Information
References
Contents
Download
[1]R.S. Fisher, W. Van Emde Boas, W. Blume, C. Elger, P. Genton, Lee: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) Epilepsia 46, 470-472 (2005)
[2]M. Barker-Haliski, H.S. White: Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med. 5, a022863. (2015)
[3]J.A. Gorter, E.A. van Vliet, E. Aronica: Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 49, 13-16 (2015)
[4]Pitkänen, K. Lukasiuk, F.E. Dudek, K.I. Staley. Epileptogenesis. Cold Spring Harb Perspect Sep 18;5(10) pii: a022822.
[5]K. Staley: Molecular mechanisms of epilepsy. Nat Neurosci. 18, 367-372 (2015)
[6]J. Noebels: Pathway-driven discovery of epilepsy genes. Nat Neurosci. 18, 344-350 (2015)
[7]J.T. Paz, J.R. Huguenard: Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. 18, 351-359(2015).
[8]A.Y. Reid, R.J. Staba: Limbic networks: clinical perspective. Int Rev Neurobiol. 114, 89-120 (2014)
[9]K.S. Wilcox, A. Vezzani: Does brain inflammation mediate pathological outcomes in epilepsy? Adv Exp Med Biol. 813, 169-183 (2014)
[10]C.R. Houser: Do structural changes in GABA neurons give rise to the epileptic state? Adv Exp Med Biol. 813, 151-160 (2014)
[11]F. Cendes, A.C: Sakamoto, R. Spreafico, W. Bingaman, A.J. Becker: Epilepsies associated with hippocampal sclerosis. Acta Neuropathol. 128, 21-37 (2014)
[12]Chatzikonstantinou: Epilepsy and the hippocampus. Front Neurol Neurosci. 34, 121-142 (2014)
[13]E. Trinka, J. Höfle, M. Leitinger, F. Brigo: Pharmacotherapy for Status Epilepticus. Drugs. 75, 1499-1521 (2015)
[14]X. Wang, J. Jin, R. Chen: Combination drug therapy for the treatment of status epilepticus. Expert Rev Neurother. 15, 639-654 (2015)
[15]K. Bates: Epilepsy: current evidence-based paradigms for diagnosis and treatment. Prim Care. 42, 217-232 (2015)
[16]M. Biale, S.I. Johannessen, R.H. Levy, E. Perucca, T. Tomson, H.S. White: Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII) Epilepsy Res. 111, 85-141 (2015)
[17]M. Lévesque, M. Avoli, C. Bernard: Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J Neurosci Methods. 260, 45-52 (2016)
[18]Y. Ben-Ari, J. Lagowska: Epileptogenic action of intra-amygdaloid injection of kainic acid. C R Acad Sci Hebd Seances Acad Sci D. 287, 813-816 (1978)
[19]B.P. Grone, S.C. Baraban: Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 18, 339-43 (2015)
[20]J.V. Nadle: Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29, 2031-2042 (1981)
[21]J.E. Cavazos, S.M. Jones, D.J. Cross: Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy. Neuroscience 126, 677-688 (2004)
[22]L. Kandratavicius, P.A. Balista, C. Lopes-Aguiar, R.N. Ruggiero, E.H. Umeoka, N. Garcia-Cairasco, L.S. Bueno-Junior, J.P. Leite: Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 10, 1693-705 (2014)
[23]M. Lévesque, M. Avoli: The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 37 (2013) 2887-2899.
[24]Z. Chen, R.S. Duan, H.C. Quezada, E. Mix, I. Nennesmo, A. Adem, B. Winblad, J. Zhu: Increased microglial activation and astrogliosis after intranasal administration of kainic acid in C57BL/6 mice. J Neurol 62, 207-218 (2005)
[25]Y. Ben-Ari. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neurosci 14, 375-403 (1985)
[26]Y. Ben-Ari, M. Gho: Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. J Physiol. 404, 365-384 (1988)
[27]Kondratyev, K. Gale: Latency to onset of status epilepticus determines molecular mechanisms of seizure-induced cell death. Brain Res Mol Brain Res. 121, 86-94 (2004)
[28]T.P. Sutula, J. Hagen, A. Pitkänen. Do epileptic seizures damage the brain? Curr Opin Neurol. 16, 189-95 (2003)
[29]A.D. Umpierre, I.V. Bennett, L.D. Nebeker, T.G. Newell, B.B. Tian, K.E. Thomson, H.S. White, J.A. White, K.S. Wilcox. Repeated low-dose kainate administration in C57BL/6J mice produces temporal lobe epilepsy pathology but infrequent spontaneous seizures. Exp Neurol. 279, 116-126 (2016)
[30]Pitkänen, T.P. Sutula: Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 1, 173-81 (2002)
[31]T. Borsello, G. Forloni: JNK signalling: a possible target to prevent neurodegeneration. Curr Pharm Des. 13, 1875-1886 (2007)
[32]T. Bartsch, P. Wulff: The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience. 19, 1-16 (2015)
[33]F.E. Dudek: Role of Glial Cells in Seizures and Epilepsy: Intracellular Calcium Oscillations sn Spatial Buffering. Epilepsy Curr. 2, 137-139 (2002)
[34]Y.R. Chen, T.H. Tan: The c-Jun N-terminal kinase pathway and apoptotic signaling. Int J Oncol 16, 651-662 (2000)
[35]B.A. Strange, M.P. Witter, E.S. Lein, E.I. Moser: Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 15 655-669 (2014)
[36]T. Bartsch, P. Wulff: The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience. 309, 1-16 (2015)
[37]L. Tatu, F. Vuillier: Structure and vascularization of the human hippocampus. Front Neurol Neurosci. 34, 18-25 (2014)
[38]J.J. Chrobak, A. Lörincz, G. Buzsáki: Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus. 10, 457-465 (2000)
[39]S.C. Shalin, R. Egli, S.G. Birnbaum, T.L. Roth, J.M. Levenson, J.D., Sweatt: Signal transduction mechanisms in memory disorders. Prog Brain Res. 157, 25-41 (2006)
[40]P. Duarte-Guterman, S. Yagi,C. Chow, L.A. Galea: Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav. 74, 37-52 (2015)
[41]E. Fernández-Espejo: Basic neurobiology of hippocampal formation. Rev Neurol. 24, 779-784 (1996)
[42]S. Murakami, T. Takemoto, Z. Shimizu: The effective principle of Diginea simplex Aq. I. Separation of the effective fractions by liquid chromatography. J Pharm Soc Japan 73, 1026 (1953)
[43]S. Bahn, B. Volk, W. Wisden: Kainate receptor gene expression in the developing rat brain. J Neurosci. 14, 5525-5547 (1994)
[44]X.T. Jin, Y. Smith: Localization and functions of kainate receptors in the basal ganglia. Adv Exp Med Biol. 717, 27-37 (2011).
[45]V. Crépel, C. Mulle: Physiopathology of kainate receptors in epilepsy. Curr Opin Pharmacol. 20, 83-88 (2015)
[46]M. Carta, S. Fièvre, A. Gorlewicz, C. Mulle: Kainate receptors in the hippocampus. Eur J Neurosci. 39, 1835-1844 (2014)
[47]E. Szczurowska, P. Mareš. NMDA and AMPA receptors: development and status epilepticus. Physiol Res. 62 Suppl 1:S21-38 (2013)
[48]J. Lerma, J.M. Marques: Kainate receptors in health and disease. Neuron. 80, 292-311 (2013)
[49]T.S. Sihra, G. Flores, A. Rodríguez-Moreno: Kainate receptors: multiple roles in neuronal plasticity. Neuroscientist. 20, 29-43(2014).
[50]X.Y. Zheng, H.L. Zhang, Q. Luo, J. Zhu: Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol. 457079 (2011)
[51]F. Zheng,K.D. Phelan: The role of canonical transient receptor potential channels in seizure and excitotoxicity. Cells. 3, 288-303 (2014)
[52]J. Gonzalez, J.C. Jurado-Coronel, M.F. Ávila, A. Sabogal, F. Capani, G.E. Barreto. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci. 125, 315-327 (2015)
[53]V. Vyklicky, M. Korinek, T. Smejkalova, A. Balik, B. Krausova, M. Kaniakova, K. Lichnerova, J. Cerny, J. Krusek, I. Dittert, M. Horak, L. Vyklicky: Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 63. Suppl 1:S191-203 (2014)
[54]Y. Ben-Ari, R. Cossart: Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23, 580-587(2000)
[55]E.B. Bloss,R.G. Hunter. Hippocampal kainate receptors. Vitam Horm. 82, 167-184 (2010)
[56]Lin, B. Dibling: The true face of JNK activation in apoptosis. Aging Cell 1, 112-116 (2002)
[57]T. Herdegen, P. Skene. M. Bahr. The c-Jun transcription factor-bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci. 20. 227-231 (1997)
[58]Q. Wang, S. Yu, A. Simonyi, G. Y. Sun, A.Y. Sun. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol. 31, 3-16 (2005)
[59]E.J. Shin, J.H. Jeong, Y.H. Chung, W.K. Kim, K,H. Ko, J.H. Bach, J.S. Hong, Y. Yoneda, H.C. Kim: Role of oxidative stress in epileptic seizures. Neurochem Int. 59, 122-137 (2011)
[60]R.J. Reiter, L.C. Manchester, D.X. Tan: Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol. 8 194-210 (2010)
[61]Lau, M. Tymianski: Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460, 525-542 (2010)
[62]S.S. Oja, P. Saransaari: Modulation of taurine release by glutamate receptors and nitric oxide. Prog Neurobiol. 62, 407-425 (2000)
[63]M. Gonzalez-Zulueta, L.M. Ensz, G. Mukhina, R.M. Lebovitz, R.M. Zwacka, J.F. Engelhardt, L.W. Oberley, V.L.Dawson, T.W. Dawson: Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci. 18, 2040-2055 (1998)
[64]D.C. Henshall, T. Araki, C.K. Schindler, S. Shinoda, J.Q. Lan, R.P. Simon: Expression of death-associated protein kinase and recruitment to the tumor necrosis factor signaling pathway following brief seizures. J Neurochem. 86, 1260-1270 (2003)
[65]S. Shinoda, S.L. Skradski, T. Araki, C.K. Schindler, R. Meller, J.Q. Lan, W. Taki, R.P. Simon, D.C. Henshall: Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizure-induced neuronal death. Eur J Neurosci. 17, 2065-2076 (2003)
[66]D.A. Flusberg, P.K. Sorger: Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol. 25, 446-458 (2015)
[67]D.B. Wang, C. Kinoshita, Y. Kinoshita, R.S. Morrison: p53 and mitochondrial function in neurons. Biochim Biophys Acta. 1842, 1186-1197 (2014)
[68]Almeida. Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci. 70, 71-88 (2013).
[69]J.L. Franklin. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal. 14, 1437-1448 (2011).
[70]L. Galluzzi, K. Blomgren, G. Kroemer. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci. 10, 481-494 (2009)
[71]Kondratyev, K. Gale: Latency to onset of status epilepticus determines molecular mechanisms of seizure-induced cell death. Brain Res Mol Brain Res. 5, 86-94 (2004)
[72]N. Donovan, E.B. Becker, Y. Konishi Y, A. Bonni: JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 277, 40944-40949 (2002)
[73]X.M. Zhang, J. Zhu: Kainic Acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol. 9, 388-398 (2011)
[74]B.A. Miller, F. Sun, R.N. Christensen, A.R. Ferguson, J.C. Bresnahan, M.S. Beattie: A sublethal dose of TNFalpha potentiates kainate-induced excitotoxicity in optic nerve oligodendrocytes. Neurochem Res. 30, 867-875 (2005)
[75]M. Oprica, C. Eriksson, M. Schultzberg: Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J Cell Mol Med. 7, 127-140 (2003)
[76]A.A. Farooqui, W. Yi Ong, X.R. Lu, B. Halliwell, L.A. Horrocks: Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A(2) inhibitors. Brain Res Brain Res Rev. 38, 61-78 (2001)
[77]M. Oprica, C. Eriksson, M. Schultzberg: Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J Cell Mol Med. 7, 127-140 (2003)
[78]Sanz, A. Estrada, I. Ferrer, A.M. Planas: Differential cellular distribution and dynamics of HSP70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience. 80, 221-232 (1997)
[79]A.M. Planas, M.A. Soriano, I. Ferrer, E. Rodríguez Farré: Kainic acid-induced heat shock protein-70, mRNA and protein expression is inhibited by MK-801 in certain rat brain regions. Eur J Neurosci. 7, 293-304 (1995)
[80]T. Borsello, P.G. Clarke, L. Hirt, A. Vercelli, M. Repici, D.F. Schorderet, J. Bogousslavsky, C. Bonny: A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 9, 1180-1186 (2003)
[81]Anthony, A.A. Oliva, C.M. Atkins, L. Copenagle, G.A. Banker: Activated c-Jun NTerminal Kinase Is Required for Axon Formation. J Neurosci. 26, 9462-9470 (2006)
[82]R.S. Sloviter, L. Ali-Akbarian, K.D. Horvath, K.A. Menkens: Substance P receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. J Comp Neurol. 12, 283-305 (2001)
[83]M. Aouadi, B. Binetruy, L. Caron, Y.L. Marchand-Brustel, F. Bost: Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimica. 88, 1091-1098 (2006)
[84]J. Avruch: MAPKinase pathways: the first twenty years. Biochim Biophys Acta. 1773, 1150- 1160 (2007)
[85]L. Chang, M. Karin: Mammalian MAP kinase signalling cascades. Nature. 410, 37-40 (2001)
[86]J.M. Kyriakis, J. Avruch: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 81: 807-869 (2001)
[87]L. de Lemos, F. Junyent, E. Verdaguer, J. Folch, R. Romero, M. Pallàs, I. Ferrer, C. Auladell, A. Camins: Differences in activation of ERK1/2 and p38 kinase in Jnk3 null mice following KA treatment. J Neurochem. 114, 1315-1322 (2010)
[88]R.M. Biondi, R.A. Nebred: Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J. 372, 1-13 (2003)
[89]D.N. Dhanasekaran, K. Kashef, C.M. Lee, H. Xu, E.P. Reddy: Scaffold proteins of MAP-kinase modules. Oncogene. 26, 3185-3202 (2007)
[90]T.G. Boulton, M.H. Cobb: Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 2, 357-371 (1991)
[91]T.G. Boulton, S.H. Nye, D.J. Robbins, N.Y. Ip, E. Radziejewska, S.D. Morgenbesser, R.A. DePinho, N. Panayotatos, M.H. Cobb, G.D. Yancopoulos: ERK’s: a family of proteinserine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 65, 663-675 (1991)
[92]Cuenda, S. Rousseau: p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 1773, 1358-1375 (2007)
[93]Y. Keshet, R. Seger: The MAP Kinase Signaling Cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods in Molecular Biology. 661, 3-38 (2010)
[94]T.H. Chao, M. Hayashi, R.I. Tapping, Y. Kato, J.D. Lee: MEKK3 directly regulates MEK5 activity as part of the big mitogen- activated protein kinase 1 (BMK1) signaling pathway. J Biol Chem. 274 36035-36038 (1999)
[95]J.M. Kyriakis, P. Banerjee, E. Nikolakaki, T. Dai, E.A. Rubie, M.F. Ahmad, J. Avruch, J.R. Woodgett: The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 369, 156-160 (1994)
[96]R.J. Davis Signal transduction by the JNK group of MAP kinases. Cell. 2, 239-252 (2000)
[97]M.A. Bogoyevitch, B. Kobe: Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 70, 1061-1095 (2006)
[98]K.A. Gallo, G.L. Johnson: Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol. 3, 663-672 (2002)
[99]E.T. Coffey: Nuclear and cytosolic JNK signaling in neurons. Nat Rev Neurosci. 15, 285-299 (2014)
[100]E.T. Coffey, V. Hongisto, M. Dickens, R.J. Davis, M.J. Courtney: Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci. 20, 7602-7613 (2000)
[101]H. Kishimoto, K. Nakagawa, T. Watanabe, D. Kitagawa, H. Momose, J. Seo, G. Nishitai, N. Shimizu, S. Ohata, S. Tanemura, S. Asaka, T. Goto, H. Fukushi, H. Yoshida, A. Suzuki, T. Sasaki, T. Wada, J.M. Penninger, H. Nishina, T. Katada: Different properties of SEK1 and MKK7 in dual phosphorylation of stress-induced activated protein kinase SAPK/JNK in embryonic stem cells. J Biol Chem. 278, 16595-16601 (2003)
[102]K.G. Finegan, C. Tournier: The mitogen-activated protein kinase kinase 4 has a prooncogenic role in skin cancer. Cancer Res. 70, 5797-5806 (2010)
[103]S. Gupta, T. Barrett, A.J. Whitmarsh, J. Cavanagh, H.K. Sluss, B. Derijard, R.J. Davis: RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760-2770 (1996)
[104]S. Brecht, R. Kirchhof, A. Chromik, M. Willesen, T. Nicolaus, G. Raivich, J. Wessig, V. Waetzig, M. Goetz, M. Claussen, D. Pearse, C.Y. Kuan, E. Vaudano, A. Behrens, E. Wagner, R.A. Flavell, R.J. Davis, T. Herdegen: Specific pathophysiological functions of JNK isoforms in the brain. Eur Journal Neurosci. 21, 363-377 (2005)
[105]C.Y. Kuan, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA. 100, 15184-15189 (2003)
[106]L. Carboni, R. Carletti, S. Tacconi, C. Corti, F. Ferraguti: Differential expression of SAPK isoforms in the rat brain. An in hybridisation study in the adult rat brain and during post-natal development. Brain Res Mol Brain Res. 60, 57-68 (1998)
[107]L. Resnick, M. Fennell. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today. 9, 932-939 (2004)
[108]N. Kelkar, S. Gupta, M. Dickens, R.J. Davis: Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol. 20, 1030-1043 (2000)
[109]A.H. Kim, T. Sasaki, M.V. Chao: JNK-interacting protein 1 promotes Akt1 activation. J Biol Chem. 278, 29830-29836 (2003)
[110]J. Yasuda, A.J. Whitmarsh, J. Cavanagh, M. Sharma, R.J. Davis: The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol. 19, 7245-7254 (1999)
[111]Ikeda, K. Hasegawa, M. Masaki, T. Moriguchi, E, Nishida, Y. Kozutsumi, S. Oka, T. Kawasaki: Mixed lineage kinase LZK forms a functional signaling complex with JIP-1, a scaffold protein of the c-Jun NH(2)-terminal kinase pathway. J Biochem. 130, 773-781 (2001)
[112]A.J. Whitmarsh: The JIP family of MAPK scaffold proteins. Biochem Soc Trans. 34, 828-832 (2006)
[113]A.J. Whitmarsh, C.Y. Kuan, N.J. Kennedy, N. Kelkar, T.F. Haydar, J.P. Mordes, M. Appel, A.A. Rossini, S.N. Jones, R.A. Flavell, P. Rakic, R.J. Davis: Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev. 15, 2421-2432 (2001)
[114]D. Nihalani, H.N. Wong, L.B. Holzman: Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation. J Biol Chem. 278, 28694-28702 (2003)
[115]S. Negri, A. Oberson, M. Steinmann, C. Sauser, P. Nicod, G. Waeber, D.F. Schorderet, C. Bonny: cDNA cloning and mapping of a novel islet-brain/JNK-interacting protein. Genomics. 64, 324-330 (2000)
[116]Z. Wang, Y. Chen, Y. Lü, X. Chen, L. Cheng, X. Mi, X. Xu, W. Deng, Y. Zhang, N. Wang, J. Li, Y. Li, X. Wang; Effects of JIP3 on epileptic seizures: Evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures. Neuroscience. 300, 314-324 (2015)
[117]Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, Yoshioka K, Ichijo H. Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J Biol Chem. 277 (2002) 40703-40709.
[118]N. Kelkar, C.L. Standen, R.J. Davis: Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol. 25, 2733-2743 (2005)
[119]B.K. Sun, J.H. Kim, H.N. Nguyen, S. Oh, S.Y. Kim, S. Choi, H.J. Choi, Y.J. Lee, J.J. Song. MEKK1/MEKK4 are responsible for TRAIL-induced JNK/p38 phosphorylation. Oncol Rep. 25, 537-544 (2011)
[120]J. Liu, A. Lin. Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 15 36-42 (2005)
[121]121, G. Verma, M. Datta: The critical role of JNK in the ER-mitochondrial crosstalk during apoptotic cell death. J Cell Physiol. 227, 1791-1795 (2012)
[122]Camins, F.X. Sureda, F.Junyent, E. Verdaguer, J. Folch, C. Beas-Zarate, M. Pallas: An overview of investigational antiapoptotic drugs with potential application for the treatment of neurodegenerative disorders. Expert Opin Investig Drugs. 19, 587-604 (2010)
[123]Ferrer, R. Blanco, M. Carmona: Differential expression of active, phosphorylation dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Mol. Brain Res. 94, 48-58 (2001)
[124]Ferrer, T. Gomez-Isla, B. Puig, M. Freixes, E. Ribé, E. Dalfó, J. Avila: Current advances on different kinases involved in tau phosphorylation and implications in Alzheimer’s disease and taupathies. Curr Alzheimer Res. 2, 3-18 (2005)
[125]N.V. Oleinik, N.I. Krupenko, S.A. Krupenko: Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene. 26, 7222-7230 (2007)
[126]Y.R. Chen, T.H. Tan: The c-Jun N-terminal kinase pathway and apoptotic signaling (review) Int J Oncol. 16, 651-662 (2000)
[127]G. Verma, M. Datta: The critical role of JNK in the ER-mitochondrial crosstalk during apoptotic cell death. J Cell Physiol. 227, 1791-1795 (2012)
[128]D. Bozyczko-Coyne, T.M. O’Kane, Z.L. Wu, P. Dobrzanski, S. Murthy, J.L.: Vaught, Scott RW CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Abeta-induced cortical neuron apoptosis. J Neurochem. 77, 849-863 (2001)
[129]S. Gourmaud, C. Paquet, J. Dumurgier, C. Pace, C. Bouras, F. Gray, J.L. Laplanche, E.F. Meurs, F. Mouton-Liger,J. Hugon: Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline. J Psychiatry Neurosci. 40, 151-61 (2015)
[130]S.O. Yoon, D.J. Park, J.C. Ryu, H.G. Ozer, C. Tep, Y.J. Shin, T.H. Lim, L. Pastorino, A.J. Kunwar, J.C. Walton, A.H. Nagahara, K.P. Lu, R.J. Nelson, M.H. Tuszynski, K. Huang: JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron. 75. 824-837 (2012)
[131]W.T. Kimberly, J.B. Zheng, T. Town, R.A. Flavell, D.J. Selkoe. Physiological regulation of the beta-amyloid precursor protein signaling domain by c-Jun N-terminal kinase JNK3 during neuronal differentiation. J Neurosci. 25, 5533-5543 (2005)
[132]S. Carboni, B. Antonsson, P. Gaillard, J.P. Gotteland, J.Y. Gillon, P.A. Vitte: Control of death receptor and mitochondrial-dependent apoptosis by c-Jun N-terminal kinase in hippocampal CA1 neurones following global transient ischaemia. J Neurochem. 92, 1054-1060 (2005)
[133]Q.H. Guan, D.S. Pei, Q.G. Zhang, Z.B. Hao, T.L. Xu, G.Y. Zhang: The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-nuclear pathways. Brain Res. 1035, 51-59 (2005)
[134]M.S. Saporito, B.A. Thomas, R.W. Scott. MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem. 75, 1200-1208 (2000)
[135]Parkinson Study Group PRECEPT Investigators. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology. 69, 1480-1490 (2007)
[136]W. Wang, L. Shi, Y. Xie, C. Ma,W. Li, X. Su, S. Huang, R. Chen, Z. Zhu, Z. Mao, Y. Han, M. Li: SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res. 48, 195-202 (2004)
[137]S. Carboni, A. Hiver, C. Szyndralewiez, P. Gaillard, J.P. Gotteland, P.A. Vitte: AS601245 (1,3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino]-4 pyrimidinyl) acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J Pharmacol Exp Ther. 310, 25-32 (2004)
[138]S. Carboni, U. Boschert, P. Gaillard, J. P. Gotteland, J.Y. Gillon, P.A. Vitte: AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebral ischaemia in gerbils. Br J Pharmacol. 153 157-163(2008)
[139]C. Bonny, A. Oberson, S. Negri, C. Sauser, D.F. Schorderet: Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes. 50, 77-82 (2001)
[140]M. Repici, C. Centeno, S. Tomasi, G. Forloni, C. Bonny, A. Vercelli, T. Borsello: Time-course of c-Jun N-terminal kinase activation after cerebral ischemia and effect of D-JNKI1 on c-Jun and caspase-3 activation. Neuroscience. 150, 40-49 (2007).
[141]Behrens, M. Sibilia, E.F. Wagner: Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet. 21, 326-329 (1999).
[142]Dunn, C. Wiltshire, A. MacLaren, D.A. Gillespie. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal. 14, 585-593 (2002)
[143]F. Junyent, L. de Lemos, E. Verdaguer, J. Folch, I. Ferrer, D. Ortu-o-Sahagún, C. Beas-Zárate, R. Romero, M. Pallàs, C. Auladell, A. Camins:.Gene expression profile in JNK3 null mice: a novel specific activation of the PI3K/AKT pathway. J Neurochem. 117 244-252 (2011)
[144]F. Junyent, L. de Lemos, E. Verdaguer, M. Pallàs, J. Folch, C. Beas-Zárate, A. Camins, C. Auladell: Lack of Jun-N-terminal kinase 3 (JNK3) does not protect against neurodegeneration induced by 3-nitropropionic acid. Neuropathol Appl Neurobiol. 38, 311-321 (2012)
[145]D. Petrov, M. Luque, I. Pedrós, M. Ettcheto, S. Abad, M. Pallàs, E. Verdaguer, C. Auladell, J. Folch, A. Camins: Evaluation of the Role of JNK1 in the Hippocampus in an Experimental Model of Familial Alzheimer’s Disease. Mol Neurobiol. Nov 12 (2015)
[146]W.T. Kimberly, J.B. Zheng, T. Town, R.A. Flavell, D.J. Selkoe. Physiological regulation of the beta-amyloid precursor protein signaling domain by c-Jun N-terminal kinase JNK3 during neuronal differentiation. J Neurosci. 25, 5533-5543 (2005)
[147]P. Gaillard, I. Jeanclaude-Etter, V. Ardissone, S. Arkinstall, Y. Cambet, M. Camps, C. Chabert, D. Church, R. Cirillo, D. Gretener, S. Halazy, A. Nichols, C. Szyndralewiez, P.A. Vitte, J.P. Gotteland: Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl) acetonitrile inhibitors of the c-Jun N-terminal kinase. J Med Chem. 48 4596-4607 (2005)
[148]S.R. Brucknerm, S.P. Tammariello, C.Y. Kuan, R.A. Flavell, R. Rakic, S. Estus: JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor deprived sympathetic neurons. J Neurochem. 78, 298-303 (2001)
[149]C.Y. Kuan, D.D. Yang, D.R. Samanta Roy, R.J. Davis, P. Rakic, R.A. Flavell: The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 22, 667-676 (1999)
[150]S. Hunot, M.Vila, P. Teismann, R.J. Davis, E.C. Hirsch, S. Przedborski, P. Rakic P, R.A. Flavell: JNK mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 101, 665-670 (2004)
[151]C.Y. Kuan, R.E. Burke: Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr Drug Targ CNS Neurol Disord. 4, 63-67 (2005)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration
1 Departament de Biologia Cellular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
2 Instituto Gulbenkian de Ciencia, Rua Quinta Grande 6,2780-156 Oeiras, Portugal
3 Unitat de Farmacologia i Farmacognosia, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
4 Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
5 Unitat de Bioquimica i Biotecnologia, Facultat de Medicina i Ciencies de la Salut, Universitat Rovira i Virgili, Reus, Tarragona, Spain
6 Instituto de Investigaciones en Fisiopatologia y Bioquimica Clinica (INFIBIOC), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
7 Departamento de Biología Celular y Molecular, C.U.C.B.A., Universidad de Guadalajara and Division de Neurociencias, Sierra Mojada 800, Col. Independencia, Guadalajara, Jalisco 44340, Mexico
8 Centro de Investigacion Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Jalisco 44340, Mexico
9 Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
10 Institute of Neurosciences, University of Barcelona, Spain
Abstract
Chemoconvulsants that induce status epilepticus in rodents have been widely used over the past decades due to their capacity to reproduce with high similarity neuropathological and electroencephalographic features observed in patients with temporal lobe epilepsy (TLE). Kainic acid is one of the most used chemoconvulsants in experimental models. KA administration mainly induces neuronal loss in the hippocampus. We focused the present review inthe c-Jun N-terminal kinase-signaling pathway (JNK), since it has been shown to play a key role in the process of neuronal death following KA activation. Among the three isoforms of JNK (JNK1, JNK2, JNK3), JNK3 is widely localized in the majority of areas of the hippocampus, whereas JNK1 levels are located exclusively in the CA3 and CA4 areas and in dentate gyrus. Disruption of the gene encoding JNK3 in mice renders neuroprotection to KA, since these animals showed a reduction in seizure activity and a diminution in hippocampal neuronal apoptosis. In light of this, JNK3 could be a promising subcellular target for future therapeutic interventions in epilepsy.
Keywords
- Kainic Acid
- HippocampuS
- c-Jun N-Terminal Kinase Signaling Pathway
- Apoptosis
- Neuroprotection
- Review
References
- [1] R.S. Fisher, W. Van Emde Boas, W. Blume, C. Elger, P. Genton, Lee: Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) Epilepsia 46, 470-472 (2005)
- [2] M. Barker-Haliski, H.S. White: Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med. 5, a022863. (2015)
- [3] J.A. Gorter, E.A. van Vliet, E. Aronica: Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 49, 13-16 (2015)
- [4] Pitkänen, K. Lukasiuk, F.E. Dudek, K.I. Staley. Epileptogenesis. Cold Spring Harb Perspect Sep 18;5(10) pii: a022822.
- [5] K. Staley: Molecular mechanisms of epilepsy. Nat Neurosci. 18, 367-372 (2015)
- [6] J. Noebels: Pathway-driven discovery of epilepsy genes. Nat Neurosci. 18, 344-350 (2015)
- [7] J.T. Paz, J.R. Huguenard: Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. 18, 351-359(2015).
- [8] A.Y. Reid, R.J. Staba: Limbic networks: clinical perspective. Int Rev Neurobiol. 114, 89-120 (2014)
- [9] K.S. Wilcox, A. Vezzani: Does brain inflammation mediate pathological outcomes in epilepsy? Adv Exp Med Biol. 813, 169-183 (2014)
- [10] C.R. Houser: Do structural changes in GABA neurons give rise to the epileptic state? Adv Exp Med Biol. 813, 151-160 (2014)
- [11] F. Cendes, A.C: Sakamoto, R. Spreafico, W. Bingaman, A.J. Becker: Epilepsies associated with hippocampal sclerosis. Acta Neuropathol. 128, 21-37 (2014)
- [12] Chatzikonstantinou: Epilepsy and the hippocampus. Front Neurol Neurosci. 34, 121-142 (2014)
- [13] E. Trinka, J. Höfle, M. Leitinger, F. Brigo: Pharmacotherapy for Status Epilepticus. Drugs. 75, 1499-1521 (2015)
- [14] X. Wang, J. Jin, R. Chen: Combination drug therapy for the treatment of status epilepticus. Expert Rev Neurother. 15, 639-654 (2015)
- [15] K. Bates: Epilepsy: current evidence-based paradigms for diagnosis and treatment. Prim Care. 42, 217-232 (2015)
- [16] M. Biale, S.I. Johannessen, R.H. Levy, E. Perucca, T. Tomson, H.S. White: Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII) Epilepsy Res. 111, 85-141 (2015)
- [17] M. Lévesque, M. Avoli, C. Bernard: Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J Neurosci Methods. 260, 45-52 (2016)
- [18] Y. Ben-Ari, J. Lagowska: Epileptogenic action of intra-amygdaloid injection of kainic acid. C R Acad Sci Hebd Seances Acad Sci D. 287, 813-816 (1978)
- [19] B.P. Grone, S.C. Baraban: Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 18, 339-43 (2015)
- [20] J.V. Nadle: Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29, 2031-2042 (1981)
- [21] J.E. Cavazos, S.M. Jones, D.J. Cross: Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy. Neuroscience 126, 677-688 (2004)
- [22] L. Kandratavicius, P.A. Balista, C. Lopes-Aguiar, R.N. Ruggiero, E.H. Umeoka, N. Garcia-Cairasco, L.S. Bueno-Junior, J.P. Leite: Animal models of epilepsy: use and limitations. Neuropsychiatr Dis Treat. 10, 1693-705 (2014)
- [23] M. Lévesque, M. Avoli: The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev. 37 (2013) 2887-2899.
- [24] Z. Chen, R.S. Duan, H.C. Quezada, E. Mix, I. Nennesmo, A. Adem, B. Winblad, J. Zhu: Increased microglial activation and astrogliosis after intranasal administration of kainic acid in C57BL/6 mice. J Neurol 62, 207-218 (2005)
- [25] Y. Ben-Ari. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neurosci 14, 375-403 (1985)
- [26] Y. Ben-Ari, M. Gho: Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid. J Physiol. 404, 365-384 (1988)
- [27] Kondratyev, K. Gale: Latency to onset of status epilepticus determines molecular mechanisms of seizure-induced cell death. Brain Res Mol Brain Res. 121, 86-94 (2004)
- [28] T.P. Sutula, J. Hagen, A. Pitkänen. Do epileptic seizures damage the brain? Curr Opin Neurol. 16, 189-95 (2003)
- [29] A.D. Umpierre, I.V. Bennett, L.D. Nebeker, T.G. Newell, B.B. Tian, K.E. Thomson, H.S. White, J.A. White, K.S. Wilcox. Repeated low-dose kainate administration in C57BL/6J mice produces temporal lobe epilepsy pathology but infrequent spontaneous seizures. Exp Neurol. 279, 116-126 (2016)
- [30] Pitkänen, T.P. Sutula: Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 1, 173-81 (2002)
- [31] T. Borsello, G. Forloni: JNK signalling: a possible target to prevent neurodegeneration. Curr Pharm Des. 13, 1875-1886 (2007)
- [32] T. Bartsch, P. Wulff: The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience. 19, 1-16 (2015)
- [33] F.E. Dudek: Role of Glial Cells in Seizures and Epilepsy: Intracellular Calcium Oscillations sn Spatial Buffering. Epilepsy Curr. 2, 137-139 (2002)
- [34] Y.R. Chen, T.H. Tan: The c-Jun N-terminal kinase pathway and apoptotic signaling. Int J Oncol 16, 651-662 (2000)
- [35] B.A. Strange, M.P. Witter, E.S. Lein, E.I. Moser: Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 15 655-669 (2014)
- [36] T. Bartsch, P. Wulff: The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience. 309, 1-16 (2015)
- [37] L. Tatu, F. Vuillier: Structure and vascularization of the human hippocampus. Front Neurol Neurosci. 34, 18-25 (2014)
- [38] J.J. Chrobak, A. Lörincz, G. Buzsáki: Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus. 10, 457-465 (2000)
- [39] S.C. Shalin, R. Egli, S.G. Birnbaum, T.L. Roth, J.M. Levenson, J.D., Sweatt: Signal transduction mechanisms in memory disorders. Prog Brain Res. 157, 25-41 (2006)
- [40] P. Duarte-Guterman, S. Yagi,C. Chow, L.A. Galea: Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm Behav. 74, 37-52 (2015)
- [41] E. Fernández-Espejo: Basic neurobiology of hippocampal formation. Rev Neurol. 24, 779-784 (1996)
- [42] S. Murakami, T. Takemoto, Z. Shimizu: The effective principle of Diginea simplex Aq. I. Separation of the effective fractions by liquid chromatography. J Pharm Soc Japan 73, 1026 (1953)
- [43] S. Bahn, B. Volk, W. Wisden: Kainate receptor gene expression in the developing rat brain. J Neurosci. 14, 5525-5547 (1994)
- [44] X.T. Jin, Y. Smith: Localization and functions of kainate receptors in the basal ganglia. Adv Exp Med Biol. 717, 27-37 (2011).
- [45] V. Crépel, C. Mulle: Physiopathology of kainate receptors in epilepsy. Curr Opin Pharmacol. 20, 83-88 (2015)
- [46] M. Carta, S. Fièvre, A. Gorlewicz, C. Mulle: Kainate receptors in the hippocampus. Eur J Neurosci. 39, 1835-1844 (2014)
- [47] E. Szczurowska, P. Mareš. NMDA and AMPA receptors: development and status epilepticus. Physiol Res. 62 Suppl 1:S21-38 (2013)
- [48] J. Lerma, J.M. Marques: Kainate receptors in health and disease. Neuron. 80, 292-311 (2013)
- [49] T.S. Sihra, G. Flores, A. Rodríguez-Moreno: Kainate receptors: multiple roles in neuronal plasticity. Neuroscientist. 20, 29-43(2014).
- [50] X.Y. Zheng, H.L. Zhang, Q. Luo, J. Zhu: Kainic acid-induced neurodegenerative model: potentials and limitations. J Biomed Biotechnol. 457079 (2011)
- [51] F. Zheng,K.D. Phelan: The role of canonical transient receptor potential channels in seizure and excitotoxicity. Cells. 3, 288-303 (2014)
- [52] J. Gonzalez, J.C. Jurado-Coronel, M.F. Ávila, A. Sabogal, F. Capani, G.E. Barreto. NMDARs in neurological diseases: a potential therapeutic target. Int J Neurosci. 125, 315-327 (2015)
- [53] V. Vyklicky, M. Korinek, T. Smejkalova, A. Balik, B. Krausova, M. Kaniakova, K. Lichnerova, J. Cerny, J. Krusek, I. Dittert, M. Horak, L. Vyklicky: Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 63. Suppl 1:S191-203 (2014)
- [54] Y. Ben-Ari, R. Cossart: Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23, 580-587(2000)
- [55] E.B. Bloss,R.G. Hunter. Hippocampal kainate receptors. Vitam Horm. 82, 167-184 (2010)
- [56] Lin, B. Dibling: The true face of JNK activation in apoptosis. Aging Cell 1, 112-116 (2002)
- [57] T. Herdegen, P. Skene. M. Bahr. The c-Jun transcription factor-bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci. 20. 227-231 (1997)
- [58] Q. Wang, S. Yu, A. Simonyi, G. Y. Sun, A.Y. Sun. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol. 31, 3-16 (2005)
- [59] E.J. Shin, J.H. Jeong, Y.H. Chung, W.K. Kim, K,H. Ko, J.H. Bach, J.S. Hong, Y. Yoneda, H.C. Kim: Role of oxidative stress in epileptic seizures. Neurochem Int. 59, 122-137 (2011)
- [60] R.J. Reiter, L.C. Manchester, D.X. Tan: Neurotoxins: free radical mechanisms and melatonin protection. Curr Neuropharmacol. 8 194-210 (2010)
- [61] Lau, M. Tymianski: Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460, 525-542 (2010)
- [62] S.S. Oja, P. Saransaari: Modulation of taurine release by glutamate receptors and nitric oxide. Prog Neurobiol. 62, 407-425 (2000)
- [63] M. Gonzalez-Zulueta, L.M. Ensz, G. Mukhina, R.M. Lebovitz, R.M. Zwacka, J.F. Engelhardt, L.W. Oberley, V.L.Dawson, T.W. Dawson: Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci. 18, 2040-2055 (1998)
- [64] D.C. Henshall, T. Araki, C.K. Schindler, S. Shinoda, J.Q. Lan, R.P. Simon: Expression of death-associated protein kinase and recruitment to the tumor necrosis factor signaling pathway following brief seizures. J Neurochem. 86, 1260-1270 (2003)
- [65] S. Shinoda, S.L. Skradski, T. Araki, C.K. Schindler, R. Meller, J.Q. Lan, W. Taki, R.P. Simon, D.C. Henshall: Formation of a tumour necrosis factor receptor 1 molecular scaffolding complex and activation of apoptosis signal-regulating kinase 1 during seizure-induced neuronal death. Eur J Neurosci. 17, 2065-2076 (2003)
- [66] D.A. Flusberg, P.K. Sorger: Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol. 25, 446-458 (2015)
- [67] D.B. Wang, C. Kinoshita, Y. Kinoshita, R.S. Morrison: p53 and mitochondrial function in neurons. Biochim Biophys Acta. 1842, 1186-1197 (2014)
- [68] Almeida. Genetic determinants of neuronal vulnerability to apoptosis. Cell Mol Life Sci. 70, 71-88 (2013).
- [69] J.L. Franklin. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal. 14, 1437-1448 (2011).
- [70] L. Galluzzi, K. Blomgren, G. Kroemer. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci. 10, 481-494 (2009)
- [71] Kondratyev, K. Gale: Latency to onset of status epilepticus determines molecular mechanisms of seizure-induced cell death. Brain Res Mol Brain Res. 5, 86-94 (2004)
- [72] N. Donovan, E.B. Becker, Y. Konishi Y, A. Bonni: JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 277, 40944-40949 (2002)
- [73] X.M. Zhang, J. Zhu: Kainic Acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol. 9, 388-398 (2011)
- [74] B.A. Miller, F. Sun, R.N. Christensen, A.R. Ferguson, J.C. Bresnahan, M.S. Beattie: A sublethal dose of TNFalpha potentiates kainate-induced excitotoxicity in optic nerve oligodendrocytes. Neurochem Res. 30, 867-875 (2005)
- [75] M. Oprica, C. Eriksson, M. Schultzberg: Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J Cell Mol Med. 7, 127-140 (2003)
- [76] A.A. Farooqui, W. Yi Ong, X.R. Lu, B. Halliwell, L.A. Horrocks: Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A(2) inhibitors. Brain Res Brain Res Rev. 38, 61-78 (2001)
- [77] M. Oprica, C. Eriksson, M. Schultzberg: Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J Cell Mol Med. 7, 127-140 (2003)
- [78] Sanz, A. Estrada, I. Ferrer, A.M. Planas: Differential cellular distribution and dynamics of HSP70, cyclooxygenase-2, and c-Fos in the rat brain after transient focal ischemia or kainic acid. Neuroscience. 80, 221-232 (1997)
- [79] A.M. Planas, M.A. Soriano, I. Ferrer, E. Rodríguez Farré: Kainic acid-induced heat shock protein-70, mRNA and protein expression is inhibited by MK-801 in certain rat brain regions. Eur J Neurosci. 7, 293-304 (1995)
- [80] T. Borsello, P.G. Clarke, L. Hirt, A. Vercelli, M. Repici, D.F. Schorderet, J. Bogousslavsky, C. Bonny: A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 9, 1180-1186 (2003)
- [81] Anthony, A.A. Oliva, C.M. Atkins, L. Copenagle, G.A. Banker: Activated c-Jun NTerminal Kinase Is Required for Axon Formation. J Neurosci. 26, 9462-9470 (2006)
- [82] R.S. Sloviter, L. Ali-Akbarian, K.D. Horvath, K.A. Menkens: Substance P receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. J Comp Neurol. 12, 283-305 (2001)
- [83] M. Aouadi, B. Binetruy, L. Caron, Y.L. Marchand-Brustel, F. Bost: Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimica. 88, 1091-1098 (2006)
- [84] J. Avruch: MAPKinase pathways: the first twenty years. Biochim Biophys Acta. 1773, 1150- 1160 (2007)
- [85] L. Chang, M. Karin: Mammalian MAP kinase signalling cascades. Nature. 410, 37-40 (2001)
- [86] J.M. Kyriakis, J. Avruch: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 81: 807-869 (2001)
- [87] L. de Lemos, F. Junyent, E. Verdaguer, J. Folch, R. Romero, M. Pallàs, I. Ferrer, C. Auladell, A. Camins: Differences in activation of ERK1/2 and p38 kinase in Jnk3 null mice following KA treatment. J Neurochem. 114, 1315-1322 (2010)
- [88] R.M. Biondi, R.A. Nebred: Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J. 372, 1-13 (2003)
- [89] D.N. Dhanasekaran, K. Kashef, C.M. Lee, H. Xu, E.P. Reddy: Scaffold proteins of MAP-kinase modules. Oncogene. 26, 3185-3202 (2007)
- [90] T.G. Boulton, M.H. Cobb: Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul. 2, 357-371 (1991)
- [91] T.G. Boulton, S.H. Nye, D.J. Robbins, N.Y. Ip, E. Radziejewska, S.D. Morgenbesser, R.A. DePinho, N. Panayotatos, M.H. Cobb, G.D. Yancopoulos: ERK’s: a family of proteinserine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell. 65, 663-675 (1991)
- [92] Cuenda, S. Rousseau: p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 1773, 1358-1375 (2007)
- [93] Y. Keshet, R. Seger: The MAP Kinase Signaling Cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods in Molecular Biology. 661, 3-38 (2010)
- [94] T.H. Chao, M. Hayashi, R.I. Tapping, Y. Kato, J.D. Lee: MEKK3 directly regulates MEK5 activity as part of the big mitogen- activated protein kinase 1 (BMK1) signaling pathway. J Biol Chem. 274 36035-36038 (1999)
- [95] J.M. Kyriakis, P. Banerjee, E. Nikolakaki, T. Dai, E.A. Rubie, M.F. Ahmad, J. Avruch, J.R. Woodgett: The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 369, 156-160 (1994)
- [96] R.J. Davis Signal transduction by the JNK group of MAP kinases. Cell. 2, 239-252 (2000)
- [97] M.A. Bogoyevitch, B. Kobe: Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 70, 1061-1095 (2006)
- [98] K.A. Gallo, G.L. Johnson: Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol. 3, 663-672 (2002)
- [99] E.T. Coffey: Nuclear and cytosolic JNK signaling in neurons. Nat Rev Neurosci. 15, 285-299 (2014)
- [100] E.T. Coffey, V. Hongisto, M. Dickens, R.J. Davis, M.J. Courtney: Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci. 20, 7602-7613 (2000)
- [101] H. Kishimoto, K. Nakagawa, T. Watanabe, D. Kitagawa, H. Momose, J. Seo, G. Nishitai, N. Shimizu, S. Ohata, S. Tanemura, S. Asaka, T. Goto, H. Fukushi, H. Yoshida, A. Suzuki, T. Sasaki, T. Wada, J.M. Penninger, H. Nishina, T. Katada: Different properties of SEK1 and MKK7 in dual phosphorylation of stress-induced activated protein kinase SAPK/JNK in embryonic stem cells. J Biol Chem. 278, 16595-16601 (2003)
- [102] K.G. Finegan, C. Tournier: The mitogen-activated protein kinase kinase 4 has a prooncogenic role in skin cancer. Cancer Res. 70, 5797-5806 (2010)
- [103] S. Gupta, T. Barrett, A.J. Whitmarsh, J. Cavanagh, H.K. Sluss, B. Derijard, R.J. Davis: RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760-2770 (1996)
- [104] S. Brecht, R. Kirchhof, A. Chromik, M. Willesen, T. Nicolaus, G. Raivich, J. Wessig, V. Waetzig, M. Goetz, M. Claussen, D. Pearse, C.Y. Kuan, E. Vaudano, A. Behrens, E. Wagner, R.A. Flavell, R.J. Davis, T. Herdegen: Specific pathophysiological functions of JNK isoforms in the brain. Eur Journal Neurosci. 21, 363-377 (2005)
- [105] C.Y. Kuan, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci USA. 100, 15184-15189 (2003)
- [106] L. Carboni, R. Carletti, S. Tacconi, C. Corti, F. Ferraguti: Differential expression of SAPK isoforms in the rat brain. An in hybridisation study in the adult rat brain and during post-natal development. Brain Res Mol Brain Res. 60, 57-68 (1998)
- [107] L. Resnick, M. Fennell. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today. 9, 932-939 (2004)
- [108] N. Kelkar, S. Gupta, M. Dickens, R.J. Davis: Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol. 20, 1030-1043 (2000)
- [109] A.H. Kim, T. Sasaki, M.V. Chao: JNK-interacting protein 1 promotes Akt1 activation. J Biol Chem. 278, 29830-29836 (2003)
- [110] J. Yasuda, A.J. Whitmarsh, J. Cavanagh, M. Sharma, R.J. Davis: The JIP group of mitogen-activated protein kinase scaffold proteins. Mol Cell Biol. 19, 7245-7254 (1999)
- [111] Ikeda, K. Hasegawa, M. Masaki, T. Moriguchi, E, Nishida, Y. Kozutsumi, S. Oka, T. Kawasaki: Mixed lineage kinase LZK forms a functional signaling complex with JIP-1, a scaffold protein of the c-Jun NH(2)-terminal kinase pathway. J Biochem. 130, 773-781 (2001)
- [112] A.J. Whitmarsh: The JIP family of MAPK scaffold proteins. Biochem Soc Trans. 34, 828-832 (2006)
- [113] A.J. Whitmarsh, C.Y. Kuan, N.J. Kennedy, N. Kelkar, T.F. Haydar, J.P. Mordes, M. Appel, A.A. Rossini, S.N. Jones, R.A. Flavell, P. Rakic, R.J. Davis: Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev. 15, 2421-2432 (2001)
- [114] D. Nihalani, H.N. Wong, L.B. Holzman: Recruitment of JNK to JIP1 and JNK-dependent JIP1 phosphorylation regulates JNK module dynamics and activation. J Biol Chem. 278, 28694-28702 (2003)
- [115] S. Negri, A. Oberson, M. Steinmann, C. Sauser, P. Nicod, G. Waeber, D.F. Schorderet, C. Bonny: cDNA cloning and mapping of a novel islet-brain/JNK-interacting protein. Genomics. 64, 324-330 (2000)
- [116] Z. Wang, Y. Chen, Y. Lü, X. Chen, L. Cheng, X. Mi, X. Xu, W. Deng, Y. Zhang, N. Wang, J. Li, Y. Li, X. Wang; Effects of JIP3 on epileptic seizures: Evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures. Neuroscience. 300, 314-324 (2015)
- [117] Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, Yoshioka K, Ichijo H. Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J Biol Chem. 277 (2002) 40703-40709.
- [118] N. Kelkar, C.L. Standen, R.J. Davis: Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol. 25, 2733-2743 (2005)
- [119] B.K. Sun, J.H. Kim, H.N. Nguyen, S. Oh, S.Y. Kim, S. Choi, H.J. Choi, Y.J. Lee, J.J. Song. MEKK1/MEKK4 are responsible for TRAIL-induced JNK/p38 phosphorylation. Oncol Rep. 25, 537-544 (2011)
- [120] J. Liu, A. Lin. Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 15 36-42 (2005)
- [121] 121, G. Verma, M. Datta: The critical role of JNK in the ER-mitochondrial crosstalk during apoptotic cell death. J Cell Physiol. 227, 1791-1795 (2012)
- [122] Camins, F.X. Sureda, F.Junyent, E. Verdaguer, J. Folch, C. Beas-Zarate, M. Pallas: An overview of investigational antiapoptotic drugs with potential application for the treatment of neurodegenerative disorders. Expert Opin Investig Drugs. 19, 587-604 (2010)
- [123] Ferrer, R. Blanco, M. Carmona: Differential expression of active, phosphorylation dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates following quinolinic acid excitotoxicity in the rat. Mol. Brain Res. 94, 48-58 (2001)
- [124] Ferrer, T. Gomez-Isla, B. Puig, M. Freixes, E. Ribé, E. Dalfó, J. Avila: Current advances on different kinases involved in tau phosphorylation and implications in Alzheimer’s disease and taupathies. Curr Alzheimer Res. 2, 3-18 (2005)
- [125] N.V. Oleinik, N.I. Krupenko, S.A. Krupenko: Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene. 26, 7222-7230 (2007)
- [126] Y.R. Chen, T.H. Tan: The c-Jun N-terminal kinase pathway and apoptotic signaling (review) Int J Oncol. 16, 651-662 (2000)
- [127] G. Verma, M. Datta: The critical role of JNK in the ER-mitochondrial crosstalk during apoptotic cell death. J Cell Physiol. 227, 1791-1795 (2012)
- [128] D. Bozyczko-Coyne, T.M. O’Kane, Z.L. Wu, P. Dobrzanski, S. Murthy, J.L.: Vaught, Scott RW CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Abeta-induced cortical neuron apoptosis. J Neurochem. 77, 849-863 (2001)
- [129] S. Gourmaud, C. Paquet, J. Dumurgier, C. Pace, C. Bouras, F. Gray, J.L. Laplanche, E.F. Meurs, F. Mouton-Liger,J. Hugon: Increased levels of cerebrospinal fluid JNK3 associated with amyloid pathology: links to cognitive decline. J Psychiatry Neurosci. 40, 151-61 (2015)
- [130] S.O. Yoon, D.J. Park, J.C. Ryu, H.G. Ozer, C. Tep, Y.J. Shin, T.H. Lim, L. Pastorino, A.J. Kunwar, J.C. Walton, A.H. Nagahara, K.P. Lu, R.J. Nelson, M.H. Tuszynski, K. Huang: JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron. 75. 824-837 (2012)
- [131] W.T. Kimberly, J.B. Zheng, T. Town, R.A. Flavell, D.J. Selkoe. Physiological regulation of the beta-amyloid precursor protein signaling domain by c-Jun N-terminal kinase JNK3 during neuronal differentiation. J Neurosci. 25, 5533-5543 (2005)
- [132] S. Carboni, B. Antonsson, P. Gaillard, J.P. Gotteland, J.Y. Gillon, P.A. Vitte: Control of death receptor and mitochondrial-dependent apoptosis by c-Jun N-terminal kinase in hippocampal CA1 neurones following global transient ischaemia. J Neurochem. 92, 1054-1060 (2005)
- [133] Q.H. Guan, D.S. Pei, Q.G. Zhang, Z.B. Hao, T.L. Xu, G.Y. Zhang: The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-nuclear pathways. Brain Res. 1035, 51-59 (2005)
- [134] M.S. Saporito, B.A. Thomas, R.W. Scott. MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem. 75, 1200-1208 (2000)
- [135] Parkinson Study Group PRECEPT Investigators. Mixed lineage kinase inhibitor CEP-1347 fails to delay disability in early Parkinson disease. Neurology. 69, 1480-1490 (2007)
- [136] W. Wang, L. Shi, Y. Xie, C. Ma,W. Li, X. Su, S. Huang, R. Chen, Z. Zhu, Z. Mao, Y. Han, M. Li: SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res. 48, 195-202 (2004)
- [137] S. Carboni, A. Hiver, C. Szyndralewiez, P. Gaillard, J.P. Gotteland, P.A. Vitte: AS601245 (1,3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino]-4 pyrimidinyl) acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J Pharmacol Exp Ther. 310, 25-32 (2004)
- [138] S. Carboni, U. Boschert, P. Gaillard, J. P. Gotteland, J.Y. Gillon, P.A. Vitte: AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebral ischaemia in gerbils. Br J Pharmacol. 153 157-163(2008)
- [139] C. Bonny, A. Oberson, S. Negri, C. Sauser, D.F. Schorderet: Cell-permeable peptide inhibitors of JNK: novel blockers of beta-cell death. Diabetes. 50, 77-82 (2001)
- [140] M. Repici, C. Centeno, S. Tomasi, G. Forloni, C. Bonny, A. Vercelli, T. Borsello: Time-course of c-Jun N-terminal kinase activation after cerebral ischemia and effect of D-JNKI1 on c-Jun and caspase-3 activation. Neuroscience. 150, 40-49 (2007).
- [141] Behrens, M. Sibilia, E.F. Wagner: Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet. 21, 326-329 (1999).
- [142] Dunn, C. Wiltshire, A. MacLaren, D.A. Gillespie. Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cell Signal. 14, 585-593 (2002)
- [143] F. Junyent, L. de Lemos, E. Verdaguer, J. Folch, I. Ferrer, D. Ortu-o-Sahagún, C. Beas-Zárate, R. Romero, M. Pallàs, C. Auladell, A. Camins:.Gene expression profile in JNK3 null mice: a novel specific activation of the PI3K/AKT pathway. J Neurochem. 117 244-252 (2011)
- [144] F. Junyent, L. de Lemos, E. Verdaguer, M. Pallàs, J. Folch, C. Beas-Zárate, A. Camins, C. Auladell: Lack of Jun-N-terminal kinase 3 (JNK3) does not protect against neurodegeneration induced by 3-nitropropionic acid. Neuropathol Appl Neurobiol. 38, 311-321 (2012)
- [145] D. Petrov, M. Luque, I. Pedrós, M. Ettcheto, S. Abad, M. Pallàs, E. Verdaguer, C. Auladell, J. Folch, A. Camins: Evaluation of the Role of JNK1 in the Hippocampus in an Experimental Model of Familial Alzheimer’s Disease. Mol Neurobiol. Nov 12 (2015)
- [146] W.T. Kimberly, J.B. Zheng, T. Town, R.A. Flavell, D.J. Selkoe. Physiological regulation of the beta-amyloid precursor protein signaling domain by c-Jun N-terminal kinase JNK3 during neuronal differentiation. J Neurosci. 25, 5533-5543 (2005)
- [147] P. Gaillard, I. Jeanclaude-Etter, V. Ardissone, S. Arkinstall, Y. Cambet, M. Camps, C. Chabert, D. Church, R. Cirillo, D. Gretener, S. Halazy, A. Nichols, C. Szyndralewiez, P.A. Vitte, J.P. Gotteland: Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl) acetonitrile inhibitors of the c-Jun N-terminal kinase. J Med Chem. 48 4596-4607 (2005)
- [148] S.R. Brucknerm, S.P. Tammariello, C.Y. Kuan, R.A. Flavell, R. Rakic, S. Estus: JNK3 contributes to c-Jun activation and apoptosis but not oxidative stress in nerve growth factor deprived sympathetic neurons. J Neurochem. 78, 298-303 (2001)
- [149] C.Y. Kuan, D.D. Yang, D.R. Samanta Roy, R.J. Davis, P. Rakic, R.A. Flavell: The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 22, 667-676 (1999)
- [150] S. Hunot, M.Vila, P. Teismann, R.J. Davis, E.C. Hirsch, S. Przedborski, P. Rakic P, R.A. Flavell: JNK mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. 101, 665-670 (2004)
- [151] C.Y. Kuan, R.E. Burke: Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr Drug Targ CNS Neurol Disord. 4, 63-67 (2005)
