IMR Press / FBL / Volume 14 / Issue 9 / DOI: 10.2741/3474

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
Modulation of opioid receptor function by protein-protein interactions
Show Less
1 Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
2 Department of Pharmacology, University of Crete, Heraklion, Crete, Greece
Front. Biosci. (Landmark Ed) 2009, 14(9), 3594–3607; https://doi.org/10.2741/3474
Published: 1 January 2009
Abstract

Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified protein-protein interactions that play an essential role in opioid receptor function and responsiveness. Here, we summarize interactions shown to affect receptor biogenesis and trafficking, as well as those affecting signal transduction events following receptor activation. This article also examines protein interactions modulating the rate of receptor endocytosis and degradation, events that play a major role in opiate analgesia. Like several other GPCRs, opioid receptors may form homo or heterodimers. The last part of this review summarizes recent knowledge on proteins known to affect opioid receptor dimerization.

Share
Back to top