhibits proliferation of human colorectal cancer cells in vitro and in vivo. Cancer Biol Ther 7, 1669–76 (2008)
[145]M. Bergkessel, J. C. Reese: An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167, 21–33 (2004)
[146]Y. Akao, K. Matsumoto, K. Ohguchi, Y. Nakagawa, H. Yoshida: Human DEAD-box/RNA unwindase rck/p54 contributes to maintenance of cell growth by affecting cell cycle in cultured cells. Int J Oncol 29, 41–8 (2006)
[147]Y. Akao, H. Mizoguchi, N. Ohishi, K. Yagi: Growth inhibition by overexpression of human DEAD box protein rck/p54 in cells of a guinea pig cell line. FEBS Lett 429, 279–83 (1998)
[148]S. de Vries, I. S. Naarmann-de Vries, H. Urlaub, H. Lue, J. Bernhagen, D. H. Ostareck, A. Ostareck-Lederer: Identification of DEAD-box RNA Helicase 6 (DDX6) as a Cellular Modulator of Vascular Endothelial Growth Factor Expression under Hypoxia. J Biol Chem 288, 5815–27 (2013)
[149]J. Coller, R. Parker: General Translational Repression by Activators of mRNA Decapping. Cell 122, 875–86 (2005)
[150]M. Abdelhaleem: Do human RNA helicases have a role in cancer? Biochim Biophys Acta BBA - Rev Cancer 1704, 37–46 (2004)
[151]C. Jin, H. Rajabi, C. M. Rodrigo, J. A. Porco, D. Kufe D: Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein. Oncogene 32, 2179–88 (2013)
[152]R. Cencic, F. Robert, G. Galicia-Vázquez, A. Malina, K. Ravindar, R. Somaiah R, P. Pierre, J. Tanaka, P. Deslongchamps, J. Pelletier: Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A. Blood Cancer J 3, e128 (2013)
[153]B. P. Tsai, J. Jimenez, S. Lim, K. D. Fitzgerald, M. Zhang, C. T. Chuah, H. Axelrod, L. Wilson, S. T. Ong, B. L. Semler, M. L. Waterman: A novel Bcr-Abl–mTOR–eIF4A axis regulates IRES-mediated translation of LEF-1. Open Biol 4, 140180 (2014)
[154]T. Tsumuraya, C. Ishikawa, Y. Machijima, S. Nakachi, M. Senba, J. Tanaka, N. Mori: Effects of hippuristanol, an inhibitor of eIF4A, on adult T-cell leukemia. Biochem Pharmacol 81, 713–22 (2011)
[155]A. L. Wolfe, K. Singh, Y. Zhong, P. Drewe, V. K. Rajasekhar, V. R. Sanghvi, K. J. Mavrakis, M. Jiang, J. E. Roderick, J. Van der Meulen, J. H. Schatz, C. M. Rodrigo, C. Zhao, P. Rondou, E. de Stanchina, J. Teruya-Feldstein, M. A. Kelliher, F. Speleman, J. A. Porco Jr, J. Pelletier, G. Rätsch, H. G. Wendel: RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014)
[156]E. R. Yassin, A. M. Abdul-Nabi, A. Takeda, N. R. Yaseen: Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: Role of a conserved helicase motif. Leuk Off J Leuk Soc Am Leuk Res Fund UK 24, 1001–11 (2010)
[157]X. Jiao, S. D. Hooper, T. Djureinovic, C. Larsson, F. Wärnberg, C. Tellgren-Roth, J. Botling, T. Sjöblom: Gene rearrangements in hormone receptor negative breast cancers revealed by mate pair sequencing. BMC Genomics 14, 165 (2013)
[158]C. Bhattacharya, X. Wang, D. Becker: The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced melanomas. Mol Cancer 11, 82 (2012)
[159]F. V. Fuller-Pace: DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34, 4206–15 (2006)
[160]Q. Cai, Y. Guo, B. Xiao, S. Banerjee, A. Saha, J. Lu, T. Glisovic, E. S. Robertson: Epstein-Barr Virus Nuclear Antigen 3C Stabilizes Gemin3 to Block p53-mediated Apoptosis. PLoS Pathog 7, e1002418 (2011)
[161]E. M. Shin, H. S. Hay, M. H. Lee, J. N. Goh, T. Z. Tan, Y. P. Sen, S. W. Lim, E. M. Yousef, H. T. Ong, A. A. Thike, X. Kong, Z. Wu, E. Mendoz, W. Sun, M. Salto-Tellez, C. T. Lim, P. E. Lobie, Y. P. Lim, C. T. Yap, Q. Zeng, G. Sethi, M. B. Lee, P. Tan, B. C. Goh, L. D. Miller, J. P. Thiery, T. Zhu, L. Gaboury, P. H. Tan, K. M. Hui, G. W. Yip, S. Miyamoto, A. P. Kumar, V. Tergaonkar: DEAD-box helicase DP103 defines metastatic potential of human breast cancers. J Clin Invest 124, 3807–24 (2014)
[162]A. Takata, M. Otsuka, T. Yoshikawa, T. Kishikawa, Y. Hikiba, S. Obi, T. Goto, Y. J. Kang, S. Maeda, H. Yoshida, M. Omata, H. Asahara, K. Koike: MicroRNA-140 acts as a liver tumor suppressor by controlling NF-κB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression. Hepatol Baltim Md 57, 162–70 (2013)
[163]A. Takata, M. Otsuka, T. Yoshikawa, T. Kishikawa, Y. Kudo, T. Goto, H. Yoshida, K. Koike: AmiRNA machinery component DDX20 controls NF-κB via microRNA-140 function. Biochem Biophys Res Commun 420, 564–9 (2012)
[164]H. L. Ke, M. Chen, Y. Ye, M. A. Hildebrandt, W. J. Wu, H. Wei, M. Huang, D. W. Chang, C. P. Dinney, X. Wu: Genetic variations in micro-RNA biogenesis genes and clinical outcomes in non-muscle-invasive bladder cancer. Carcinogenesis 34, 1006–11 (2013)
[165]E. Calo, R. A. Flynn, L. Martin, R. C. Spitale, H. Y. Chang, J. Wysocka: RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–53 (2015)
[166]T. H. Holmström, A. Mialon, M. Kallio, Y. Nymalm, L. Mannermaa, T. Holm, H. Johansson, E. Black, D. Gillespie, T. A. Salminen, U. Langel, B. C. Valdez, J. Westermarck: C-jun supports ribosomal RNA processing and nucleolar localization of RNA helicase DDX21. J Biol Chem 283, 7046-53 (2008)
[167]J. Westermarck, C. Weiss, R. Saffrich, J. Kast, A. M. Musti, M. Wessely, W. Ansorge, B. Séraphin, M. Wilm, B. C. Valdez, D. Bohmann: The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription. EMBO J 21, 451–60 (2002)
[168]Y. Zhang, K. C. Baysac, L. F. Yee, A. J. Saporita, J. D. Weber: Elevated DDX21 regulates c-Jun activity and rRNA processing in human breast cancers. Breast Cancer Res 16, 449 (2014)
[169]D. Cimino, L. Fuso, C. Sfiligoi, N. Biglia, R. Ponzone, F. Maggiorotto, G. Russo, L. Cicatiello, A. Weisz, D. Taverna, P. Sismondi, M. De Bortoli: Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 123, 1327–38 (2008)
[170]I. Bonzheim, M. Irmler, M. Klier-Richter, J. Steinhilber, N. Anastasov, S. Schäfer, P. Adam, J. Beckers, M. Raffeld, F. Fend, L. Quintanilla-Martinez: Identification of C/EBPβ Target Genes in ALK+ Anaplastic Large Cell Lymphoma (ALCL) by Gene Expression Profiling and Chromatin Immunoprecipitation. PLoS ONE 8, e64544 (2013)
[171]Y. Jung, S. Lee, H. S. Choi, S. N. Kim, E. Lee, Y. Shin, J. Seo, B. Kim, Y. Jung, W. K. Kim, H. K. Chun, W. Y. Lee, J. Kim: Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data. Clin Cancer Res 17, 700–9 (2011)
[172]T. Sugiura, Y. Nagano, Y. Noguchi: DDX39, upregulated in lung squamous cell cancer, displays RNA helicase activities and promotes cancer cell growth. Cancer Biol Ther 6, 957–64 (2007)
[173]D. Kubota, T. Okubo, T. Saito, Y. Suehara, A. Yoshida, K. Kikuta, H. Tsuda, H. Katai, Y. Shimada, K. Kaneko, A. Kawai, T. Kondo: Validation study on pfetin and ATP-dependent RNA helicase DDX39 as prognostic biomarkers in gastrointestinal stromal tumour. Jpn J Clin Oncol 42, 730–41 (2012)
[174]K. Kikuta, D. Kubota, T. Saito, H. Orita, A. Yoshida, H. Tsuda, Y. Suehara, H. Katai, Y. Shimada, Y. Toyama, K. Sato, T. Yao, K. Kaneko, Y. Beppu, Y. Murakami, A. Kawai, T. Kondo: Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor. J Proteomics 75, 1089–98 (2012)
[175]Y. Kuramitsu, W. Tominaga, B. Baron, K. Tokuda, Y. Wang, T. Kitagawa, K. Nakamura: Up-regulation of DDX39 in human malignant pleural mesothelioma cell lines compared to normal pleural mesothelial cells. Anticancer Res 33, 2557–60 (2013)
[176]Y. Kuramitsu, S. Suenaga, Y. Wang, K. Tokuda, T. Kitagawa, T. Tanaka, J. Akada, S. Maehara, Y. Maehara, K. Nakamura: Up-regulation of DDX39 in human pancreatic cancer cells with acquired gemcitabine resistance compared to gemcitabine-sensitive parental cells. Anticancer Res 33, 3133–6 (2013)
[177]M. Kato, M. Wei, S. Yamano, A. Kakehashi, S. Tamada, T. Nakatani, H. Wanibuchi: DDX39 acts as a suppressor of invasion for bladder cancer. Cancer Sci 103, 1363–9 (2012)
[178]H. H. Yoo, I. K. Chung: Requirement of DDX39 DEAD box RNA helicase for genome integrity and telomere protection. Aging Cell 10, 557–71 (2011)
[179]M. G. Mathieu, A. J. Linley, S. P. Reeder, C. Badoual, E. Tartour, R. C. Rees, S. E. McArdle: HAGE, a cancer/testis antigen expressed at the protein level in a variety of cancers. Cancer Immun 10, 2 (2010)
[180]G. Ambrosini, R. Khanin, R. D. Carvajal, G. K. Schwartz: Overexpression of DDX43 mediates MEK inhibitor resistance through RAS Upregulation in uveal melanoma cells. Mol Cancer Ther 13, 2073–80 (2014)
[181]T. M. Abdel-Fatah, S. E. McArdle, C. Johnson, P. M. Moseley, G. R. Ball, A. G. Pockley, I. O. Ellis, R. C. Rees, S. Y. Chan: HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer. Br J Cancer 110, 2450–61 (2014)
[182]Y. Akiyama, M. Komiyama, H. Miyata, M. Yagoto, T. Ashizawa, A. Iizuka, C. Oshita, A. Kume, M. Nogami, I. Ito, R. Watanabe, T. Sugino, K. Mitsuya, N. Hayashi, Y. Nakasu, K. Yamaguchi: Novel cancer-testis antigen expression on glioma cell lines derived from high-grade glioma patients. Oncol Rep 31, 1683–90 (2014)
[183]J. Lin, Q. Chen, J. Yang, J. Qian, Z. Deng, W. Qian, X. X. Chen, J. C. Ma, D. S. Xiong, Y. J. Ma, C. An, C. Y. Tang: DDX43 promoter is frequently hypomethylated and may predict a favorable outcome in acute myeloid leukemia. Leuk Res 38, 601–7 (2014)
[184]A. J. Linley, M. G. Mathieu, A. K. Miles, R. C. Rees, S. E. McArdle, T. Regad: The helicase HAGE expressed by malignant melanoma-initiating cells is required for tumor cell proliferation in vivo. J Biol Chem 287, 13633–43 (2012)
[185]M. G. Mathieu, A. K. Miles, M. Ahmad, M. E. Buczek, A. G. Pockley, R. C. Rees, T. Regad: The helicase HAGE prevents interferon-alpha-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1. Cell Death Dis 5:e1061 (2014)
[186]S. Lee, M. Baek, H. Yang, Y. J. Bang, W. H. Kim, J. H. Ha, D. K. Kim, D. I. Jeoung: Identification of genes differentially expressed between gastric cancers and normal gastric mucosa with cDNA microarrays. Cancer Lett 184, 197–206 (2002)
[187]Q. Xia, X. T. Kong, G. A. Zhang, X. J. Hou, H. Qiang, R. Q. Zhong: Proteomics-based identification of DEAD-box protein 48 as a novel autoantigen, a prospective serum marker for pancreatic cancer. Biochem Biophys Res Commun 330, 526–32 (2005)
[188]K. Hellman, A. A. Alaiya, S. Becker, M. Lomnytska, K. Schedvins, W. Steinberg, A. C. Hellström, S. Andersson, U. Hellman, G Auer: Differential tissue-specific protein markers of vaginal carcinoma. Br J Cancer 100, 1303–14 (2009)
[189]E. Por, H. J. Byun, E. J. Lee, J. H. Lim, S. Y. Jung, I. Park, Y. M. Kim, D. Jeoung, H. Lee: The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1-and E2F-dependent manner. J Biol Chem 285, 14475–85 (2010)
[190]Y. Kim, H. Park, D. Park, Y. S. Lee, J. Choe, J. H. Hahn: Cancer/Testis Antigen CAGE Exerts Negative Regulation on p53 Expression through HDAC2 and Confers Resistance to Anti-cancer Drugs. J Biol Chem 285, 25957–68 (2010)
[191]Y. Kim, D. Park, H. Kim, M. Choi, H. Lee, Y. S. Lee, J. Choe, Y. M. Kim, D. Jeoung: miR-200b and Cancer/Testis Antigen CAGE Form a Feedback Loop to Regulate the Invasion and Tumorigenic and Angiogenic Responses of a Cancer Cell Line to Microtubule-targeting Drugs. J Biol Chem 288, 36502–18 (2013)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
DEAD box RNA helicases: crucial regulators of gene expression and oncogenesis
1 Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S.C. Mullick Road, Kolkata-700032, India
Abstract
DEAD box protein family of RNA helicases are vital players of RNA metabolism, and constitute the largest family of RNA helicases. Members of this family share nine conserved motifs including an Asp-Glu-Ala-Asp motif, giving this family its characteristic name as DEAD box RNA helicases. These conserved motifs confer RNA binding and RNA unwinding properties. Besides functioning in RNA metabolism, emerging evidences suggests several DEAD box RNA helicases to possess potential roles in regulating gene expression by acting as a transcriptional co-activator. Many of them are deregulated in cancers, and are implicated in possessing oncogenic potential. On the contrary, each of them also possesses tumor suppressive property in a context dependent manner. In this review, we discuss the mechanistic insights of gene regulation by DEAD box RNA helicases, and their significance in cancers.
Keywords
- RNA helicase
- DEAD box proteins
- Gene expression
- Oncogenesis
- Review
References
- [1] D. Hanahan, R. A. Weinberg: Hallmarks of cancer: the next generation. Cell 144, 646–74 (2011)
- [2] T. I. Lee, R. A. Young: Transcriptional Regulation and its Misregulation in Disease. Cell 152, 1237–51 (2013)
- [3] E. Silverman, G. Edwalds-Gilbert, R. J. Lin: DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312, 1–16 (2003)
- [4] J. M. Caruthers, D. B. McKay: Helicase structure and mechanism. Curr Opin Struct Biol 12, 123–33 (2002)
- [5] N. K. Tanner, P. Linder P: DExD/H Box RNA Helicases. Mol Cell 8, 251–62 (2001)
- [6] O. Cordin, J. Banroques, N. K. Tanner, P. Linder: The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006)
- [7] P. Linder, E. Jankowsky: From unwinding to clamping — the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12, 505–16 (2011)
- [8] P. Linder, P. F. Lasko, M. Ashburner, P. Leroy, P. J. Nielsen, K. Nishi, J. Schnier, P. P. Slonimski: Birth of the D-E-A-D box. Nature 337, 121–2 (1989)
- [9] P. Linder, F. V. Fuller-Pace: Looking back on the birth of DEAD-box RNA helicases.Biochim Biophys Acta 1829, 750–5 (2013)
- [10] J. Banroques, O. Cordin, M. Doère, P. Linder, N. K. Tanner: A conserved phenylalanine of motif IV in superfamily 2 helicases is required for cooperative, ATP-dependent binding of RNA substrates in DEAD-box proteins. Mol Cell Biol 28, 3359–71 (2008)
- [11] O. Cordin, N. K. Tanner, M. Doère, P. Linder, J. Banroques: The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J 23, 2478–87 (2004)
- [12] N. K. Tanner: The Newly Identified Q Motif of DEAD Box Heicases IS Involved in Adenine Recognition. Cell Cycle 2, 18–9 (2003)
- [13] E. Jankowsky: RNA Helicases at work: binding and rearranging. Trends Biochem Sci 36, 19–29 (2011)
- [14] I. Jarmoskaite, R. Russell: DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA 2, 135–52 (2011)
- [15] E. Jankowsky, A. Putnam: Duplex unwinding with DEAD-box proteins. Methods Mol Biol Clifton NJ 587, 245–64 (2010)
- [16] A. A. Putnam, E. Jankowsky: DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta BBA - Gene Regul Mech 1829, 884–93 (2013)
- [17] S. Rocak, P. Linder: DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5, 232–41 (2004)
- [18] Y. T. Tu, A. Barrientos: The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules and Functions in Mitoribosome Assembly. Cell Rep 10, 854–64 (2015)
- [19] R. Parker, U. Sheth U: P Bodies and the Control of mRNA Translation and Degradation. Mol Cell 25, 635–46 (2007)
- [20] D. H. Ostareck, I. S. Naarmann-de Vries, A. Ostareck-Lederer. DDX6 and its orthologs as modulators of cellular and viral RNA expression. Wiley Interdiscip Rev RNA 5, 659–78 (2014)
- [21] A. Weston, J. Sommerville: Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 34, 3082–94 (2006)
- [22] S. Kervestin, A. Jacobson A: NMD: a multifaceted response to premature translational termination. Nat Rev Mol Cell Biol 13, 700–12 (2012)
- [23] V. Geißler, S. Altmeyer, B. Stein, H. Uhlmann-Schiffler, H. Stahl: The RNA helicase Ddx5/p68 binds to hUpf3 and enhances NMD of Ddx17/p72 and Smg5 mRNA. Nucleic Acids Res 41, 7875–88 (2013)
- [24] T. H. Coady, C. L. Lorson: SMN in spinal muscular atrophy and snRNP biogenesis. Wiley Interdiscip Rev RNA 2, 546–64 (2011)
- [25] L. C. Amler, J. Schürmann, M. Schwab: The DDX1 gene maps within 400 kbp 5’ to MYCN and is frequently coamplified in human neuroblastoma. Genes Chromosomes Cancer 15, 134–7 (1996)
- [26] R. Godbout, J. Squire: Amplification of a DEAD box protein gene in retinoblastoma cell lines. Proc Natl Acad Sci 90, 7578–82 (1993)
- [27] R. Godbout, L. Li, R. Z. Liu, K. Roy: Role of DEAD box 1 in retinoblastoma and neuroblastoma. Future Oncol Lond Engl 3, 575–87 (2007)
- [28] R. E. George, R. Kenyon, A. G. McGuckin, N. Kohl, P. Kogner, H. Christiansen, A. D. Pearson, J. Lunec: Analysis of candidate gene co-amplification with MYCN in neuroblastoma. Eur J Cancer Oxf Engl 33, 2037–42 (1990)
- [29] C. F. Manohar, H. R. Salwen, G. M. Brodeur, S. L. Cohn: Co-amplification and concomitant high levels of expression of a DEAD box gene with MYCN in human neuroblastoma. Genes Chromosomes Cancer 14, 196–203 (1995)
- [30] J. A. Squire, P. S. Thorner, S. Weitzman, J. D. Maggi, P. Dirks, J. Doyle, M. Hale, R. Godbout: Co-amplification of MYCN and a DEAD box gene (DDX1) in primary neuroblastoma. Oncogene 10, 1417–22 (1995)
- [31] R. Noguera, E. Villamón, A. Berbegall, I. Machado, F. Giner, I. Tadeo, S. Navarro, A. Llombart-Bosch: Gain of MYCN region in a Wilms tumor-derived xenotransplanted cell line. Diagn Mol Pathol Am J Surg Pathol Part B 19, 33–9 (2010)
- [32] F. G. Barr, F. Duan, L. M. Smith, D. Gustafson, M. Pitts, S. Hammond, J. M. Gastier-Foster: Genomic and clinical analyses of 2p24 and 12q13-q14 amplification in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Genes Chromosomes Cancer 48, 661–72 (2009)
- [33] D. Scott, J. Elsden, A. Pearson, J. Lunec: Genes co-amplified with MYCN in neuroblastoma: silent passengers or co-determinants of phenotype? Cancer Lett 197, 81–6 (2003)
- [34] R. E. George, R. M. Kenyon, A. G. McGuckin, A. J. Malcolm, A.D. Pearson, J. Lunec: Investigation of co-amplification of the candidate genes ornithine decarboxylase, ribonucleotide reductase, syndecan-1 and a DEAD box gene, DDX1, with N-myc in neuroblastoma. United Kingdom Children’s Cancer Study Group. Oncogene 12, 1583–7 (1996)
- [35] D. R. Germain, K. Graham, D. D. Glubrecht, J. C. Hugh, J. R. Mackey, R. Godbout: DEAD box 1: a novel and independent prognostic marker for early recurrence in breast cancer.Breast Cancer Res Treat 127, 53–63 (2011)
- [36] A. Weber, P. Imisch, E. Bergmann, H. Christiansen: Coamplification of DDX1 Correlates With an Improved Survival Probability in Children With MYCN-Amplified Human Neuroblastoma. J Clin Oncol 22, 2681–90 (2004)
- [37] N. K. Taunk, S. Goyal, H. Wu, M. S. Moran, S. Chen, B. G. Haffty: DEAD box 1 (DDX1) expression predicts for local control and overall survival in early stage, node-negative breast cancer. Cancer 118, 888–98 (2012)
- [38] K. D. Preter, F. Speleman, V. Combaret, J. Lunec, J. Board, A. Pearson, A. D. Paepe, N. V. Roy, G. Laureys, J. Vandesompele: No Evidence for Correlation of DDX1 Gene Amplification With Improved Survival Probability in Patients With MYCN-Amplified Neuroblastomas. J Clin Oncol 23, 3167–8 (2005)
- [39] K. D. Preter, F. Speleman, V. Combaret, J. Lunec, G. Laureys, B. H. Eussen, N. Francotte, J. Board, A. D. Pearson, A. D. Paepe, N. V. Roy, J. Vandesompele: Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay. Mod Pathol Off J U S Can Acad Pathol Inc 15, 159–66 (2002)
- [40] S. Kaneko, M. Ohira, Y. Nakamura, E. Isogai, A. Nakagawara, M. Kaneko: Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma.J Cancer Res Clin Oncol 133, 185–92 (2007)
- [41] D. R. de Souza, S. S. Sanabani, A. C. de Souza, V. Filho Odone, S. Epelman, I. Bendit: Prognostic impact of MYCN, DDX1, TrkA, and TrkC gene transcripts expression in neuroblastoma. Pediatr Blood Cancer 56, 749–56 (2011)
- [42] F. V. Fuller-Pace: DEAD box RNA helicase functions in cancer. RNA Biol 10, 121–32 (2013)
- [43] H. C. Chen, W. C. Lin, Y. G. Tsay, S. C. Lee, C. J. Chang: An RNA helicase, DDX1, interacting with poly(A) RNA and heterogeneous nuclear ribonucleoprotein K. J Biol Chem 277, 40403–9 (2002)
- [44] M. Lynch, L. Chen, M. J. Ravitz, S. Mehtani, K. Korenblat, M. J. Pazin, E. V. Schmidt: hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 25, 6436–53 (2005)
- [45] A. Inoue, S. Y. Sawata, K. Taira, R. Wadhwa: Loss-of-function screening by randomized intracellular antibodies: identification of hnRNP-K as a potential target for metastasis. Proc Natl Acad Sci U S A 104, 8983–8 (2007)
- [46] K. Bomsztyk, I. Van Seuningen, H. Suzuki, O. Denisenko, J. Ostrowski: Diverse molecular interactions of the hnRNP K protein. FEBS Lett 403, 113–5 (1997)
- [47] A. Matta, K. W. Siu, R. Ralhan: 14-3-3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets 16, 515–23 (2012)
- [48] K. Tanaka, S. Okamoto, Y. Ishikawa, H. Tamura, T. Hara: DDX1 is required for testicular tumorigenesis, partially through the transcriptional activation of 12p stem cell genes. Oncogene 28, 2142–51 (2009)
- [49] L. Li, E. A. Monckton, R. Godbout: A role for DEAD box 1 at DNA double-strand breaks. Mol Cell Biol 28, 6413–25 (2008)
- [50] C. Han, Y. Liu, G. Wan, H. J. Choi, L. Zhao, C. Ivan, X. He, A. K. Sood, X. Zhang, X. Lu: The RNA-binding protein DDX1 promotes primary microRNA maturation and inhibits ovarian tumor progression. Cell Rep 8, 1447–60 (2014)
- [51] Y. Ariumi: Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 5, 423 (2014)
- [52] F. Robert, J. Pelletier: Perturbations of RNA helicases in cancer. Wiley Interdiscip Rev RNA 4, 333–49 (2013)
- [53] T. J. Pugh, S. D. Weeraratne, T. C. Archer, D. A. Pomeranz Krummel, D. Auclair, J. Bochicchio, M. O. Carneiro, S. L. Carter, K. Cibulskis, R. L. Erlich, H. Greulich, M. S. Lawrence, N. J. Lennon, A. McKenna, J. Meldrim, A. H. Ramos, M. G. Ross, C. Russ, E. Shefler, A. Sivachenko, B. Sogoloff, P. Stojanov, P. Tamayo, J. P. Mesirov, V. Amani: Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106–10 (2012)
- [54] W. Y. Tarn, T. H. Chang: The current understanding of Ded1p/DDX3 homologs from yeast to human. RNA Biol 6, 17–20 (2009)
- [55] J. S. Huang, C. C. Chao, T. L. Su, S. H. Yeh, D. S. Chen, C. T. Chen, P. J. Chen, Y. S. Jou: Diverse cellular transformation capability of overexpressed genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 315, 950–8 (2004)
- [56] M. Botlagunta, F. Vesuna, Y. Mironchik, A. Raman, A. Lisok, P. Winnard, S. Mukadam, P. Van Diest, J. H. Chen, P. Farabaugh, A. H. Patel, V. Raman: Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27, 3912–22 (2008)
- [57] R. Kalluri, R. A. Weinberg: The basics of epithelial-mesenchymal transition. J Clin Invest 119, 1420–8 (2009)
- [58] T. Abbas, A. Dutta: p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9, 400–14 (2009)
- [59] M. Sun, L. Song, T. Zhou, G. Y. Gillespie, R. S. Jope: The role of DDX3 in regulating Snail. Biochim Biophys Acta BBA - Mol Cell Res 1813, 438–47 (2011)
- [60] X. Miao, Z. L. Yang, L. Xiong, Q. Zou, Y. Yuan, J. Li, L. Liang, M. Chen, S. Chen: Nectin-2 and DDX3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinoma of gallbladder. Int J Clin Exp Pathol 6, 179–90 (2013)
- [61] J. Fukumura, E. Noguchi, T. Sekiguchi, T. Nishimoto: A temperature-sensitive mutant of the mammalian RNA helicase, DEAD-BOX X isoform, DBX, defective in the transition from G1 to S phase. J Biochem (Tokyo) 134, 71–82 (2003)
- [62] M. C. Lai, W. C. Chang, S. Y. Shieh, W. Y. Tarn: DDX3 Regulates Cell Growth through Translational Control of Cyclin E1. Mol Cell Biol 30, 5444–53 (2010)
- [63] Y. J. Choi, S. G. Lee: The DEAD-box RNA helicase DDX3 interacts with DDX5, co-localizes with it in the cytoplasm during the G2/M phase of the cycle, and affects its shuttling during mRNP export. J Cell Biochem 113, 985–96 (2012)
- [64] Q. Li, P. Zhang, C. Zhang, Y. Wang, R. Wan, Y. Yang, X. Guo, R. Huo, M. Lin, Z. Zhou, J. Sha: DDX3X regulates cell survival and cell cycle during mouse early embryonic development. J Biomed Res 28, 282–91 (2014)
- [65] H. H. Chen, H. I. Yu, W. C. Cho, W. Y. Tarn: DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene (2014)
- [66] M. Sun, L. Song, Y. Li, T. Zhou, R. S. Jope: Identification of an antiapoptotic protein complex at death receptors. Cell Death Differ 15, 1887–900 (2008)
- [67] Y. Li, H. Wang, Z. Wang, S. Makhija, D. Buchsbaum, A. LoBuglio, R. Kimberly, T. Zhou: Inducible Resistance of Tumor Cells to Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Receptor 2–Mediated Apoptosis by Generation of a Blockade at the Death Domain Function. Cancer Res 66, 8520–8 (2006)
- [68] P. G. Oliver, A. F. LoBuglio, T. Zhou, A. Forero, H. Kim, K. R. Zinn, G. Zhai, Y. Li, C. H. Lee, D. J. Buchsbaum: Effect of anti-DR5 and chemotherapy on basal-like breast cancer. Breast Cancer Res Treat 133, 417–26 (2012)
- [69] C. M. Cruciat, C. Dolde, R. E. de Groot, B. Ohkawara, C. Reinhard, H. C. Korswagen, C. Niehrs: RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling. Science 339, 1436–41 (2013)
- [70] M. Botlagunta, B. Krishnamachary, F. Vesuna, P. T. Winnard Jr, G. M. Bol, A. H. Patel, V. Raman: Expression of DDX3 Is Directly Modulated by Hypoxia Inducible Factor-1 Alpha in Breast Epithelial Cells. PLoS ONE 6, e17563 (2011)
- [71] G. M. Bol, V. Raman, P. van der Groep, J. F. Vermeulen, A. H. Patel, E. van der Wall, P. J. vandiest: Expression of the RNA Helicase DDX3 and the Hypoxia Response in Breast Cancer. PLoS ONE 8, e63548 (2013)
- [72] P. C. Chang, C. W. Chi, G. Y. Chau, F. Y. Li, Y. H. Tsai, J. C. Wu, Y. H. Wu Lee: DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene 25, 1991–2003 (2005)
- [73] C. H. Chao, C. M. Chen, P. L. Cheng, J. W. Shih, A. P. Tsou, Y. H. Wu Lee: DDX3, a DEAD Box RNA Helicase with Tumor Growth–Suppressive Property and Transcriptional Regulation Activity of the p21waf1/cip1 Promoter, Is a Candidate Tumor Suppressor. Cancer Res 66, 6579–88 (2006)
- [74] D. W. Wu, W. S. Liu, J. Wang, C. Y. Chen, Y. W. Cheng, H. Lee: Reduced p21(WAF1/CIP1) via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer. Clin Cancer Res 17, 1895–905 (2011)
- [75] D. W. Wu, M. C. Lee, J. Wang, C. Y. Chen, Y. W. Cheng, H. Lee: DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene 33, 1515–26 (2014)
- [76] M. Sun, T. Zhou, E. Jonasch, R. S. Jope: DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim Biophys Acta BBA - Mol Cell Res 1833, 1489–97 (2013)
- [77] C. H. Lee, S. H. Lin, S. F. Yang, S. M. Yang, M. K. Chen, H. Lee, J. L. Ko, C. J. Chen, K. T. Yeh: Low/negative expression of DDX3 might predict poor prognosis in non-smoker patients with oral cancer. Oral Dis 20, 76–83 (2014)
- [78] R. Janknecht: Multi-talented DEAD-box proteins and potential tumor promoters: p68 RNA helicase (DDX5) and its paralog, p72 RNA helicase (DDX17). Am J Transl Res 2, 223–34 (2010)
- [79] F. V. Fuller-Pace, H. C. Moore: RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 7, 239–51 (2011)
- [80] T. Y. Dai, L. Cao, Z. C. Yang, Y. S. Li, L. Tan, X. Z. Ran, C. M. Shi: P68 RNA helicase as a molecular target for cancer therapy. J Exp Clin Cancer Res 33, 64 (2014)
- [81] H. Wang, X. Gao, Y. Huang, J. Yang, Z. R. Liu: P68 RNA helicase is a nucleocytoplasmic shuttling protein. Cell Res 2009 19, 1388–400 (2009)
- [82] M. Causevic, R. G. Hislop, N. M. Kernohan, F. A. Carey, R. A. Kay, R. J. Steele, F. V. Fuller-Pace: Overexpression and poly-ubiquitylation of the DEAD-box RNA helicase p68 in colorectal tumours. Oncogene 20, 7734–43 (2001)
- [83] A. A. Cohen, N. Geva-Zatorsky, E. Eden, M. Frenkel-Morgenstern, I. Issaeva, A. Sigal, R. Milo, C. Cohen-Saidon, Y. Liron, Z. Kam, L. Cohen, T. Danon, N. Perzov, U. Alon: Dynamic proteomics of individual cancer cells in response to a drug. Science 322, 1511–6 (2008)
- [84] S. Shin, K. L. Rossow, J. P. Grande, R. Janknecht: Involvement of RNA Helicases p68 and p72 in Colon Cancer. Cancer Res 67, 7572–8 (2007)
- [85] S. M. Mooney, J. P. Grande, J. L. Salisbury, R. Janknecht: Sumoylation of p68 and p72 RNA helicases affects protein stability and transactivation potential. Biochemistry 49, 1–10 (2010)
- [86] N. C. Wortham, E. Ahamed, S. M. Nicol, R. S. Thomas, M. Periyasamy, J. Jiang, A. M. Ochocka, S. Shousha, L. Huson, S. E. Bray, R. C. Coombes, S. Ali, F. V. Fuller-Pace: The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene 28, 4053–64 (2009)
- [87] E. L. Clark, A. Coulson, C. Dalgliesh, P. Rajan, S. M. Nicol, S. Fleming, R. Heer, L. Gaughan, H. Y. Leung, D. J. Elliott, F. V. Fuller-Pace, C. N. Robson: The RNA Helicase p68 Is a Novel Androgen Receptor Coactivator Involved in Splicing and Is Overexpressed in Prostate Cancer. Cancer Res 68, 7938–46 (2008)
- [88] R. Wang, Z. Jiao, R. Li, H. Yue, L. Chen: p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF-κB transcription factor p50. Neuro-Oncol 14, 1116–24 (2012)
- [89] S. Lin, L. Tian, H. Shen, Y. Gu, J. L. Li, Z. Chen, X. Sun, M. J. You, L. Wu: DDX5 is a positive regulator of oncogenic NOTCH1 signaling in T cell acute lymphoblastic leukemia. Oncogene 32, 4845–53 (2013)
- [90] S. J. Wang, C. Zhang, Y. You, C. M. Shi: Overexpression of RNA helicase p68 protein in cutaneous squamous cell carcinoma. Clin Exp Dermatol 37, 882–8 (2012)
- [91] U. H. Beier, S. Maune, J. E. Meyer, T. Görögh: Overexpression of p68 mRNA in head and neck squamous cell carcinoma cells. Anticancer Res 26, 1941–6 (2006)
- [92] B. Stone, M. Schummer, P. J. Paley, L. Thompson, J. Stewart, M. Ford, M. Crawford, N. Urban, K. O’Briant, B. H. Nelson: Serologic analysis of ovarian tumor antigens reveals a bias toward antigens encoded on 17q. Int J Cancer 104, 73–84 (2003)
- [93] R. S. Felix, G. W. Colleoni, O. L. Caballero, M. Yamamoto, M. S. Almeida, V. C. Andrade, M. L. F. Chauffaille, W. A. da Silva Jr, M. D. Begnami, F. A. Soares, A. J. Simpson, M. A. Zago, A. L. Vettore: SAGE analysis highlights the importance of p53csv, ddx5, mapkapk2 and ranbp2 to multiple myeloma tumorigenesis. Cancer Lett 278, 41–8 (2009)
- [94] L. Yang, C. Lin, S. Y. Sun, S. Zhao, Z. R. Liu: A double tyrosine phosphorylation of P68 RNA helicase confers resistance to TRAIL-induced apoptosis. Oncogene 26, 6082–92 (2007)
- [95] L. Yang, C. Lin, Z. R. Liu: Phosphorylations of DEAD Box p68 RNA Helicase Are Associated with Cancer Development and Cell Proliferation. Mol Cancer Res 3, 355–63 (2005)
- [96] S. Ropero, M. Esteller: The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1, 19–25(2007).
- [97] N. Vo, R. H. Goodman: CREB-binding Protein and p300 in Transcriptional Regulation. J Biol Chem 276, 13505–8(2001).
- [98] S. Shin, R. Janknecht: Concerted activation of the Mdm2 promoter by p72 RNA helicase and the coactivators p300 and P/CAF. J Cell Biochem 101, 1252–65 (2007)
- [99] K. L. Rossow, R. Janknecht: Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22, 151–6 (2003)
- [100] B. J. Wilson, G. J. Bates, S. M. Nicol, D. J. Gregory, N. D. Perkins, F. V. Fuller-Pace: The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5, 11 (2004)
- [101] G. Caretti, R. L. Schiltz, F. J. Dilworth, M. Di Padova, P. Zhao, V. Ogryzko, F. V. Fuller-Pace, E. P. Hoffman, S. J. Tapscott, V. Sartorelli: The RNA Helicases p68/p72 and the Noncoding RNA SRA Are Coregulators of MyoD and Skeletal Muscle Differentiation. Dev Cell 11, 547–60 (2006)
- [102] E. D. Jensen, L. Niu, G. Caretti, S. M. Nicol, N. Teplyuk, G. S. Stein, V. Sartorelli, A. J. Van Wijnen, F. V. Fuller-Pace, J. J. Westendorf: p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. J Cell Biochem 103, 1438–51 (2008)
- [103] R. T. Moon, A. D. Kohn, G. V. D. Ferrari, A. Kaykas: WNT and β-catenin signaling: diseases and therapies. Nat Rev Genet 5, 691–701 (2004)
- [104] L. Yang, C. Lin, Z. R. Liu: P68 RNA Helicase Mediates PDGF-Induced Epithelial Mesenchymal Transition by Displacing Axin from β-Catenin. Cell 127, 139–55 (2006)
- [105] L. Yang, C. Lin, S. Zhao, H. Wang, Z. R. Liu: Phosphorylation of p68 RNA Helicase Plays a Role in Platelet-derived Growth Factor-induced Cell Proliferation by Up-regulating Cyclin D1 and c-Myc Expression. J Biol Chem 282, 16811–9 (2007)
- [106] J. A. Crowell, V. E. Steele, J. R. Fay: Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther 6, 2139–48 (2007)
- [107] C. C. Pritchard, W. M. Grady: Colorectal cancer molecular biology moves into clinical practice. Gut 60, 116–29 (2011)
- [108] M. D. Bullock, A. Bruce, R. Sreekumar, N. Curtis, T. Cheung, I. Reading, J. N. Primrose, C. Ottensmeier, G. K. Packham, G. Thomas, A. H. Mirnezami: FOXO3 expression during colorectal cancer progression: biomarker potential reflects a tumour suppressor role. Br J Cancer 109, 387–94 (2013)
- [109] M. Sarkar, V. Khare, K. K. N. Guturi, N. Das N, M. K. Ghosh: The DEAD box protein p68: a crucial regulator of AKT/FOXO3a signaling axis in oncogenesis. Oncogene (2015)
- [110] S. Saha Roy, R. K. Vadlamudi: Role of Estrogen Receptor Signaling in Breast Cancer Metastasis. Int J Breast Cancer 2012, e654698 (2011)
- [111] N. Normanno, M. Di Maio, E. De Maio, A. De Luca, A. de Matteis, A. Giordano, F. Perrone; NCI-Naple Breast Cancer Group: Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12, 721–47 (2005)
- [112] M. Watanabe, J. Yanagisawa, H. Kitagawa, K. Takeyama, S. Ogawa, Y. Arao, M. Suzawa, Y. Kobayashi, T. Yano, H. Yoshikawa, Y. Masuhiro, S. Kato: A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 20, 1341–52 (2001)
- [113] R. Métivier, G. Penot, M. R. Hübner, G. Reid, H. Brand, M. Kos, F. Gannon: Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–63 (2003)
- [114] M. Mancini, A. Toker A: NFAT Proteins: Emerging Roles in Cancer Progression. Nat Rev Cancer 9, 810–20 (2009)
- [115] S. Germann, L. Gratadou, E. Zonta, E. Dardenne, B. Gaudineau, M. Fougère, S. Samaan, M. Dutertre, S. Jauliac, D. Auboeuf: Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene 31, 4536–49 (2012)
- [116] E. Dardenne, S. Pierredon, K. Driouch, L. Gratadou, M. Lacroix-Triki, M. P. Espinoza, E. Zonta, S. Germann, H. Mortada, J. P. Villemin, M. Dutertre, R. Lidereau, S. Vagner, D. Auboeuf: Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 19, 1139–46 (2012)
- [117] A. Mazurek, W. Luo, A. Krasnitz, J. Hicks, R. S. Powers, B. Stillman: DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells. Cancer Discov 2, 812–25 (2012)
- [118] K. K. N. Guturi, M. Sarkar, A. Bhowmik, N. Das, M. K. Ghosh: DEAD-box protein p68 is regulated by β-catenin/transcription factor 4 to maintain a positive feedback loop in control of breast cancer progression. Breast Cancer Res 16, 496 (2014)
- [119] D. Wang, J. Huang, Z. Hu: RNA helicase DDX5 regulates microRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol Cell Proteomics 11, M111.0.11932 (2012)
- [120] R. D. Hinrichsen: Calcium and calmodulin in the control of cellular behavior and motility. Biochim Biophys Acta BBA - Rev Cancer 1155, 277–93 (1993)
- [121] H. Wang, X. Gao, J. J. Yang, Z. R. Liu: Interaction between p68 RNA helicase and Ca2+-calmodulin promotes cell migration and metastasis. Nat Commun 4, 1354 (2013)
- [122] M. Nieto, S. Finn, M. Loda, W. C. Hahn: PROSTATE CANCER: Re-focusing on Androgen Receptor Signaling. Int J Biochem Cell Biol 39, 1562–8 (2007)
- [123] E. L. Clark, C. Hadjimichael, R. Temperley, A. Barnard, F. V. Fuller-Pace, C. N. Robson: p68/DdX5 Supports β-Catenin & RNAP II during Androgen Receptor Mediated Transcription in Prostate Cancer. PLoS ONE 8, e54150 (2013)Cited within: 0Google Scholar
- [124] S. Samaan, L. C. Tranchevent, E. Dardenne, M. P. Espinoza, E. Zonta, S. Germann, L. Gratadou, M. Dutertre, D. Auboeuf: The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res 42, 2197-207 (2014)
- [125] G. P. Atkinson, S. E. Nozell, E. T. Benveniste: NF-κB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 10, 575-86 (2010)
- [126] V. Tosello, A. A. Ferrando: The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 4, 199–210 (2013)
- [127] R. Kopan, M. X. G. Ilagan: The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 137, 216–33 (2009)
- [128] C. Jung, G. Mittler, F. Oswald, T. Borggrefe: RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim Biophys Acta BBA - Mol Cell Res 1833, 1180–9 (2013)
- [129] K. Suzuki, H. Matsubara: Recent Advances in p53 Research and Cancer Treatment. BioMed Res Int 2011, e978312 (2011)
- [130] K. T. Bieging, S. S. Mello, L. D. Attardi: Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14, 359–70 (2014)
- [131] G. J. Bates, S. M. Nicol, B. J. Wilson, A. M. Jacobs, J. C. Bourdon, J. Wardrop, D. J. Gregory, D. P. Lane, N. D. Perkins, F. V. Fuller-Pace: The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24, 543–53 (2005)
- [132] S. M. Nicol, S. E. Bray, H. D. Black, S. A. Lorimore, E. G. Wright, D. P. Lane, D. W. Meek, P. J. Coates, F. V. Fuller-Pace: The RNA helicase p68 (DDX5) is selectively required for the induction of p53-dependent p21 expression and cell-cycle arrest after DNA damage. Oncogene 32, 3461–9 (2013)
- [133] H. Dey, Z. R. Liu: Phosphorylation of P68 RNA Helicase by P38 MAP kinase contributes to colon cancer cells apoptosis induced by oxaliplatin. BMC Cell Biol 13, 27 (2012)
- [134] M. Wagner, R. Rid, C. J. Maier, R. H. Maier, M. Laimer, H. Hintner, J. W. Bauer, K. Onder: DDX5 is a multifunctional co-activator of steroid hormone receptors. Mol Cell Endocrinol 361, 80–91 (2012)
- [135] S. M. Mooney, A. Goel, A. B. D’Assoro, J. L. Salisbury, R. Janknecht: Pleiotropic Effects of p300-mediated Acetylation on p68 and p72 RNA Helicase. J Biol Chem 285, 30443–52 (2010)
- [136] A. M. Jacobs, S. M. Nicol, R. G. Hislop, E. G. Jaffray, R. T. Hay, F. V. Fuller-Pace: SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene 26, 5866–76 (2007)
- [137] Y. Akao, M. Seto, K. Yamamoto, S. Iida, S. Nakazawa, J. Inazawa, T. Abe, T. Takahashi, R. Ueda: The RCK gene associated with t(11;14) translocation is distinct from the MLL/ALL-1 gene with t(4;11) and t(11;19) translocations. Cancer Res 52, 6083–7 (1992)
- [138] D. Lu, J.J. Yunis: Cloning, expression and localization of an RNA helicase gene from a human lymphoid cell line with chromosomal breakpoint 11q23.3. Nucleic Acids Res 20, 1967–72 (1992)
- [139] Y. Akao, O. Marukawa, H. Morikawa, K. Nakao, M. Kamei, T. Hachiya, Y. Tsujimoto: The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res 55, 3444–9 (1995)
- [140] K. Miyaji, Y. Nakagawa, K. Matsumoto, H. Yoshida, H. Morikawa, Y. Hongou, Y. Arisaka, H. Kojima, T. Inoue, I. Hirata, K. Katsu, Y. Akao: Overexpression of a DEAD box/RNA helicase protein, rck/p54, in human hepatocytes from patients with hepatitis C virus-related chronic hepatitis and its implication in hepatocellular carcinogenesis. J Viral Hepat 10, 241–8 (2003)
- [141] Y. Nakagawa, H. Morikawa, I. Hirata, M. Shiozaki, A. Matsumoto, K. Maemura, T. Nishikawa, M. Niki, N. Tanigawa, M. Ikegami, K. Katsu, Y. Akao: Overexpression of rck/p54, a DEAD box protein, in human colorectal tumours. Br J Cancer 80, 914–7 (1999)
- [142] Hashimoto K, Nakagawa Y, Morikawa H, Niki M, Egashira Y, Hirata I, K. Katsu, Y. Akao: Co-overexpression of DEAD box protein rck/p54 and c-myc protein in human colorectal adenomas and the relevance of their expression in cultured cell lines. Carcinogenesis 22, 1965–70 (2001)
- [143] A. Iio, T. Takagi, K. Miki, T. Naoe, A. Nakayama, Y. Akao: DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta 1829, 1102–10 (2013)
- [144] F. Lin, R. Wang, J. J. Shen, X. Wang, P. Gao, K. Dong, H. Z. Zhang: Knockdown of RCK/p54 expression by RNAi inhibits proliferation of human colorectal cancer cells in vitro and in vivo. Cancer Biol Ther 7, 1669–76 (2008)
- [145] M. Bergkessel, J. C. Reese: An essential role for the Saccharomyces cerevisiae DEAD-box helicase DHH1 in G1/S DNA-damage checkpoint recovery. Genetics 167, 21–33 (2004)
- [146] Y. Akao, K. Matsumoto, K. Ohguchi, Y. Nakagawa, H. Yoshida: Human DEAD-box/RNA unwindase rck/p54 contributes to maintenance of cell growth by affecting cell cycle in cultured cells. Int J Oncol 29, 41–8 (2006)
- [147] Y. Akao, H. Mizoguchi, N. Ohishi, K. Yagi: Growth inhibition by overexpression of human DEAD box protein rck/p54 in cells of a guinea pig cell line. FEBS Lett 429, 279–83 (1998)
- [148] S. de Vries, I. S. Naarmann-de Vries, H. Urlaub, H. Lue, J. Bernhagen, D. H. Ostareck, A. Ostareck-Lederer: Identification of DEAD-box RNA Helicase 6 (DDX6) as a Cellular Modulator of Vascular Endothelial Growth Factor Expression under Hypoxia. J Biol Chem 288, 5815–27 (2013)
- [149] J. Coller, R. Parker: General Translational Repression by Activators of mRNA Decapping. Cell 122, 875–86 (2005)
- [150] M. Abdelhaleem: Do human RNA helicases have a role in cancer? Biochim Biophys Acta BBA - Rev Cancer 1704, 37–46 (2004)
- [151] C. Jin, H. Rajabi, C. M. Rodrigo, J. A. Porco, D. Kufe D: Targeting the eIF4A RNA helicase blocks translation of the MUC1-C oncoprotein. Oncogene 32, 2179–88 (2013)
- [152] R. Cencic, F. Robert, G. Galicia-Vázquez, A. Malina, K. Ravindar, R. Somaiah R, P. Pierre, J. Tanaka, P. Deslongchamps, J. Pelletier: Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A. Blood Cancer J 3, e128 (2013)
- [153] B. P. Tsai, J. Jimenez, S. Lim, K. D. Fitzgerald, M. Zhang, C. T. Chuah, H. Axelrod, L. Wilson, S. T. Ong, B. L. Semler, M. L. Waterman: A novel Bcr-Abl–mTOR–eIF4A axis regulates IRES-mediated translation of LEF-1. Open Biol 4, 140180 (2014)
- [154] T. Tsumuraya, C. Ishikawa, Y. Machijima, S. Nakachi, M. Senba, J. Tanaka, N. Mori: Effects of hippuristanol, an inhibitor of eIF4A, on adult T-cell leukemia. Biochem Pharmacol 81, 713–22 (2011)
- [155] A. L. Wolfe, K. Singh, Y. Zhong, P. Drewe, V. K. Rajasekhar, V. R. Sanghvi, K. J. Mavrakis, M. Jiang, J. E. Roderick, J. Van der Meulen, J. H. Schatz, C. M. Rodrigo, C. Zhao, P. Rondou, E. de Stanchina, J. Teruya-Feldstein, M. A. Kelliher, F. Speleman, J. A. Porco Jr, J. Pelletier, G. Rätsch, H. G. Wendel: RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014)
- [156] E. R. Yassin, A. M. Abdul-Nabi, A. Takeda, N. R. Yaseen: Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: Role of a conserved helicase motif. Leuk Off J Leuk Soc Am Leuk Res Fund UK 24, 1001–11 (2010)
- [157] X. Jiao, S. D. Hooper, T. Djureinovic, C. Larsson, F. Wärnberg, C. Tellgren-Roth, J. Botling, T. Sjöblom: Gene rearrangements in hormone receptor negative breast cancers revealed by mate pair sequencing. BMC Genomics 14, 165 (2013)
- [158] C. Bhattacharya, X. Wang, D. Becker: The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced melanomas. Mol Cancer 11, 82 (2012)
- [159] F. V. Fuller-Pace: DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34, 4206–15 (2006)
- [160] Q. Cai, Y. Guo, B. Xiao, S. Banerjee, A. Saha, J. Lu, T. Glisovic, E. S. Robertson: Epstein-Barr Virus Nuclear Antigen 3C Stabilizes Gemin3 to Block p53-mediated Apoptosis. PLoS Pathog 7, e1002418 (2011)
- [161] E. M. Shin, H. S. Hay, M. H. Lee, J. N. Goh, T. Z. Tan, Y. P. Sen, S. W. Lim, E. M. Yousef, H. T. Ong, A. A. Thike, X. Kong, Z. Wu, E. Mendoz, W. Sun, M. Salto-Tellez, C. T. Lim, P. E. Lobie, Y. P. Lim, C. T. Yap, Q. Zeng, G. Sethi, M. B. Lee, P. Tan, B. C. Goh, L. D. Miller, J. P. Thiery, T. Zhu, L. Gaboury, P. H. Tan, K. M. Hui, G. W. Yip, S. Miyamoto, A. P. Kumar, V. Tergaonkar: DEAD-box helicase DP103 defines metastatic potential of human breast cancers. J Clin Invest 124, 3807–24 (2014)
- [162] A. Takata, M. Otsuka, T. Yoshikawa, T. Kishikawa, Y. Hikiba, S. Obi, T. Goto, Y. J. Kang, S. Maeda, H. Yoshida, M. Omata, H. Asahara, K. Koike: MicroRNA-140 acts as a liver tumor suppressor by controlling NF-κB activity by directly targeting DNA methyltransferase 1 (Dnmt1) expression. Hepatol Baltim Md 57, 162–70 (2013)
- [163] A. Takata, M. Otsuka, T. Yoshikawa, T. Kishikawa, Y. Kudo, T. Goto, H. Yoshida, K. Koike: AmiRNA machinery component DDX20 controls NF-κB via microRNA-140 function. Biochem Biophys Res Commun 420, 564–9 (2012)
- [164] H. L. Ke, M. Chen, Y. Ye, M. A. Hildebrandt, W. J. Wu, H. Wei, M. Huang, D. W. Chang, C. P. Dinney, X. Wu: Genetic variations in micro-RNA biogenesis genes and clinical outcomes in non-muscle-invasive bladder cancer. Carcinogenesis 34, 1006–11 (2013)
- [165] E. Calo, R. A. Flynn, L. Martin, R. C. Spitale, H. Y. Chang, J. Wysocka: RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249–53 (2015)
- [166] T. H. Holmström, A. Mialon, M. Kallio, Y. Nymalm, L. Mannermaa, T. Holm, H. Johansson, E. Black, D. Gillespie, T. A. Salminen, U. Langel, B. C. Valdez, J. Westermarck: C-jun supports ribosomal RNA processing and nucleolar localization of RNA helicase DDX21. J Biol Chem 283, 7046-53 (2008)
- [167] J. Westermarck, C. Weiss, R. Saffrich, J. Kast, A. M. Musti, M. Wessely, W. Ansorge, B. Séraphin, M. Wilm, B. C. Valdez, D. Bohmann: The DEXD/H-box RNA helicase RHII/Gu is a co-factor for c-Jun-activated transcription. EMBO J 21, 451–60 (2002)
- [168] Y. Zhang, K. C. Baysac, L. F. Yee, A. J. Saporita, J. D. Weber: Elevated DDX21 regulates c-Jun activity and rRNA processing in human breast cancers. Breast Cancer Res 16, 449 (2014)
- [169] D. Cimino, L. Fuso, C. Sfiligoi, N. Biglia, R. Ponzone, F. Maggiorotto, G. Russo, L. Cicatiello, A. Weisz, D. Taverna, P. Sismondi, M. De Bortoli: Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 123, 1327–38 (2008)
- [170] I. Bonzheim, M. Irmler, M. Klier-Richter, J. Steinhilber, N. Anastasov, S. Schäfer, P. Adam, J. Beckers, M. Raffeld, F. Fend, L. Quintanilla-Martinez: Identification of C/EBPβ Target Genes in ALK+ Anaplastic Large Cell Lymphoma (ALCL) by Gene Expression Profiling and Chromatin Immunoprecipitation. PLoS ONE 8, e64544 (2013)
- [171] Y. Jung, S. Lee, H. S. Choi, S. N. Kim, E. Lee, Y. Shin, J. Seo, B. Kim, Y. Jung, W. K. Kim, H. K. Chun, W. Y. Lee, J. Kim: Clinical validation of colorectal cancer biomarkers identified from bioinformatics analysis of public expression data. Clin Cancer Res 17, 700–9 (2011)
- [172] T. Sugiura, Y. Nagano, Y. Noguchi: DDX39, upregulated in lung squamous cell cancer, displays RNA helicase activities and promotes cancer cell growth. Cancer Biol Ther 6, 957–64 (2007)
- [173] D. Kubota, T. Okubo, T. Saito, Y. Suehara, A. Yoshida, K. Kikuta, H. Tsuda, H. Katai, Y. Shimada, K. Kaneko, A. Kawai, T. Kondo: Validation study on pfetin and ATP-dependent RNA helicase DDX39 as prognostic biomarkers in gastrointestinal stromal tumour. Jpn J Clin Oncol 42, 730–41 (2012)
- [174] K. Kikuta, D. Kubota, T. Saito, H. Orita, A. Yoshida, H. Tsuda, Y. Suehara, H. Katai, Y. Shimada, Y. Toyama, K. Sato, T. Yao, K. Kaneko, Y. Beppu, Y. Murakami, A. Kawai, T. Kondo: Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor. J Proteomics 75, 1089–98 (2012)
- [175] Y. Kuramitsu, W. Tominaga, B. Baron, K. Tokuda, Y. Wang, T. Kitagawa, K. Nakamura: Up-regulation of DDX39 in human malignant pleural mesothelioma cell lines compared to normal pleural mesothelial cells. Anticancer Res 33, 2557–60 (2013)
- [176] Y. Kuramitsu, S. Suenaga, Y. Wang, K. Tokuda, T. Kitagawa, T. Tanaka, J. Akada, S. Maehara, Y. Maehara, K. Nakamura: Up-regulation of DDX39 in human pancreatic cancer cells with acquired gemcitabine resistance compared to gemcitabine-sensitive parental cells. Anticancer Res 33, 3133–6 (2013)
- [177] M. Kato, M. Wei, S. Yamano, A. Kakehashi, S. Tamada, T. Nakatani, H. Wanibuchi: DDX39 acts as a suppressor of invasion for bladder cancer. Cancer Sci 103, 1363–9 (2012)
- [178] H. H. Yoo, I. K. Chung: Requirement of DDX39 DEAD box RNA helicase for genome integrity and telomere protection. Aging Cell 10, 557–71 (2011)
- [179] M. G. Mathieu, A. J. Linley, S. P. Reeder, C. Badoual, E. Tartour, R. C. Rees, S. E. McArdle: HAGE, a cancer/testis antigen expressed at the protein level in a variety of cancers. Cancer Immun 10, 2 (2010)
- [180] G. Ambrosini, R. Khanin, R. D. Carvajal, G. K. Schwartz: Overexpression of DDX43 mediates MEK inhibitor resistance through RAS Upregulation in uveal melanoma cells. Mol Cancer Ther 13, 2073–80 (2014)
- [181] T. M. Abdel-Fatah, S. E. McArdle, C. Johnson, P. M. Moseley, G. R. Ball, A. G. Pockley, I. O. Ellis, R. C. Rees, S. Y. Chan: HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer. Br J Cancer 110, 2450–61 (2014)
- [182] Y. Akiyama, M. Komiyama, H. Miyata, M. Yagoto, T. Ashizawa, A. Iizuka, C. Oshita, A. Kume, M. Nogami, I. Ito, R. Watanabe, T. Sugino, K. Mitsuya, N. Hayashi, Y. Nakasu, K. Yamaguchi: Novel cancer-testis antigen expression on glioma cell lines derived from high-grade glioma patients. Oncol Rep 31, 1683–90 (2014)
- [183] J. Lin, Q. Chen, J. Yang, J. Qian, Z. Deng, W. Qian, X. X. Chen, J. C. Ma, D. S. Xiong, Y. J. Ma, C. An, C. Y. Tang: DDX43 promoter is frequently hypomethylated and may predict a favorable outcome in acute myeloid leukemia. Leuk Res 38, 601–7 (2014)
- [184] A. J. Linley, M. G. Mathieu, A. K. Miles, R. C. Rees, S. E. McArdle, T. Regad: The helicase HAGE expressed by malignant melanoma-initiating cells is required for tumor cell proliferation in vivo. J Biol Chem 287, 13633–43 (2012)
- [185] M. G. Mathieu, A. K. Miles, M. Ahmad, M. E. Buczek, A. G. Pockley, R. C. Rees, T. Regad: The helicase HAGE prevents interferon-alpha-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1. Cell Death Dis 5:e1061 (2014)
- [186] S. Lee, M. Baek, H. Yang, Y. J. Bang, W. H. Kim, J. H. Ha, D. K. Kim, D. I. Jeoung: Identification of genes differentially expressed between gastric cancers and normal gastric mucosa with cDNA microarrays. Cancer Lett 184, 197–206 (2002)
- [187] Q. Xia, X. T. Kong, G. A. Zhang, X. J. Hou, H. Qiang, R. Q. Zhong: Proteomics-based identification of DEAD-box protein 48 as a novel autoantigen, a prospective serum marker for pancreatic cancer. Biochem Biophys Res Commun 330, 526–32 (2005)
- [188] K. Hellman, A. A. Alaiya, S. Becker, M. Lomnytska, K. Schedvins, W. Steinberg, A. C. Hellström, S. Andersson, U. Hellman, G Auer: Differential tissue-specific protein markers of vaginal carcinoma. Br J Cancer 100, 1303–14 (2009)
- [189] E. Por, H. J. Byun, E. J. Lee, J. H. Lim, S. Y. Jung, I. Park, Y. M. Kim, D. Jeoung, H. Lee: The cancer/testis antigen CAGE with oncogenic potential stimulates cell proliferation by up-regulating cyclins D1 and E in an AP-1-and E2F-dependent manner. J Biol Chem 285, 14475–85 (2010)
- [190] Y. Kim, H. Park, D. Park, Y. S. Lee, J. Choe, J. H. Hahn: Cancer/Testis Antigen CAGE Exerts Negative Regulation on p53 Expression through HDAC2 and Confers Resistance to Anti-cancer Drugs. J Biol Chem 285, 25957–68 (2010)
- [191] Y. Kim, D. Park, H. Kim, M. Choi, H. Lee, Y. S. Lee, J. Choe, Y. M. Kim, D. Jeoung: miR-200b and Cancer/Testis Antigen CAGE Form a Feedback Loop to Regulate the Invasion and Tumorigenic and Angiogenic Responses of a Cancer Cell Line to Microtubule-targeting Drugs. J Biol Chem 288, 36502–18 (2013)
