Information
References
Contents
Download
[1]V. Erspamer, P. Melchiorri, M. Broccardo, G. F. Erspamer, P. Falaschi, G. Improta, L. Negri, T. Renda: The brain-gut-skin triangle: new peptides. Peptides 2, 7-16 (1981)
[2]L. H. Lazarus, M. Attila: The toad, ugly and venomous, wears yet a precious jewel in his skin. Prog Neurobiol 41, 473-507 (1993)
[3]E. König, O. R. Bininda-Emonds, C. Shaw: The diversity and evolution of anuran skin peptides. Peptides 63, 96-117 (2015)
[4]R. C. Toledo, C. Jared: Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol 111, 1-29 (1995)
[5]G. Delfino G, R. Brizzi, B. B. Alvarez, R. Kracke-Berndorff: Serous cutaneous glands in Phyllomedusa hypochondrialis (Anura, Hylidae): secretory patterns during ontogenesis. Tissue Cell 30, 30-40 (1998)
[6]C. Lacombe, C. Cifuentes-Diasz, I. Dunia, M. Auber-Thomay, P. Nicolas, M. Amiche: Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor: an ultrastructural study. Eur J Cell Biol 79, 631-41 (2000)
[7]J. H. Bowie, F. Separovic, MJ. Tyler: Host-defense peptides of Australian anurans. Part 2. Structure, activity, mechanism of action, and evolutionary significance. Peptides 37, 174-88 (2012)
[8]J. M. Conlon: Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 68, 2303-15 (2011)
[9]P. Nicolas, C. El Amri: The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochim Biophys Acta 1788, 1537-50 (2009)
[10]M. L. Mangoni: Temporins, anti-infective peptides with expanding properties. Cell Mol Life Sci 63, 1060-9 (2006)
[11]J. Strahilevitz, A. Mor, P. Nicolas, Y. Shai: Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry 33, 10951-60 (1994)
[12]K. Matsuzaki: Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376, 391-400 (1998)
[13]H. W. Huang, F. Y. Chen, M. T. Lee: Molecular mechanism of Peptide-induced pores in membranes. Phys Rev Lett 92, 198304 (2004)
[14]P. Nicolas: Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276, 6483-96 (2009)
[15]J. M. Conlon: Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 29, 1815-9 (2008)
[16]M. Amiche, A. Ladram, P. Nicolas: A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides 29, 2074-82 (2008)
[17]J. M. Conlon: A proposed nomenclature for antimicrobial peptides from frogs of the genus Leptodactylus. Peptides 29, 1631-32 (2008)
[18]P. Thomas, T. V. Kumar, V. Reshmy, K. S. Kumar, S. George: A mini review on the antimicrobial peptides isolated from the genus Hylarana (Amphibia: Anura) with a proposed nomenclature for amphibian skin peptides. Mol Biol Rep 39, 6943-7 (2012)
[19]P. Nicolas, A. Ladram: Dermaseptins. In: Handbook of Biologically Active Peptides. Sect 5 Amphibian/Skin Peptides. Ed: AJ Kastin (2013)
[20]Z. Raja, S. André, C. Piesse, D. Sereno, P. Nicolas, T. Foulon, B. Oury, A. Ladram: Structure, antimicrobial activities and mode of interaction with membranes of novel phylloseptins from the painted-belly leaf frog, Phyllomedusa sauvagii. PLoS One 8, e70782 (2013)
[21]Y. J. Basir, J. M. Conlon: Peptidomic analysis of the skin secretions of the pickerel frog Rana palustris identifies six novel families of structurally-related peptides. Peptides 24, 379-83 (2003)
[22]T. F. Duda Jr, D. Vanhoye, P. Nicolas: Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides. Mol Biol Evol 19, 858-64 (2002)
[23]D. Vanhoye, F. Bruston, P. Nicolas, M. Amiche: Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem 270, 2068-81 (2003)
[24]A. Mor, K. Hani, P. Nicolas: The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269, 31635-41 (1994)
[25]A. Giacometti, O. Cirioni, R. Ghiselli, F. Orlando, C. Silvestri, G. Renzone, I. Testa, F. Mocchegiani, A. Della Vittoria, V. Saba, A. Scaloni, G. Scalise: Distinctin improves the efficacies of glycopeptides and betalactams against staphylococcal biofilm in an experimental model of central venous catheter infection. J Biomed Mater Res A 81, 233-39 (2007)
[26]T. P. Pierre, A. A. Seon, M. Amiche, P. Nicolas: Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem 267, 370-78 (2000)
[27]D. Vanhoye, F. Bruston, S. El Amri, A. Ladram, M. Amiche, P. Nicolas: Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Biochemistry 43, 8391-409 (2004)
[28]J. A. Tennessen, D. C. Woodhams, P. Chaurand, L. K. Reinert, D. Billheimer, Y. Shyr, R. M. Caprioli, M. S. Blouin, L. A. Rollins-Smith: Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33, 1247-57 (2009)
[29]C. Hernandez, A. Mor, F. Dagger, P. Nicolas, A. Hernandez, E. L. Benedetti: Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol 59, 414-24 (1992)
[30]G. D. Brand, J. R. Leite, S. M. de Sa Mandel, D. A. Mesquita, L. P. Silva, M. V. Prates: Novel dermaseptins from Phyllomedusa hypochondrialis. Biochem Biophys Res Commun 347, 739-46 (2006)
[31]P. Eaton, C. R. Bittencourt, V. Costa Silva, L. M. Véras, C. H. Costa, M. J. Feio, J. R. Leite: Anti-leishmanial activity of the antimicrobial peptide DRS 01 observed in Leishmania infantum (syn. Leishmania chagasi) cells. Nanomedicine 10, 483-90 (2014)
[32]E. G. Pinto, D. C. Pimenta, M. M. Antoniazzi, C. Jared, A. G. Tempone: Antimicrobial peptides isolated from Phyllomedusa nordestina (Amphibia) alter the permeability of plasma membrane of Leishmania and Trypanosoma cruzi. Exp Parasitol 135, 655-60 (2013)
[33]L. Efron, A. Dagan, L. Gaidukov, H. Ginsburg, A. Mor: Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture. J Biol Chem 277, 24067-72 (2002)
[34]G. D. Brand, J. R. Leite, L. P. Silva, S. Albuquerque, M. V. Prates, R. B. Azevedo: Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J Biol Chem 277, 49332-40 (2002)
[35]C. Lorin, H. Saidi, A. Belaid, A. Zairi, F. Baleux, H. Hocini: The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334, 264-75 (2005)
[36]A. Zairi, F. Tangy, K. Bouassida, K. Hani: Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review. J Biomed Biotechnol 2009, 452567 (2009)
[37]A. C. Rinaldi, J. M. Conlon: Temporins. In: Handbook of Biologically Active Peptides, Sect 5 Amphibian/Skin Peptides. Ed: AJ Kastin (2013)
[38]M. L. Mangoni, A. C. Rinaldi, A. Di Giulio, G. Mignogna, A. Bozzi, D. Barra, M. Simmaco: Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem 267, 1447-54 (2000)
[39]D. Wade, J. Silberring, R. Soliymani, S. Heikkinen, I. Kilpeläinen, H. Lankinen, P. Kuusela: Antibacterial activities of temporin A analogs. FEBS Lett 479, 6-9 (2000)
[40]F. Abbassi, C. Galanth, M. Amiche, K. Saito, C. Piesse, L. Zargarian, K. Hani, P. Nicolas, O. Lequin, A. Ladram: Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Biochemistry 47, 10513-25 (2008)
[41]A. Carotenuto, S. Malfi, M. R. Saviello, P. Campiglia, I. Gomez-Monterrey, M. L. Mangoni, L. M. Gaddi, E. Novellino, P. Grieco: A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L, J Med Chem 51, 2354-62 (2008)
[42]F. Abbassi, O. Lequin, C. Piesse, N. Goasdoué, T. Foulon, P. Nicolas, A. Ladram: Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 285, 16880-922 (2010)
[43]F. Abbassi, B. Oury, T. Blasco, D. Sereno, G. Bolbach, P. Nicolas, K. Hani, M. Amiche, A. Ladram: Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides 29, 1526-33 (2008)
[44]A. C. Rinaldi, M. L. Mangoni, A. Rufo, C. Luzi, D. Barra, H. Zhao, P. K. J. Kinnunen, A. Bozzi, A. Di Giulio, M. Simmaco: Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J 368, 91-100 (2002)
[45]M. L. Mangoni, A. Carotenuto, L. Auriemma, M. R. Saviello, P. Campiglia, I. Gomez-Monterrey, S. Malfi, L. Marcellini, D. Barra, E. Novellino, P. Grieco: Structure-activity relationship, conformational and biological studies of temporin L analogues. J Med Chem 54, 1298-307 (2011)
[46]J. M. Conlon, N. Al-Ghaferi, B. Abraham, J. Leprince: Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 42, 349-57 (2007)
[47]E. Urbán, E. Nagy, T. Pál, A. Sonnevend, J. M. Conlon: Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int J Antimicrob Agents 29, 317-21 (2007)
[48]J. M. Conlon, M. A. Meetani, L. Coquet, T. Jouenne, J. Leprince, H. Vaudry, J. Kolodziejek, N. Nowotny, J. D. King: Antimicrobial peptides from the skin secretions of the New World frogs Lithobates capito and Lithobates warszewitschii (Ranidae). Peptides 30, 1775-81 (2009)
[49]M. L. Mangoni, J. M. Saugar, M. Dellisanti, D. Barra, M. Simmaco, L. Rivas: Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem 280, 984-90 (2005)
[50]G. A. Eggimann, K. Sweeney, H. L. Bolt, N. Rozatian, S. L. Cobb, P. W. Denny: The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of anti-microbial peptides. Molecules 20, 2775-85 (2015)
[51]F. Abbassi, Z. Raja, B. Oury, E. Gazanion, C. Piesse, D. Sereno, P. Nicolas, T. Foulon, A. Ladram: Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie 95, 388-99 (2013)
[52]M. Amiche, F. Ducancel, E. Lajeunesse, J. C. Boulain, A. Ménez, P. Nicolas: Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin. Relationships with the vertebrate defensive peptides, dermaseptins. Biochem Biophys Res Commun 191, 983-90 (1993)
[53]M. Simmaco, G. Mignogna, D. Barra, F. Bossa: Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem 269, 11956-61 (1994)
[54]V. Vouille, M. Amiche, P. Nicolas: Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities. FEBS Lett 414, 27-32 (1997)
[55]T. Chen, R. Gagliardo, B. Walker, M. Zhou, C. Shaw: Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion. Peptides 26, 2624-28 (2005)
[56]S. Y. Kwon, B. A. Carlson, J. M. Park, B. J. Lee: Structural organization and expression of the gaegurin 4 gene of Rana rugosa. Biochim Biophys Acta 1492, 185-90 (2000)
[57]P. Nicolas, D. Vanhoye, M. Amiche: Molecular strategies in biological evolution of antimicrobial peptides. Peptides 24, 1669-80 (2003)
[58]J. A. Tennessen, M. S. Blouin: Selection for antimicrobial peptide diversity in frogs leads to gene duplication and low allelic variation. J Mol Evol 65, 605-15 (2007)
[59]E. Konig, O. R. Bininda-Emonds: Evidence for convergent evolution in the antimicrobial peptide system in anuran amphibians. Peptides 32, 20-25 (2011)
[60]K. Roelants, B. G. Fry, L. Ye, B. Stijlemans, L. Brys, P. Kok, E. Clynen, L. Schoofs, P. Cornelis, F. Bossuyt: Origin and functional diversification of an amphibian defense peptide arsenal. PLoS Genet 9, e1003662 (2013)
[61]B. L. Sollod, D. Wilson, O. Zhaxybayeva, J. P. Gogarten, R. Drinkwater, G. F. King: Were arachnids the first to use combinatorial peptide libraries? Peptides 26, 131-39 (2005)
[62]B. M. Olivera: Snail peptides. In: Handbook of Biologically Active Peptides, Sect 6 Venom Peptides. Ed: AJ Kastin (2013)
[63]B. M. Olivera: Conus venom peptides: reflections from the biology of clades and species. Annu Rev Ecol Syst 33, 25-47 (2002)
[64]R. C. Rodriguez de la Vega, N. Vidal, L. D. Possani: Scorpion peptides. In: Handbook of Biologically Active Peptides. Sect 6 Venom Peptides. Ed: AJ Kastin (2013)
[65]B. M. Olivera: Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281, 31173-177 (2006)
[66]Y. Ge, D. MacDonald, M. M. Henry, H. I. Hait, K. A. Nelson, B. A. Lipsky: In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diagn Microbiol Infect Dis 35, 45-53 (1999)
[67]M. Zasloff: Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84, 5449-53 (1987)
[68]P. Vlieghe, V. Lisowski, V. Martinez, M. Khrestchatisky: Synthetic therapeutic peptides: science and market. Drug discov today 15, 40-56 (2010)
[69]TUhlig, T. Kyprianou, F. G. Martinelli, C. A. Oppici, D. Heiligers, D. Hills, X. Ribes Calvo, P. Verhaert: The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics 4, 58-69 (2014)
[70]J. L. Fox: Antimicrobial peptides stage a comeback. Nat biotechnol 31, 379-82 (2013)
[71]M. Decaffmeyer: Les médicaments peptidiques: mythe ou réalité? Biotechnol Agron Soc Environ 12:81-88 (2008)
[72]B. L. Bray: Large scale manufacturing of peptide therapeutics. Nat Rev Drug Discover 2, 587-93 (2003)
[73]S. R. Norrby, C. E. Nord, R. Finch: Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 5, 115-9 (2005)
[74]D. M. Livermore: Has the era of untreatable infections arrived? J Antimicrob Chemother 64 Suppl 1: 129-36 (2009)
[75]B. Spellberg, R. Guidos, D. Gilbert, J. Bradley, H. W. Boucher, W. M. Scheld, J. G. Bartlett, J. Edwards Jr, Infectious Diseases Society of America: The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46, 155-64 (2008)
[76]P. Nicolas, Y. Rosenstein: Multifunctional host defense peptides. FEBS J 276, 6464 (2009)
[77]A. Mor: Multifunctional host defense peptides: antiparasitic activities. FEBS J 276, 6474-82 (2009)
[78]I. Bergaoui, A. Zairi, F. Tangy, M. Aouni, B. Selmi, K. Hani: In vitro antiviral activity of dermaseptin S4 and derivatives from amphibian skin against herpes simplex virus type 2. J Med Virol 85, 272-81 (2013)
[79]H. Van Zoggel, Y. Hamma-Kourbali, C. Galanth, A. Ladram, P. Nicolas, J. Courty, M. Amiche: Antitumor and angiostatic peptides from frog skin secretions. Amino Acids 42, 385-95 (2012)
[80]J. M. Conlon, A. Sonnevend, T. Pál, X. Vila-Farrés X: Efficacy of six frog skin-derived antimicrobial peptides against colistin-resistant strains of the Acinetobacter baumannii group. Int J Antimicrob Agents 39, 317-20 (2012)
[81]J. M. Conlon, M. Mechkarska, M. Prajeep, A. Sonnevend, L. Coquet, J. Leprince: Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Peptides 37, 113-9 (2012)
[82]M. Mechkarska, M. Prajeep, G. D. Radosavljevic, I. P. Jovanovic, A. Al Baloushi, A. Sonnevend, M. L. Lukic, J. M. Conlon: An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties. Peptides 50, 153-9 (2013)
[83]J. M. Conlon, M. Mechkarska, M. L. Lukic, P. R. Flatt: Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 57, 67-77 (2014)
[84]A. Di Grazia, V. Luca, L. A. Segev-Zarko, Y. Shai, M. L. Mangoni: Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus. Antimicrob Agents Chemother 58, 2520-7 (2014)
[85]A. Lombana, Z. Raja, S. Casale, C. M. Pradier, T. Foulon, A. Ladram, V. Humblot: Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J Pept Sci 20, 563-9 (2014)
[86]M. Simmaco, G. Mignogna, S. Canofeni, R. Miele, M. L. Mangoni, D. Barra: Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem 242, 788-92 (1996)
[87]Y. Rosenfeld, D. Barra, M. Simmaco, Y. Shai, M. L. Mangoni: A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 281, 28565-74 (2006)
[88]M. L. Mangoni, R. F. Epand, Y Rosenfeld, A Peleg, D Barra, R. MEpand, Y Shai: Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization J Biol Chem 283, 22907-17 (2008)
[89]A. Bhunia, P. N. Domadia, J. Torres, K. J. Hallock, A. Ramamoorthy, S. Bhattacharjya: NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J Biol Chem 285, 3883-95 (2010)
[90]R. Saravanan, M. Joshi, H. Mohanram, A. Bhunia, M. L. Mangoni, S. Bhattacharjya: NMRstructure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. PLoS One 8, e72718 (2013)
[91]A. Bhunia, R. Saravanan, H. Mohanram, M. L. Mangoni, S. Bhattacharjya: NMR structures interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. J Biol Chem 286, 24394-406 (2011)
[92]P. Grieco, A. Carotenuto, L. Auriemma, M. R. Saviello, P. Campiglia, I. M. Gomez-Monterrey, L. Marcellini, V. Luca, D. Barra D, E. Novellino, M. L. Mangoni: The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: identification of a potent anti-Candida peptide. Biochim Biophys Acta 1828, 652-60 (2013)
[93]E. Urbán, E. Nagy, T. Pál, A. Sonnevend, J. M. Conlon: Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int J Antimicrob Agents 29, 317-21 (2007)
[94]J. M. Conlon, R. Al-Kharrge, E. Ahmed, H. Raza, S. Galadari, E. Condamine: Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa. Peptides 28, 2075-80 (2007)
[95]I. L. Karle, P. Balaram: Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry 29, 6747-56 (1990)
[96]S. André, S. K. Washington, E. Darby, M. M. Vega, A. D. Filip, N. S. Ash, K. A. Muzikar, C. Piesse, T. Foulon, D. J. O’Leary, A. Ladram: Structure-activity relationship-based optimization of small temporin-SHf analogs with potent antibacterial activity. ACS Chem Biol 10, 2257-66 (2015)
[97]J. Alvar, I. D. Vélez, C. Bern, M. Herrero, P. Desjeux, J. Cano, J. Jannin, M. den Boer, WHO Leishmaniasis Control Team: Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7, e35671 (2012)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Antimicrobial peptides from frog skin: biodiversity and therapeutic promises
1 Sorbonne Universites, UPMC Univ Paris 06, FR 3631, Institut de Biologie Paris Seine (IBPS), Biogenese des Signaux Peptidiques (BIOSIPE), F-75005, Paris, France UPMC, France
2 CNRS, FR 3631, IBPS, BIOSIPE, F-75005, Paris, France UPMC, France
3 Sorbonne Universites, UPMC Univ Paris 06, France
Abstract
More than a thousand antimicrobial peptides (AMPs) have been reported in the last decades arising from the skin secretion of amphibian species. Generally, each frog species can express its own repertoire of AMPs (typically, 10–20 peptides) with differing sequences, sizes, and spectrum of action, which implies very rapid divergence, even between closely related species. Frog skin AMPs are highly potent against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying their plasma membrane and/or inactivating intracellular targets. These peptides have attracted considerable interest as a therapeutic alternative to conventional anti-infective agents. However, efforts to obtain a new generation of drugs using these peptides are still challenging because of high associated R&D costs due to their large size (up to 46 residues) and cytotoxicity. This review deals with the biodiversity of frog skin AMPs and assesses the therapeutic possibilities of temporins, the shortest AMPs found in the frog skin, with 8-17 residues. Such short sequences are easily amenable to optimization of the structure and to solution-phase synthesis that offer reduced costs over solid-phase chemistry.
Keywords
- Frog Skin
- Antimicrobial Peptides
- Host Defense Peptides
- Biodiversity
- Review
References
- [1] V. Erspamer, P. Melchiorri, M. Broccardo, G. F. Erspamer, P. Falaschi, G. Improta, L. Negri, T. Renda: The brain-gut-skin triangle: new peptides. Peptides 2, 7-16 (1981)
- [2] L. H. Lazarus, M. Attila: The toad, ugly and venomous, wears yet a precious jewel in his skin. Prog Neurobiol 41, 473-507 (1993)
- [3] E. König, O. R. Bininda-Emonds, C. Shaw: The diversity and evolution of anuran skin peptides. Peptides 63, 96-117 (2015)
- [4] R. C. Toledo, C. Jared: Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol 111, 1-29 (1995)
- [5] G. Delfino G, R. Brizzi, B. B. Alvarez, R. Kracke-Berndorff: Serous cutaneous glands in Phyllomedusa hypochondrialis (Anura, Hylidae): secretory patterns during ontogenesis. Tissue Cell 30, 30-40 (1998)
- [6] C. Lacombe, C. Cifuentes-Diasz, I. Dunia, M. Auber-Thomay, P. Nicolas, M. Amiche: Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor: an ultrastructural study. Eur J Cell Biol 79, 631-41 (2000)
- [7] J. H. Bowie, F. Separovic, MJ. Tyler: Host-defense peptides of Australian anurans. Part 2. Structure, activity, mechanism of action, and evolutionary significance. Peptides 37, 174-88 (2012)
- [8] J. M. Conlon: Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci 68, 2303-15 (2011)
- [9] P. Nicolas, C. El Amri: The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochim Biophys Acta 1788, 1537-50 (2009)
- [10] M. L. Mangoni: Temporins, anti-infective peptides with expanding properties. Cell Mol Life Sci 63, 1060-9 (2006)
- [11] J. Strahilevitz, A. Mor, P. Nicolas, Y. Shai: Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry 33, 10951-60 (1994)
- [12] K. Matsuzaki: Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376, 391-400 (1998)
- [13] H. W. Huang, F. Y. Chen, M. T. Lee: Molecular mechanism of Peptide-induced pores in membranes. Phys Rev Lett 92, 198304 (2004)
- [14] P. Nicolas: Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides. FEBS J 276, 6483-96 (2009)
- [15] J. M. Conlon: Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides 29, 1815-9 (2008)
- [16] M. Amiche, A. Ladram, P. Nicolas: A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides 29, 2074-82 (2008)
- [17] J. M. Conlon: A proposed nomenclature for antimicrobial peptides from frogs of the genus Leptodactylus. Peptides 29, 1631-32 (2008)
- [18] P. Thomas, T. V. Kumar, V. Reshmy, K. S. Kumar, S. George: A mini review on the antimicrobial peptides isolated from the genus Hylarana (Amphibia: Anura) with a proposed nomenclature for amphibian skin peptides. Mol Biol Rep 39, 6943-7 (2012)
- [19] P. Nicolas, A. Ladram: Dermaseptins. In: Handbook of Biologically Active Peptides. Sect 5 Amphibian/Skin Peptides. Ed: AJ Kastin (2013)
- [20] Z. Raja, S. André, C. Piesse, D. Sereno, P. Nicolas, T. Foulon, B. Oury, A. Ladram: Structure, antimicrobial activities and mode of interaction with membranes of novel phylloseptins from the painted-belly leaf frog, Phyllomedusa sauvagii. PLoS One 8, e70782 (2013)
- [21] Y. J. Basir, J. M. Conlon: Peptidomic analysis of the skin secretions of the pickerel frog Rana palustris identifies six novel families of structurally-related peptides. Peptides 24, 379-83 (2003)
- [22] T. F. Duda Jr, D. Vanhoye, P. Nicolas: Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides. Mol Biol Evol 19, 858-64 (2002)
- [23] D. Vanhoye, F. Bruston, P. Nicolas, M. Amiche: Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem 270, 2068-81 (2003)
- [24] A. Mor, K. Hani, P. Nicolas: The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269, 31635-41 (1994)
- [25] A. Giacometti, O. Cirioni, R. Ghiselli, F. Orlando, C. Silvestri, G. Renzone, I. Testa, F. Mocchegiani, A. Della Vittoria, V. Saba, A. Scaloni, G. Scalise: Distinctin improves the efficacies of glycopeptides and betalactams against staphylococcal biofilm in an experimental model of central venous catheter infection. J Biomed Mater Res A 81, 233-39 (2007)
- [26] T. P. Pierre, A. A. Seon, M. Amiche, P. Nicolas: Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem 267, 370-78 (2000)
- [27] D. Vanhoye, F. Bruston, S. El Amri, A. Ladram, M. Amiche, P. Nicolas: Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Biochemistry 43, 8391-409 (2004)
- [28] J. A. Tennessen, D. C. Woodhams, P. Chaurand, L. K. Reinert, D. Billheimer, Y. Shyr, R. M. Caprioli, M. S. Blouin, L. A. Rollins-Smith: Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33, 1247-57 (2009)
- [29] C. Hernandez, A. Mor, F. Dagger, P. Nicolas, A. Hernandez, E. L. Benedetti: Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol 59, 414-24 (1992)
- [30] G. D. Brand, J. R. Leite, S. M. de Sa Mandel, D. A. Mesquita, L. P. Silva, M. V. Prates: Novel dermaseptins from Phyllomedusa hypochondrialis. Biochem Biophys Res Commun 347, 739-46 (2006)
- [31] P. Eaton, C. R. Bittencourt, V. Costa Silva, L. M. Véras, C. H. Costa, M. J. Feio, J. R. Leite: Anti-leishmanial activity of the antimicrobial peptide DRS 01 observed in Leishmania infantum (syn. Leishmania chagasi) cells. Nanomedicine 10, 483-90 (2014)
- [32] E. G. Pinto, D. C. Pimenta, M. M. Antoniazzi, C. Jared, A. G. Tempone: Antimicrobial peptides isolated from Phyllomedusa nordestina (Amphibia) alter the permeability of plasma membrane of Leishmania and Trypanosoma cruzi. Exp Parasitol 135, 655-60 (2013)
- [33] L. Efron, A. Dagan, L. Gaidukov, H. Ginsburg, A. Mor: Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture. J Biol Chem 277, 24067-72 (2002)
- [34] G. D. Brand, J. R. Leite, L. P. Silva, S. Albuquerque, M. V. Prates, R. B. Azevedo: Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J Biol Chem 277, 49332-40 (2002)
- [35] C. Lorin, H. Saidi, A. Belaid, A. Zairi, F. Baleux, H. Hocini: The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334, 264-75 (2005)
- [36] A. Zairi, F. Tangy, K. Bouassida, K. Hani: Dermaseptins and magainins: antimicrobial peptides from frogs’ skin-new sources for a promising spermicides microbicides-a mini review. J Biomed Biotechnol 2009, 452567 (2009)
- [37] A. C. Rinaldi, J. M. Conlon: Temporins. In: Handbook of Biologically Active Peptides, Sect 5 Amphibian/Skin Peptides. Ed: AJ Kastin (2013)
- [38] M. L. Mangoni, A. C. Rinaldi, A. Di Giulio, G. Mignogna, A. Bozzi, D. Barra, M. Simmaco: Structure-function relationships of temporins, small antimicrobial peptides from amphibian skin. Eur J Biochem 267, 1447-54 (2000)
- [39] D. Wade, J. Silberring, R. Soliymani, S. Heikkinen, I. Kilpeläinen, H. Lankinen, P. Kuusela: Antibacterial activities of temporin A analogs. FEBS Lett 479, 6-9 (2000)
- [40] F. Abbassi, C. Galanth, M. Amiche, K. Saito, C. Piesse, L. Zargarian, K. Hani, P. Nicolas, O. Lequin, A. Ladram: Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Biochemistry 47, 10513-25 (2008)
- [41] A. Carotenuto, S. Malfi, M. R. Saviello, P. Campiglia, I. Gomez-Monterrey, M. L. Mangoni, L. M. Gaddi, E. Novellino, P. Grieco: A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L, J Med Chem 51, 2354-62 (2008)
- [42] F. Abbassi, O. Lequin, C. Piesse, N. Goasdoué, T. Foulon, P. Nicolas, A. Ladram: Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem 285, 16880-922 (2010)
- [43] F. Abbassi, B. Oury, T. Blasco, D. Sereno, G. Bolbach, P. Nicolas, K. Hani, M. Amiche, A. Ladram: Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides 29, 1526-33 (2008)
- [44] A. C. Rinaldi, M. L. Mangoni, A. Rufo, C. Luzi, D. Barra, H. Zhao, P. K. J. Kinnunen, A. Bozzi, A. Di Giulio, M. Simmaco: Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles. Biochem J 368, 91-100 (2002)
- [45] M. L. Mangoni, A. Carotenuto, L. Auriemma, M. R. Saviello, P. Campiglia, I. Gomez-Monterrey, S. Malfi, L. Marcellini, D. Barra, E. Novellino, P. Grieco: Structure-activity relationship, conformational and biological studies of temporin L analogues. J Med Chem 54, 1298-307 (2011)
- [46] J. M. Conlon, N. Al-Ghaferi, B. Abraham, J. Leprince: Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods 42, 349-57 (2007)
- [47] E. Urbán, E. Nagy, T. Pál, A. Sonnevend, J. M. Conlon: Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int J Antimicrob Agents 29, 317-21 (2007)
- [48] J. M. Conlon, M. A. Meetani, L. Coquet, T. Jouenne, J. Leprince, H. Vaudry, J. Kolodziejek, N. Nowotny, J. D. King: Antimicrobial peptides from the skin secretions of the New World frogs Lithobates capito and Lithobates warszewitschii (Ranidae). Peptides 30, 1775-81 (2009)
- [49] M. L. Mangoni, J. M. Saugar, M. Dellisanti, D. Barra, M. Simmaco, L. Rivas: Temporins, small antimicrobial peptides with leishmanicidal activity. J Biol Chem 280, 984-90 (2005)
- [50] G. A. Eggimann, K. Sweeney, H. L. Bolt, N. Rozatian, S. L. Cobb, P. W. Denny: The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of anti-microbial peptides. Molecules 20, 2775-85 (2015)
- [51] F. Abbassi, Z. Raja, B. Oury, E. Gazanion, C. Piesse, D. Sereno, P. Nicolas, T. Foulon, A. Ladram: Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie 95, 388-99 (2013)
- [52] M. Amiche, F. Ducancel, E. Lajeunesse, J. C. Boulain, A. Ménez, P. Nicolas: Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin. Relationships with the vertebrate defensive peptides, dermaseptins. Biochem Biophys Res Commun 191, 983-90 (1993)
- [53] M. Simmaco, G. Mignogna, D. Barra, F. Bossa: Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem 269, 11956-61 (1994)
- [54] V. Vouille, M. Amiche, P. Nicolas: Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities. FEBS Lett 414, 27-32 (1997)
- [55] T. Chen, R. Gagliardo, B. Walker, M. Zhou, C. Shaw: Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion. Peptides 26, 2624-28 (2005)
- [56] S. Y. Kwon, B. A. Carlson, J. M. Park, B. J. Lee: Structural organization and expression of the gaegurin 4 gene of Rana rugosa. Biochim Biophys Acta 1492, 185-90 (2000)
- [57] P. Nicolas, D. Vanhoye, M. Amiche: Molecular strategies in biological evolution of antimicrobial peptides. Peptides 24, 1669-80 (2003)
- [58] J. A. Tennessen, M. S. Blouin: Selection for antimicrobial peptide diversity in frogs leads to gene duplication and low allelic variation. J Mol Evol 65, 605-15 (2007)
- [59] E. Konig, O. R. Bininda-Emonds: Evidence for convergent evolution in the antimicrobial peptide system in anuran amphibians. Peptides 32, 20-25 (2011)
- [60] K. Roelants, B. G. Fry, L. Ye, B. Stijlemans, L. Brys, P. Kok, E. Clynen, L. Schoofs, P. Cornelis, F. Bossuyt: Origin and functional diversification of an amphibian defense peptide arsenal. PLoS Genet 9, e1003662 (2013)
- [61] B. L. Sollod, D. Wilson, O. Zhaxybayeva, J. P. Gogarten, R. Drinkwater, G. F. King: Were arachnids the first to use combinatorial peptide libraries? Peptides 26, 131-39 (2005)
- [62] B. M. Olivera: Snail peptides. In: Handbook of Biologically Active Peptides, Sect 6 Venom Peptides. Ed: AJ Kastin (2013)
- [63] B. M. Olivera: Conus venom peptides: reflections from the biology of clades and species. Annu Rev Ecol Syst 33, 25-47 (2002)
- [64] R. C. Rodriguez de la Vega, N. Vidal, L. D. Possani: Scorpion peptides. In: Handbook of Biologically Active Peptides. Sect 6 Venom Peptides. Ed: AJ Kastin (2013)
- [65] B. M. Olivera: Conus peptides: biodiversity-based discovery and exogenomics. J Biol Chem 281, 31173-177 (2006)
- [66] Y. Ge, D. MacDonald, M. M. Henry, H. I. Hait, K. A. Nelson, B. A. Lipsky: In vitro susceptibility to pexiganan of bacteria isolated from infected diabetic foot ulcers. Diagn Microbiol Infect Dis 35, 45-53 (1999)
- [67] M. Zasloff: Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84, 5449-53 (1987)
- [68] P. Vlieghe, V. Lisowski, V. Martinez, M. Khrestchatisky: Synthetic therapeutic peptides: science and market. Drug discov today 15, 40-56 (2010)
- [69] TUhlig, T. Kyprianou, F. G. Martinelli, C. A. Oppici, D. Heiligers, D. Hills, X. Ribes Calvo, P. Verhaert: The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics 4, 58-69 (2014)
- [70] J. L. Fox: Antimicrobial peptides stage a comeback. Nat biotechnol 31, 379-82 (2013)
- [71] M. Decaffmeyer: Les médicaments peptidiques: mythe ou réalité? Biotechnol Agron Soc Environ 12:81-88 (2008)
- [72] B. L. Bray: Large scale manufacturing of peptide therapeutics. Nat Rev Drug Discover 2, 587-93 (2003)
- [73] S. R. Norrby, C. E. Nord, R. Finch: Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 5, 115-9 (2005)
- [74] D. M. Livermore: Has the era of untreatable infections arrived? J Antimicrob Chemother 64 Suppl 1: 129-36 (2009)
- [75] B. Spellberg, R. Guidos, D. Gilbert, J. Bradley, H. W. Boucher, W. M. Scheld, J. G. Bartlett, J. Edwards Jr, Infectious Diseases Society of America: The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46, 155-64 (2008)
- [76] P. Nicolas, Y. Rosenstein: Multifunctional host defense peptides. FEBS J 276, 6464 (2009)
- [77] A. Mor: Multifunctional host defense peptides: antiparasitic activities. FEBS J 276, 6474-82 (2009)
- [78] I. Bergaoui, A. Zairi, F. Tangy, M. Aouni, B. Selmi, K. Hani: In vitro antiviral activity of dermaseptin S4 and derivatives from amphibian skin against herpes simplex virus type 2. J Med Virol 85, 272-81 (2013)
- [79] H. Van Zoggel, Y. Hamma-Kourbali, C. Galanth, A. Ladram, P. Nicolas, J. Courty, M. Amiche: Antitumor and angiostatic peptides from frog skin secretions. Amino Acids 42, 385-95 (2012)
- [80] J. M. Conlon, A. Sonnevend, T. Pál, X. Vila-Farrés X: Efficacy of six frog skin-derived antimicrobial peptides against colistin-resistant strains of the Acinetobacter baumannii group. Int J Antimicrob Agents 39, 317-20 (2012)
- [81] J. M. Conlon, M. Mechkarska, M. Prajeep, A. Sonnevend, L. Coquet, J. Leprince: Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA). Peptides 37, 113-9 (2012)
- [82] M. Mechkarska, M. Prajeep, G. D. Radosavljevic, I. P. Jovanovic, A. Al Baloushi, A. Sonnevend, M. L. Lukic, J. M. Conlon: An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties. Peptides 50, 153-9 (2013)
- [83] J. M. Conlon, M. Mechkarska, M. L. Lukic, P. R. Flatt: Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 57, 67-77 (2014)
- [84] A. Di Grazia, V. Luca, L. A. Segev-Zarko, Y. Shai, M. L. Mangoni: Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus. Antimicrob Agents Chemother 58, 2520-7 (2014)
- [85] A. Lombana, Z. Raja, S. Casale, C. M. Pradier, T. Foulon, A. Ladram, V. Humblot: Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J Pept Sci 20, 563-9 (2014)
- [86] M. Simmaco, G. Mignogna, S. Canofeni, R. Miele, M. L. Mangoni, D. Barra: Temporins, antimicrobial peptides from the European red frog Rana temporaria. Eur J Biochem 242, 788-92 (1996)
- [87] Y. Rosenfeld, D. Barra, M. Simmaco, Y. Shai, M. L. Mangoni: A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem 281, 28565-74 (2006)
- [88] M. L. Mangoni, R. F. Epand, Y Rosenfeld, A Peleg, D Barra, R. MEpand, Y Shai: Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization J Biol Chem 283, 22907-17 (2008)
- [89] A. Bhunia, P. N. Domadia, J. Torres, K. J. Hallock, A. Ramamoorthy, S. Bhattacharjya: NMR structure of pardaxin, a pore-forming antimicrobial peptide, in lipopolysaccharide micelles: mechanism of outer membrane permeabilization. J Biol Chem 285, 3883-95 (2010)
- [90] R. Saravanan, M. Joshi, H. Mohanram, A. Bhunia, M. L. Mangoni, S. Bhattacharjya: NMRstructure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. PLoS One 8, e72718 (2013)
- [91] A. Bhunia, R. Saravanan, H. Mohanram, M. L. Mangoni, S. Bhattacharjya: NMR structures interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. J Biol Chem 286, 24394-406 (2011)
- [92] P. Grieco, A. Carotenuto, L. Auriemma, M. R. Saviello, P. Campiglia, I. M. Gomez-Monterrey, L. Marcellini, V. Luca, D. Barra D, E. Novellino, M. L. Mangoni: The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: identification of a potent anti-Candida peptide. Biochim Biophys Acta 1828, 652-60 (2013)
- [93] E. Urbán, E. Nagy, T. Pál, A. Sonnevend, J. M. Conlon: Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int J Antimicrob Agents 29, 317-21 (2007)
- [94] J. M. Conlon, R. Al-Kharrge, E. Ahmed, H. Raza, S. Galadari, E. Condamine: Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa. Peptides 28, 2075-80 (2007)
- [95] I. L. Karle, P. Balaram: Structural characteristics of alpha-helical peptide molecules containing Aib residues. Biochemistry 29, 6747-56 (1990)
- [96] S. André, S. K. Washington, E. Darby, M. M. Vega, A. D. Filip, N. S. Ash, K. A. Muzikar, C. Piesse, T. Foulon, D. J. O’Leary, A. Ladram: Structure-activity relationship-based optimization of small temporin-SHf analogs with potent antibacterial activity. ACS Chem Biol 10, 2257-66 (2015)
- [97] J. Alvar, I. D. Vélez, C. Bern, M. Herrero, P. Desjeux, J. Cano, J. Jannin, M. den Boer, WHO Leishmaniasis Control Team: Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7, e35671 (2012)
