IMR Press / FBL / Volume 14 / Issue 13 / DOI: 10.2741/3575

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article
Molecular mechanisms of copper homeostasis
Show Less
1 Centro de Biologia Molecular Severo Ochoa and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Cantoblanco 28049, Madrid, Spain
Front. Biosci. (Landmark Ed) 2009, 14(13), 4878–4903; https://doi.org/10.2741/3575
Published: 1 June 2009
Abstract

The transition metal copper (Cu) is an essential trace element for all biota. Its redox properties bestow Cu with capabilities that are simultaneously essential and potentially damaging to the cell. Free Cu is virtually absent in the cell. The descriptions of the structural and functional organization of the metallothioneins, Cu-chaperones and P-type ATPases as well as of the mechanisms that regulate their distribution and functioning in the cell have enormously advanced our understanding of the Cu homeostasis and metabolism in the last decade. Cu is stored by metallothioneins and distributed by specialized chaperones to specific cell targets that make use of its redox properties. Transfer of Cu to newly synthesized cuproenzymes and Cu disposal is performed by the individual or concerted actions of the P-type ATPases ATP7A and ATP7B expressed in tissues. In mammalians liver is the major captor, distributor and excreter of Cu. Mutations in the P-type ATPases that interfere with their functioning and traffic are cause of the life-threatening Wilson (ATP7B) and Menkes (ATP7A) diseases.

Share
Back to top