Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
1 Biochemistry of Aging Laboratory, University of Florida, Box 118206, Gainesville, FL 32611, USA
Abstract
The spectrophotometric protein carbonyl assay is used as an indicator of protein damage by free radical reactions in vitro and in a variety of pathologies. We investigated model proteins and a variety of oxidative and non-oxidative reactions, as well as what effects hemoglobin, myoglobin, and cytochrome c might have on levels of protein carbonyls. We show that oxidative as well as non-oxidative mechanisms introduce carbonyl groups into proteins, providing a moiety for quantification with 2,4-dinitrophenylhydrazine (DNPH). Bovine serum albumin exposed to oxidative scenarios, such as hypochlorous acid, peroxynitrite, and metal-catalyzed oxidation exhibited variable, but increased levels of carbonyls. Other non-oxidative modification systems, in which proteins are incubated with various aldehydes, such as malondialdehyde, acrolein, glycolaldehyde, and glyoxal also generated significant amounts of carbonyls. Furthermore, purified myoglobin, hemoglobin, and cytochrome c show high absorbance at the same wavelengths as DNPH. The high levels observed are due to the innate absorbance of hemoglobin, myoglobin, and cytochrome c near the assay spectra of DNPH. These studies show that carbonyl content could be due to oxidative as well as non-oxidative mechanisms and that heme-containing compounds may effect carbonyl quantification.
