Information
References
Contents
Download
[1]R. Calderone, Ed.: Candida and candidiasis. ASM Press, New York (2001)
[2]G. Garber: An overview of fungal infections. Drugs 61, 1–12 (2001)
[3]D. Sanglard, F. C. Odds: Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2, 73–85 (2002)
[4]M. A. Pfaller, D. J. Diekema: Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20 133–163 (2007)
[5]N. Yapar: Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10, 95–105 (2014)
[6]M. C. Arendrup: Candida and Candidaemia: Susceptibility and Epidemiology. Dan. Med. J. 60, B4698 (2013)
[7]D. Gozalbo, P. Roig, E. Villamon, M. L. Gil: Candida and candidiasis: the cell wall as a potential molecular target for antifungal therapy. Curr Drug Targets Infect Disord 4, 117–135 (2004)
[8]D. Poulain, T. Jouault: Candida albicans cell wall glycans, host receptors and responses: Elements for a decisive crosstalk. Curr Opin Microbiol 7, 342–349 (2004)
[9]J. Ruiz-Herrera, M. Victoria Elorza, E. Valentin, R. Sentandreu: Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6, 14–29 (2006)
[10]F. M. Klis, P. de Groot, K. Hellingwerf: Molecular organization of the cell wall of Candida albicans. Med Mycol 39, 1–8 (2001)
[11]N. A. R. Gow, F. L. van de Veerdonk, A. J. P. Brown, M. G. Netea: Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10, 112-22 (2011)
[12]D. W. Lowman, R. R. Greene, D. W. Bearden, M. D. Kruppa, M. Pottier, M. A. Monteiro, D. V. Soldatov, H. E. Ensley, S. C. Cheng, M. G. Netea, D. L. Williams: Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J Biol Chem 289, 3432–3443 (2014)
[13]N. Shibata, H. Kobayashi, S. Suzuki: Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Japan Acad Ser B Phys Biol Sci 88, 250–265 (2012)
[14]P. W. J. De Groot, A. F. Ram, F. M. Klis: Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42, 657–675 (2005)
[15]M. L. Richard, A. Plaine: Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukariotic Cell 6, 119–133 (2007)
[16]R. A. Hall, N. A. R. Gow: Mannosylation in Candida albicans: Role in cell wall function and immune recognition. Mol Microbiol 90, 1147–1161 (2013)
[17]C. A. Munro, S. Bates, E. T. Buurman, H. B. Hughes, D. M. MacCallum, G. Bertram, A. Atrih, M. A. J. Ferguson, J. M. Bain, A. Brand, S. Hamilton, C. Westwater, L. M. Thomson, A. J. P. Brown, F. C. Odds, N. A. R. Gow: Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280, 1051–1060 (2005)
[18]H. M. Mora-Montes, S. Bates, M. G. Netea, D. F. Diaz-Jimenez, E. Lopez-Romero, S. Zinker, P. Ponce-Noyola, B. J. Kullberg, A. J. P. Brown, F. C. Odds, A. Flores-Carreon, N. A. R. Gow: Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6, 2184–2193 (2007)
[19]C. Murciano, D. L. Moyes, M. Runglall, A. Islam, C. Mille, C. Fradin, D. Poulain, N. A. R. Gow, J. R. Naglik: Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect Immun 79, 4902–4911 (2011)
[20]M. Rouabhia, M. Schaller, C. Corbucci, A. Vecchiarelli, S. K. H. Prill, L. Giasson, J. F. Ernst: Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect Immun 73, 4571–4580 (2005)
[21]D. Poulain, C. Slomianny, T. Jouault, J. M. Gomez, P. A. Trinel: Contribution of phospholipomannan to the surface expression of beta-1,2-oligomannosides in Candida albicans and its presence in cell wall extracts. Infect Immun 70, 4323–4328 (2002)
[22]P. A. Trinel, E. Maes, J. P. Zanetta, F. Delplace, B. Coddeville, T. Jouault, G. Strecker, D. Poulain: Candida albicans phospholipomannan, a new member of the fungal mannose inositol phosphoceramide family. J Biol Chem 277, 37260–37271 (2002)
[23]J. Naglik, A. Albrecht, O. Bader, B. Hube: Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6, 915–926 (2004)
[24]D. W. Williams, R. P. C. Jordan, X. Q. Wei, C. T. Alves, M. P. Wise, M. J. Wilson, M. O. Lewis: Interactions of Candida albicans with host epithelial surfaces. J Oral Microbiol 5, 1–8 (2013)
[25]H. Wu, D. Downs, K. Ghosh, A. K. Ghosh, P. Staib, M. Monod, J. Tang: Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 27 2132–2144 (2013)
[26]M. Schaller, M. Bein, H. C. Korting, S. Baur, G. Hamm, M. Monod, S. Beinhauer, B. Hube: The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71, 3227–3234 (2003)
[27]L. Romani: Immunity to fungal infections. Nat Rev Immunol 11, 275–288 (2011)
[28]L. Romani: Innate and adaptive immunity to systemic Candida albicans infection. In Fungal Immunology. From an organ perspective. Eds: P. Fidel, G. Huffnagle. Springer, New York. 377–402 (2005)
[29]M. S. Lionakis: New insights into innate immune control of systemic candidiasis. Med Mycol 52, 555–564 (2014)
[30]T. Zelante, C. Montagnoli, S. Bozza, R. Gaziano, S. Bellocchio, P. Bonifazi, S. Moretti, F. Fallarino, P. Puccetti, L. Romani: Receptors and pathways in innate antifungal immunity: the implication for tolerance and immunity to fungi. Adv Exp Med Biol 590, 209–221 (2007)
[31]S. J. Szabo, B. M. Sullivan, S. L. Peng, L. H. Glimcher: Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 21, 713–758 (2003)
[32]D. Gozalbo, V. Maneu, M. L. Gil: Role of IFN-gamma in immune responses to Candida albicans infections. Front Biosci (Landmark Ed.) 1, 1279–1290 (2014)
[33]E. Cenci, L. Romani, A. Vecchiarelli, P. Puccetti, F. Bistoni: T cell subsets and IFN-gamma production in resistance to systemic candidosis in immunized mice. J Immunol 144, 4333–4339 (1990)
[34]L. Romani, S. Mocci, C. Bietta, L. Lanfaloni, P. Puccetti, F. Bistoni: Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infect Immun 59, 4647–4654 (1991)
[35]A. Mencacci, G. Del Sero, E. Cenci, C. F. d’Ostiani, A. Bacci, C. Montagnoli, M. Kopf, L. Romani: Endogenous Interleukin 4 Is Required for Development of Protective CD4+ T Helper Type 1 Cell Responses to Candida albicans. J Exp Med 187, 307–317 (1998)
[36]A. Mencacci, E. Cenci, G. Del Sero, C. Fe d’Ostiani, P. Mosci, G. Trinchieri, L. Adorini, L. Romani: IL-10 is required for development of protective Th1 responses in IL-12-deficient mice upon Candida albicans infection. J Immunol 161, 6228–6237 (1998)
[37]L. Romani: Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr Opin Microbiol 2, 363–367 (1999)
[38]C. F. d’Ostiani, G. Del Sero, A. Bacci, C. Montagnoli, A. Spreca, A. Mencacci, P. Ricciardi-Castagnoli, L. Romani: Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 191, 1661–1674 (2000)
[39]L. Romani, C. Montagnoli, S. Bozza, K. Perruccio, A. Spreca, P. Allavena, S. Verbeek, R. A. Calderone, F. Bistoni, P. Puccetti: The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int Immunol 16, 149–161 (2004)
[40]C. A. A. van der Graaf, M. G. Netea, I. Verschueren, J. W. M. van der Meer, B. J. Kullberg: Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 73, 7458–7464 (2005)
[41]G. Romagnoli, R. Nisini, P. Chiani, S. Mariotti, R. Teloni, A. Cassone, A. Torosantucci: The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J Leukoc Biol 75, 117–126 (2004)
[42]P. Chiani, C. Bromuro, A. Torosantucci: Defective induction of interleukin-12 in human monocytes by germ-tube forms of Candida albicans. Infect Immun 68, 5628–5634 (2000)
[43]A. Torosantucci, G. Romagnoli, P. Chiani, A. Stringaro, P. Crateri, S. Mariotti, R. Teloni, G. Arancia, A. Cassone, R. Nisini: Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: a novel dimorphism-dependent mechanism to escape the host’s immune response. Infect Immun 72, 833–843 (2004)
[44]J. P. Richardson, D. L. Moyes: Adaptive immune responses to Candida albicans infection. Virulence, in press (2015)
[45]E. V Acosta-Rodriguez, L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno, A. Lanzavecchia, F. Sallusto, G. Napolitani: Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8, 639–646 (2007)
[46]S. LeibundGut-Landmann, O. Gross, M. J. Robinson, F. Osorio, E. C. Slack, S. V. Tsoni, E. Schweighoffer, V. Tybulewicz, G. D. Brown, J. Ruland, C. Reis e Sousa: Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8, 630–638 (2007)
[47]N. W. Palm, R. Medzhitov: Antifungal defense turns 17. Nat Immunol 8, 549–551 (2007)
[48]S. Joly, N. Ma, J. J. Sadler, D. R. Soll, S. L. Cassel, F. S. Sutterwala: Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183, 3578–3581 (2009)
[49]A. G. Hise, J. Tomalka, S. Ganesan, K. Patel, B. A. Hall, G. D. Brown, K. A. Fitzgerald: An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5 487–497 (2009)
[50]O. Gross, H. Poeck, M. Bscheider, C. Dostert, N. Hannesschläger, S. Endres, G. Hartmann, A. Tardivel, E. Schweighoffer, V. Tybulewicz, A. Mocsai, J. Tschopp, J. Ruland: Syk kinase signalling couples to the NLRP3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009)
[51]M. Wellington, K. Koselny, F. S. Sutterwala, D. J. Krysan: Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell 13, 329–340 (2014)
[52]S. M. Levitz: Interactions of Toll-like receptors with fungi. Microbes Infect 6, 1351–1355 (2004)
[53]M. G. Netea, C. Van Der Graaf, J. W. M. Van Der Meer, B. J. Kullberg: Recognition of fungal pathogens by toll-like receptors. Eur J Clin Microbiol Infect Dis 23, 672–676 (2004)
[54]M. L. Gil, D. Gozalbo: TLR2, but not TLR4, triggers cytokine production by murine cells in response to Candida albicans yeasts and hyphae. Microbes Infect 8, 2299–2304 (2006)
[55]M. G. Netea, N. A. R. Gow, C. A. Munro, S. Bates, C. Collins, G. Ferwerda, R. P. Hobson, G. Bertram, H. B. Hughes, T. Jansen, L. Jacobs, E. T. Buurman, K. Gijzen, D. L. Williams, R. Torensma, A. McKinnon, D. M. MacCallum, F. C. Odds, J. W. M. Van der Meer, A. J. P. Brown, B. J. Kullberg: Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116, 1642–1650 (2006)
[56]K. Sato, X. Yang, T. Yudate, J.-S. Chung, J. Wu, K. Luby-Phelps, R. P. Kimberly, D. Underhill, P. D. Cruz, K. Ariizumi: Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281, 38854–38866 (2006)
[57]R. A. Drummond, G. D. Brown: The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 14, 392–399 (2011)
[58]S. Saijo, Y. Iwakura: Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol 23, 467–472 (2011)
[59]J. R. Linden, M. E. De Paepe, S. S. Laforce-Nesbitt, J. M. Bliss: Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol 51, 641–51 (2013)
[60]S. Akira, K. Takeda: Toll-like receptor signalling. Nat Rev Immunol 4, 499–511 (2004)
[61]A. P. West, A. A. Koblansky, S. Ghosh: Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22, 409–437 (2006)
[62]D. Kabelitz, R. Medzhitov: Innate immunity-cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 19, 1-3 (2007)
[63]T. Kawai, S. Akira: TLR signaling. Semin Immunol 19, 24–32 (2007)
[64]K. Miyake: Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19, 3–10 (2007)
[65]M. Sasai, M. Yamamoto: Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol 32, 116–33 (2013)
[66]S. Akira, S. Uematsu, O. Takeuchi: Pathogen recognition and innate immunity. Cell 124, 783–801 (2006)
[67]R. Medzhitov: TLR-mediated innate immune recognition. Semin Immunol 19, 1–2 (2007)
[68]O. Takeuchi, T. Kawai, P. Mühlradt, M. Morr, J. Radolf, A. Zychlinsky, K. Takeda, S. Akira: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13, 933–940 (2001)
[69]O. Takeuchi, S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, R. L. Modlin, S. Akira: Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169, 10–14 (2002)
[70]H. K. Lee, A. Iwasaki: Innate control of adaptive immunity: dendritic cells and beyond. Semin Immunol 19, 48–55 (2007)
[71]T. Kawasaki, T. Kawai: Toll-like receptor signaling pathways. Front Immunol 5, 461 (2014)
[72]D. M. Underhill, A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, A. Aderem: The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999)
[73]S. Shoham, C. Huang, J. M. Chen, D. T. Golenbock, S. M. Levitz: Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 166, 4620–4626 (2001)
[74]J. E. Wang, A. Warris, E. A. Ellingsen, P. F. Jørgensen, T. H. Flo, T. Espevik, R. Solberg, P. E. Verweij, A. O. Aasen: Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 69, 2402–2406 (2001)
[75]M. G. Netea, C. A. A. Van Der Graaf, A. G. Vonk, I. Verschueren, J. W. M. Van Der Meer, B. J. Kullberg: The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185, 1483–1489 (2002)
[76]C. Bourgeois, K. Kuchler: Fungal pathogens-a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol 2, 142 (2012)
[77]K. L. Becker, D. C. Ifrim, J. Quintin, M. G. Netea, F. L. van de Veerdonk: Antifungal innate immunity: recognition and inflammatory networks. Semin Immunopathol Immunopathol 37, 107–116 (2015)
[78]S. Bellocchio, C. Montagnoli, S. Bozza, R. Gaziano, G. Rossi, S. S. Mambula, A. Vecchi, A. Mantovani, S. M. Levitz, L. Romani: The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172, 3059–3069 (2004)
[79]E. Villamon, D. Gozalbo, P. Roig, C. Murciano, J. E. O’Connor, D. Fradelizi, M. L. Gil: Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida-induced production of cytokines. Eur Cytokine Netw 15, 263–271 (2004)
[80]E. Villamon, D. Gozalbo, P. Roig, J. E. O’Connor, D. Fradelizi, M. L. Gil: Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect 6, 1–7 (2004)
[81]M. G. Netea, R. Sutmuller, C. Hermann, C. A. A. Van der Graaf, J. W. M. Van der Meer, J. H. van Krieken, T. Hartung, G. Adema, B. J. Kullberg: Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172, 3712–3718 (2004)
[82]E. Villamon, D. Gozalbo, P. Roig, J. E. O’Connor, M. L. Ferrandiz, D. Fradelizi, M. L. Gil: Toll-like receptor 2 is dispensable for acquired host immune resistance to Candida albicans in a murine model of disseminated candidiasis. Microbes Infect 6, 542–548 (2004)
[83]M. G. Netea, F. Van De Veerdonk, I. Verschueren, J. W. M. Van Der Meer, B. J. Kullberg: Role of TLR1 and TLR6 in the host defense against disseminated candidiasis. FEMS Immunol Med Microbiol 52, 118–123 (2008)
[84]C. Murciano, E. Villamon, D. Gozalbo, P. Roig, J. E. O’Connor, M. L. Gil: Toll-like receptor 4 defective mice carrying point or null mutations do not show increased susceptibility to Candida albicans in a model of hematogenously disseminated infection. Med Mycol 44, 149–157 (2006)
[85]G. G. Gauglitz, H. Callenberg, G. Weindl, H. C. Korting: Host defence against Candida albicans and the role of pattern-recognition receptors. Acta Derm Venereol 92, 291–298 (2012)
[86]F. L. van de Veerdonk, M. G. Netea, T. J. Jansen, L. Jacobs, I. Verschueren, J. W. M. van der Meer, B. J. Kullberg: Redundant role of TLR9 for anti-Candida host defense. Immunobiology 213, 613–620 (2008)
[87]C. Biondo, A. Malara, A. Costa, G. Signorino, F. Cardile, A. Midiri, R. Galbo, S. Papasergi, M. Domina, M. Pugliese, G. Teti, G. Mancuso, C. Beninati: Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol 42, 2632–2643 (2012)
[88]D. M. Underhill, A. Ozinsky: Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20, 825–852 (2002)
[89]D. M. Underhill, A. Ozinsky: Toll-like receptors: Key mediators of microbe detection. Curr Opin Immunol 14, 103–110 (2002)
[90]D. M. Underhill, B. Gantner: Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes Infect 6, 1368–1373 (2004)
[91]K. A. Marr, S. A. Balajee, T. R. Hawn, A. Ozinsky, U. Pham, S. Akira, A. Aderem, W. C. Liles: Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect Immun 71, 5280–5286 (2003)
[92]B. N. Gantner, R. M. Simmons, S. J. Canavera, S. Akira, D. M. Underhill: Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197, 1107–1117 (2003)
[93]J. R. Linden, D. Kunkel, S. S. Laforce-Nesbitt, J. M. Bliss: The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cell Microbiol 15, 1127–1142 (2013)
[94]A. Roeder, C. J. Kirschning, M. Schaller, G. Weindl, H. Wagner, H.-C. Korting, R. A. Rupec: Induction of nuclear factor-kappa B and c-Jun/activator protein-1 via toll-like receptor 2 in macrophages by antimycotic-treated Candida albicans. J Infect Dis 190, 1318–1326 (2004)
[95]E. Blasi, A. Mucci, R. Neglia, F. Pezzini, B. Colombari, D. Radzioch, A. Cossarizza, E. Lugli, G. Volpini, G. Del Giudice, S. Peppoloni: Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans. FEMS Immunol Med Microbiol 44, 69–79 (2005)
[96]M. L. Gil, D. Fradelizi, D. Gozalbo: TLR2: for or against Candida albicans? Trends Microbiol 13, 298–299 (2005)
[97]M. Netea, J. van der Meer, B. Kullberg: Both TLR2 and TLR4 are involved in the recognition of Candida albicans. Microbes Infect 8, 2821–2822 (2006)
[98]M. L. Gil, D. Gozalbo: Candida albicans: to be or not to be recognized by TLR4? Microbes Infect 8, 2823–2824 (2006)
[99]C. Murciano, A. Yañez, M. L. Gil, D. Gozalbo: Both viable and killed Candida albicans cells induce in vitro production of TNF-alpha and IFN-gamma in murine cells through a TLR2-dependent signalling. Eur Cytokine Netw 18, 38–43 (2007)
[100]H. Tada, E. Nemoto, H. Shimauchi, T. Watanabe, T. Mikami, T. Matsumoto, N. Ohno, H. Tamura, K. Shibata, S. Akashi, K. Miyake, S. Sugawara, H. Takada: Saccharomyces cerevisiae-and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner. Microbiol Immunol 46, 503–512 (2002)
[101]A. Roeder, C. J. Kirschning, R. A. Rupec, M. Schaller, H. C. Korting: Toll-like receptors and innate antifungal responses. Trends Microbiol 12, 44–49 (2004)
[102]P. V. Kasperkovitz, N. S. Khan, J. M. Tam, M. K. Mansour, P. J. Davids, J. M. Vyas: Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect Immun 79, 4858–4867 (2011)
[103]S. P. Smeekens, A. Ng, V. Kumar, M. D. Johnson, T. S. Plantinga, C. van Diemen, P. Arts, E. T. P. Verwiel, M. S. Gresnigt, K. Fransen, S. van Sommeren, M. Oosting, S.-C. Cheng, L. a B. Joosten, A. Hoischen, B.-J. Kullberg, W. K. Scott, J. R. Perfect, J. W. M. van der Meer, C. Wijmenga, M. G. Netea, R. J. Xavier: Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4, 1342 (2013)
[104]C. Bourgeois, O. Majer, I. E. Frohner, I. Lesiak-Markowicz, K.-S. Hildering, W. Glaser, S. Stockinger, T. Decker, S. Akira, M. Müller, K. Kuchler: Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling. J Immunol 186, 3104–3112 (2011)
[105]C. DelFresno, D. Soulat, S. Roth, K. Blazek, I. Udalova, D. Sancho, J. Ruland, C. Ardavin: Interferon-β Production via Dectin-1-Syk-IRF5 Signaling in Dendritic Cells Is Crucial for Immunity to C. albicans. Immunity 38, 1176–1186 (2013)
[106]P. Miramon, L. Kasper, B. Hube: Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 202, 183–195 (2013)
[107]V. Tessarolli, T. H. Gasparoto, H. R. Lima, E. A. Figueira, T. P. Garlet, S. A. Torres, G. P. Garlet, J. S. Da Silva, A. P. Campanelli: Absence of TLR2 influences survival of neutrophils after infection with Candida albicans. Med Mycol 48, 129–140 (2010)
[108]S. Bozza, R. Gaziano, G. B. Lipford, C. Montagnoli, A. Bacci, P. Di Francesco, V. P. Kurup, H. Wagner, L. Romani: Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes Infect 4, 1281–1290 (2002)
[109]A. A. M. Krieg: CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20, 709–60 (2002)
[110]K. Miyagi, K. Kawakami, Y. Kinjo, K. Uezu, T. Kinjo, K. Nakamura, A. Saito: CpG oligodeoxynucleotides promote the host protective response against infection with Cryptococcus neoformans through induction of interferon-gamma production by CD4+ T cells. Clin Exp Immunol 140, 220–229 (2005)
[111]S. Ito, J. Pedras-Vasconcelos, D. M. Klinman: CpG oligodeoxynucleotides increase the susceptibility of normal mice to infection by Candida albicans. Infect Immun 73, 6154–6156 (2005)
[112]J. H. Choi, H. M. Ko, S. J. Park, K. J. Kim, S. H. Kim, S. Y. Im: CpG oligodeoxynucleotides protect mice from lethal challenge with Candida albicans via a pathway involving tumor necrosis factor-alpha-dependent interleukin-12 induction. FEMS Immunol Med Microbiol 51, 155–162 (2007)
[113]M. Yordanov, P. Dimitrova, S. Danova, N. Ivanovska: Candida albicans double-stranded DNA can participate in the host defense against disseminated candidiasis. Microbes Infect 7, 178–186 (2005)
[114]C. Biondo, G. Signorino, A. Costa, A. Midiri, E. Gerace, R. Galbo, A. Bellantoni, A. Malara, C. Beninati, G. Teti, G. Mancuso: Recognition of yeast nucleic acids triggers a host-protective type I interferon response. Eur J Immunol 41, 1969–1979 (2011)
[115]A. Miyazato, K. Nakamura, N. Yamamoto, H. M. Mora-Montes, M. Tanaka, Y. Abe, D. Tanno, K. Inden, X. Gang, K. Ishii, K. Takeda, S. Akira, S. Saijo, Y. Iwakura, Y. Adachi, N. Ohno, K. Mitsutake, N. A. R. Gow, M. Kaku, K. Kawakami: Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans. Infect Immun 77, 3056–3064 (2009)
[116]S. Sakaguchi: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531–562 (2004)
[117]Y. Belkaid, B. T. Rouse: Natural regulatory T cells in infectious disease. Nat Immunol 6, 353–360 (2005)
[118]R. P. M. Sutmuller, M. E. Morgan, M. G. Netea, O. Grauer, G. J. Adema: Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27, 387–393 (2006)
[119]N. Whibley, S. L. Gaffen. Brothers in Arms: Th17 and Treg Responses in Candida albicans Immunity. PLoS Pathog 10, e1004456 (2014)
[120]C. Montagnoli, A. Bacci, S. Bozza, R. Gaziano, P. Mosci, A. Sharpe, L. Romani: B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J Immunol 169, 6298–6308 (2002)
[121]R. P. M. Sutmuller, M. H. M. G. M. den Brok, M. Kramer, E. J. Bennink, L. W. J. Toonen, B.-J. Kullberg, L. A. Joosten, S. Akira, M. G. Netea, G. J. Adema: Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116, 485–494 (2006)
[122]C. Pasare, R. Medzhitov: Toll-dependent control mechanisms of CD4 T cell activation. Immunity. 21, 733–741 (2004)
[123]Y. Yang, C. T. Huang, X. Huang, D. M. Pardoll: Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5, 508–515 (2004)
[124]C. Pasare, R. Medzhitov: Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 560, 11–18 (2005)
[125]I. Caramalho, T. Lopes-Carvalho, D. Ostler, S. Zelenay, M. Haury, J. Demengeot: Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197, 403–411 (2003)
[126]M. G. Netea, J. W. M. Van Der Meer, B. J. Kullberg: Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 12, 484–488 (2004)
[127]N. Whibley, D. M. Maccallum, M. A. Vickers, S. Zafreen, H. Waldmann, S. Hori, S. L. Gaffen, N. A. R. Gow, R. N. Barker, A. M. Hall: Expansion of Foxp3+ T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol 44, 1069–1083 (2014)
[128]W. Huang, L. Na, P. L. Fidel, P. Schwarzenberger: Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis190, 624–631 (2004)
[129]T. Zelante, A. De Luca, P. Bonifazi, C. Montagnoli, S. Bozza, S. Moretti, M. L. Belladonna, C. Vacca, C. Conte, P. Mosci, F. Bistoni, P. Puccetti, R. A. Kastelein, M. Kopf, L. Romani: IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37, 2695–2706 (2007)
[130]F. Annunziato, L. Cosmi, V. Santarlasci, L. Maggi, F. Liotta, B. Mazzinghi, E. Parente, L. Fili, S. Ferri, F. Frosali, F. Giudici, P. Romagnani, P. Parronchi, F. Tonelli, E. Maggi, S. Romagnani: Phenotypic and functional features of human Th17 cells. J Exp Med 204, 1849–1861 (2007)
[131]C. R. Ruprecht, A. Lanzavecchia: Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol. 36, 810–816 (2006)
[132]D. Kabelitz: Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 19, 39–45 (2007)
[133]B. Jin, T. Sun, X. H. Yu, Y. X. Yang, A. E. T. Yeo: The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol 2012, 836485 (2012)
[134]T. Imanishi, H. Hara, S. Suzuki, N. Suzuki, S. Akira, T. Saito: Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178, 6715–6719 (2007)
[135]Y. Nagai, K. P. Garrett, S. Ohta, U. Bahrun, T. Kouro, S. Akira, K. Takatsu, P. W. Kincade: Toll-like Receptors on Hematopoietic Progenitor Cells Stimulate Innate Immune System Replenishment. Immunity 24, 801–812 (2006)
[136]A. Yañez, H. S. Goodridge, D. Gozalbo, M. L. Gil: TLRs control hematopoiesis during infection. Eur J Immunol 43, 2526–2533 (2013)
[137]A. Yañez, C. Murciano, J. E. O’Connor, D. Gozalbo, M. L. Gil: Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect 11, 531–535 (2009)
[138]A. Yañez, A. Flores, C. Murciano, J. E. O’Connor, D. Gozalbo, M. L. Gil: Signalling through TLR2/MyD88 induces differentiation of murine bone marrow stem and progenitor cells to functional phagocytes in response to Candida albicans. Cell Microbiol 12, 114–128 (2010)
[139]A. Yañez, J. Megias, J. E. O’Connor, D. Gozalbo, M. L. Gil: Candida albicans induces selective development of macrophages and monocyte derived dendritic cells by a TLR2 dependent signalling. PLoS One 6, e24761 (2011)
[140]A. Yañez, N. Hassanzadeh-Kiabi, M. Y. Ng, J. Megias, A. Subramanian, G. Y. Liu, D. M. Underhill, M. L. Gil, H. S. Goodridge: Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce. Eur J Immunol 43, 2114–2125 (2013)
[141]J. Megias, A. Yañez, S. Moriano, J. E. O’Connor, D. Gozalbo, M. L. Gil: Direct toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells 30, 1486–1495 (2012)
[142]J. Megias, V. Maneu, P. Salvador, D. Gozalbo, M. L. Gil: Candida albicans stimulates in vivo differentiation of haematopoietic stem and progenitor cells towards macrophages by a TLR2-dependent signalling. Cell Microbiol 15, 1143–1153 (2013)
[143]A. Khosravi, A. Yañez, J. G. Price, A. Chow, M. Merad, H. S. Goodridge, S. K. Mazmanian: Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014)
[144]M. Balmer, C. Schürch, Y. Saito, M. Geuking, H. Li, M. Cuenca, L. Kovtonyuk, K. McCoy, S. Hapfelmeier, A. Ochsenbein, M. Manz, E. Slack, A. Macpherson: Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 193, 5273–5283 (2014)
[145]M. S. Lionakis, M. Swamydas, B. G. Fischer, T. S. Plantinga, M. D. Johnson, M. Jaeger, N. M. Green, A. Masedunskas, R. Weigert, C. Mikelis, W. Wan, C. C. R. Lee, J. K. Lim, A. Rivollier, J. C. Yang, G. M. Laird, R. T. Wheeler, B. D. Alexander, J. R. Perfect, J. L. Gao, B. J. Kullberg, M. G. Netea, P. M. Murphy: CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest 123, 5035–5051 (2013)
[146]T. Jouault, A. Bernigaud, G. Lepage, P. A. Trinel, D. Poulain: The Candida albicans phospholipomannan induces in vitro production of tumour necrosis factor-alpha from human and murine macrophages. Immunology 83, 268–273 (1994)
[147]T. Jouault, C. Fradin, P. A. Trinel, A. Bernigaud, D. Poulain: Early signal transduction induced by Candida albicans in macrophages through shedding of a glycolipid. J Infect Dis 178, 792–802 (1998)
[148]T. Jouault, S. Ibata-Ombetta, O. Takeuchi, P. A. Trinel, P. Sacchetti, P. Lefebvre, S. Akira, D. Poulain: Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188, 165–172 (2003)
[149]C. Fradin, E. S. Bernardes, T. Jouault: Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation. Semin Immunopathol 37, 123–130 (2015)
[150]M. Li, Q. Chen, Y. Shen, W. Liu: Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through Toll-like receptor 2. Exp Dermatol 18, 603–610 (2009)
[151]J. Wagener, G. Weindl, P. W. J. de Groot, A. D. de Boer, S. Kaesler, S. Thavaraj, O. Bader, D. Mailänder-Sanchez, C. Borelli, M. Weig, T. Biedermann, J. R. Naglik, H. C. Korting, M. Schaller: Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One 7, e50518 (2012)
[152]T. H. Gasparoto, V. Tessarolli, T. P. Garlet, S. A. Torres, G. P. Garlet, J. S. da Silva, A. P. Campanelli: Absence of functional TLR4 impairs response of macrophages after Candida albicans infection. Med Mycol 48, 1009–1017 (2010)
[153]M. G. Netea, N. A. R. Gow, L. A. B. Joosten, I. Verschueren, J. W. M. van der Meer, B. J. Kullberg: Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors. Med Mycol 48, 897–903 (2010)
[154]R. T. Wheeler, G. R. Fink: A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2, 328–339 (2006)
[155]A. Plaine, A. Yañez, C. Murciano, C. Gaillardin, M. L. Gil, M. L. Richard, D. Gozalbo: Enhanced proinflammatory response to the Candida albicans gpi7 null mutant by murine cells. Microbes Infect 10, 382–389 (2008)
[156]G. M. Barton, J. C. Kagan, R. Medzhitov: Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7, 49–56 (2006)
[157]G. D. Brown, P. R. Taylor, D. M. Reid, J. A. Willment, D. L. Williams, L. Martinez-Pomares, S. Y. C. Wong, S. Gordon: Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196, 407–412 (2002)
[158]G. D. Brown, J. Herre, D. L. Williams, J. A. Willment, A. S. J. Marshall, S. Gordon: Dectin-1 mediates the biological effects of beta-glucans. J Exp Med. 197, 1119–1124 (2003)
[159]J. Herre, S. Gordon, G. D. Brown: Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 40, 869–876 (2004)
[160]N. C. Rogers, E. C. Slack, A. D. Edwards, M. A. Nolte, O. Schulz, E. Schweighoffer, D. L. Williams, S. Gordon, V. L. Tybulewicz, G. D. Brown, C. Reis E Sousa: Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005)
[161]O. Gross, A. Gewies, K. Finger, M. Schäfer, T. Sparwasser, C. Peschel, I. Förster, J. Ruland: Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006)
[162]B. N. Gantner, R. M. Simmons, D. M. Underhill: Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24, 1277–1286 (2005)
[163]A. Torosantucci, P. Chiani, A. Cassone: Differential chemokine response of human monocytes to yeast and hyphal forms of Candida albicans and its relation to the beta-1,6 glucan of the fungal cell wall. J Leukoc Biol. 68, 923–932 (2000)
[164]L. L. Zhu, X. Q. Zhao, C. Jiang, Y. You, X. P. Chen, Y. Y. Jiang, X. M. Jia, X. Lin: C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013)
[165]N. Hernandez-Santos, S. L. Gaffen: Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012)
[166]S. Saijo, N. Fujikado, T. Furuta, S. Chung, H. Kotaki, K. Seki, K. Sudo, S. Akira, Y. Adachi, N. Ohno, T. Kinjo, K. Nakamura, K. Kawakami, Y. Iwakura: Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8, 39–46 (2007)
[167]P. R. Taylor, S. V. Tsoni, J. A. Willment, K. M. Dennehy, M. Rosas, H. Findon, K. Haynes, C. Steele, M. Botto, S. Gordon, G. D. Brown: Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8, 31–38 (2007)
[168]B. Ferwerda, G. Ferwerda, T. S. Plantinga, J. A. Willment, A. B. van Spriel, H. Venselaar, C. C. Elbers, M. D. Johnson, A. Cambi, C. Huysamen, L. Jacobs, T. Jansen, K. Verheijen, L. Masthoff, S. A. Morre, G. Vriend, D. L. Williams, J. R. Perfect, L. A. B. Joosten, C. Wijmenga, J. W. M. van der Meer, G. J. Adema, B. J. Kullberg, G. D. Brown, M. G. Netea: Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361, 1760–1767 (2009)
[169]S. Saijo, S. Ikeda, K. Yamabe, S. Kakuta, H. Ishigame, A. Akitsu, N. Fujikado, T. Kusaka, S. Kubo, S. Chung, R. Komatsu, N. Miura, Y. Adachi, N. Ohno, K. Shibuya, N. Yamamoto, K. Kawakami, S. Yamasaki, T. Saito, S. Akira, Y. Iwakura: Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010)
[170]L. Bi, S. Gojestani, W. Wu, Y. M. S. Hsu, J. Zhu, K. Ariizumi, X. Lin: CARD9 mediates dectin-2-induced IκBα kinase ubiquitination leading to activation of NF-κB in response to stimulation by the hyphal form of Candida albicans. J Biol Chem 285, 25969–25977 (2010)
[171]S. J. Lee, N. Y. Zheng, M. Clavijo, M. C. Nussenzweig: Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun 71, 437–445 (2003)
[172]C. A. Wells, J. A. Salvage-Jones, X. Li, K. Hitchens, S. Butcher, R. Z. Murray, A. G. Beckhouse, Y.-L.-S. Lo, S. Manzanero, C. Cobbold, K. Schroder, B. Ma, S. Orr, L. Stewart, D. Lebus, P. Sobieszczuk, D. A. Hume, J. Stow, H. Blanchard, R. B. Ashman: The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180, 7404–7413 (2008)
[173]A. Cambi, M. G. Netea, H. M. Mora-Montes, N. A. R. Gow, S. V. Hato, D. W. Lowman, B. J. Kullberg, R. Torensma, D. L. Williams, C. G. Figdor: Dendritic cell interaction with Candida albicans critically depends on N-linked Mannan. J Biol Chem 283, 20590–20599 (2008)
[174]K. Takahara, T. Arita, S. Tokieda, N. Shibata, Y. Okawa, H. Tateno, J. Hirabayashi, K. Inabaa: Difference in fine specificity to polysaccharides of Candida albicans: Mannoprotein between mouse SIGNR1 and human DC-SIGN. Infect Immun 80, 1699–1706 (2012)
[175]C. Fradin, D. Poulain, T. Jouault: beta-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect Immun 68, 4391–4398 (2000)
[176]T. Jouault, M. El Abed-El Behi, M. Martinez-Esparza, L. Breuilh, P. A. Trinel, M. Chamaillard, F. Trottein, D. Poulain: Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177, 4679–4687 (2006)
[177]A. Esteban, M. W. Popp, V. K. Vyas, K. Strijbis, H. L. Ploegh, G. R. Fink: Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci USA 108, 14270–14275 (2011)
[178]S. P. Smeekens, F. L. van de Veerdonk, J. W. M. van der Meer, B. J. Kullberg, L. A. B. Joosten, M. G. Netea: The Candida Th17 response is dependent on mannan-and beta-glucan-induced prostaglandin E2. Int Immunol 22, 889–895 (2010)
[179]G. Ferwerda, F. Meyer-Wentrup, B. J. Kullberg, M. G. Netea, G. J. Adema: Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol 10, 2058–2066 (2008)
[180]K. Takahara, S. Tokieda, K. Nagaoka, T. Takeda, Y. Kimura, K. Inaba: C-type lectin SIGNR1 enhances cellular oxidative burst response against C. albicans in cooperation with Dectin-1. Eur J Immunol 41, 1435–1444 (2011)
[181]K. Takahara, S. Tokieda, K. Nagaoka, K. Inaba: Efficient capture of Candida albicans and zymosan by SIGNR1 augments TLR2-dependent TNF-α production. Int Immunol 24, 89–96 (2012)
[182]K. Nagaoka, K. Takahara, K. Tanaka, H. Yoshida, R. M. Steinman, S. I. Saitoh, S. Akashi-Takamura, K. Miyake, Y. S. Kang, C. G. Park, K. Inaba: Association of SIGNR1 with TLR4-MD-2 enhances signal transduction by recognition of LPS in gram-negative bacteria. Int Immunol 17, 827–836 (2005)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Role of Toll-like receptors in systemic Candida albicans infections
1 Departament de Microbiologia i Ecologia, Universitat de Valencia, Burjassot, Spain
2 Estructura de Investigacion Interdisciplinar en Biotecnologia y Medicina (ERI BIOTECMED), Universitat de Valencia, Burjassot, Spain
3 Board of Governors Regenerative Medicine Institute and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
Abstract
Toll-like receptors (TLRs) constitute a family of pattern-recognition receptors (PRRs) that recognize molecular signatures of microbial pathogens and function as sensors for infection. Recognition of Candida albicans by TLRs on mature immune cells, such as phagocytic cells, activates intracellular signalling pathways that trigger production of proinflammatory cytokines which are critical for innate host defence and orchestrate the adaptive response. TLR2, and TLR4 in a minor extent, recognize cell wall-associated ligands; endosomal TLR9 and TLR7 recognize DNA and RNA respectively. Interaction of C. albicans with TLRs is a complex process, as TLRs may collaborate with other PRRs and expression of surface-associated fungal ligands depends on the strain and the morphotype (yeasts or hyphae), thus defining the final induced adaptive response (Th1/Th2/Th17). TLRs are also expressed on hematopoietic stem and progenitor cells (HSPCs) where they may play a role in modulating hematopoiesis; engagement of TLR2 induces, upon recognition of C. albicans, the differentiation of HSPCs towards specific subsets of mature myeloid cells. This has opened a new perspective for anti-Candida immunointervention.
Keywords
- Toll-like receptors
- Candida albicans
- Systemic candidiasis
- Innate and adaptive immunity
- Review
References
- [1] R. Calderone, Ed.: Candida and candidiasis. ASM Press, New York (2001)
- [2] G. Garber: An overview of fungal infections. Drugs 61, 1–12 (2001)
- [3] D. Sanglard, F. C. Odds: Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2, 73–85 (2002)
- [4] M. A. Pfaller, D. J. Diekema: Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20 133–163 (2007)
- [5] N. Yapar: Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10, 95–105 (2014)
- [6] M. C. Arendrup: Candida and Candidaemia: Susceptibility and Epidemiology. Dan. Med. J. 60, B4698 (2013)
- [7] D. Gozalbo, P. Roig, E. Villamon, M. L. Gil: Candida and candidiasis: the cell wall as a potential molecular target for antifungal therapy. Curr Drug Targets Infect Disord 4, 117–135 (2004)
- [8] D. Poulain, T. Jouault: Candida albicans cell wall glycans, host receptors and responses: Elements for a decisive crosstalk. Curr Opin Microbiol 7, 342–349 (2004)
- [9] J. Ruiz-Herrera, M. Victoria Elorza, E. Valentin, R. Sentandreu: Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res 6, 14–29 (2006)
- [10] F. M. Klis, P. de Groot, K. Hellingwerf: Molecular organization of the cell wall of Candida albicans. Med Mycol 39, 1–8 (2001)
- [11] N. A. R. Gow, F. L. van de Veerdonk, A. J. P. Brown, M. G. Netea: Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10, 112-22 (2011)
- [12] D. W. Lowman, R. R. Greene, D. W. Bearden, M. D. Kruppa, M. Pottier, M. A. Monteiro, D. V. Soldatov, H. E. Ensley, S. C. Cheng, M. G. Netea, D. L. Williams: Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J Biol Chem 289, 3432–3443 (2014)
- [13] N. Shibata, H. Kobayashi, S. Suzuki: Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Japan Acad Ser B Phys Biol Sci 88, 250–265 (2012)
- [14] P. W. J. De Groot, A. F. Ram, F. M. Klis: Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42, 657–675 (2005)
- [15] M. L. Richard, A. Plaine: Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukariotic Cell 6, 119–133 (2007)
- [16] R. A. Hall, N. A. R. Gow: Mannosylation in Candida albicans: Role in cell wall function and immune recognition. Mol Microbiol 90, 1147–1161 (2013)
- [17] C. A. Munro, S. Bates, E. T. Buurman, H. B. Hughes, D. M. MacCallum, G. Bertram, A. Atrih, M. A. J. Ferguson, J. M. Bain, A. Brand, S. Hamilton, C. Westwater, L. M. Thomson, A. J. P. Brown, F. C. Odds, N. A. R. Gow: Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280, 1051–1060 (2005)
- [18] H. M. Mora-Montes, S. Bates, M. G. Netea, D. F. Diaz-Jimenez, E. Lopez-Romero, S. Zinker, P. Ponce-Noyola, B. J. Kullberg, A. J. P. Brown, F. C. Odds, A. Flores-Carreon, N. A. R. Gow: Endoplasmic reticulum α-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell 6, 2184–2193 (2007)
- [19] C. Murciano, D. L. Moyes, M. Runglall, A. Islam, C. Mille, C. Fradin, D. Poulain, N. A. R. Gow, J. R. Naglik: Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect Immun 79, 4902–4911 (2011)
- [20] M. Rouabhia, M. Schaller, C. Corbucci, A. Vecchiarelli, S. K. H. Prill, L. Giasson, J. F. Ernst: Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect Immun 73, 4571–4580 (2005)
- [21] D. Poulain, C. Slomianny, T. Jouault, J. M. Gomez, P. A. Trinel: Contribution of phospholipomannan to the surface expression of beta-1,2-oligomannosides in Candida albicans and its presence in cell wall extracts. Infect Immun 70, 4323–4328 (2002)
- [22] P. A. Trinel, E. Maes, J. P. Zanetta, F. Delplace, B. Coddeville, T. Jouault, G. Strecker, D. Poulain: Candida albicans phospholipomannan, a new member of the fungal mannose inositol phosphoceramide family. J Biol Chem 277, 37260–37271 (2002)
- [23] J. Naglik, A. Albrecht, O. Bader, B. Hube: Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6, 915–926 (2004)
- [24] D. W. Williams, R. P. C. Jordan, X. Q. Wei, C. T. Alves, M. P. Wise, M. J. Wilson, M. O. Lewis: Interactions of Candida albicans with host epithelial surfaces. J Oral Microbiol 5, 1–8 (2013)
- [25] H. Wu, D. Downs, K. Ghosh, A. K. Ghosh, P. Staib, M. Monod, J. Tang: Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 27 2132–2144 (2013)
- [26] M. Schaller, M. Bein, H. C. Korting, S. Baur, G. Hamm, M. Monod, S. Beinhauer, B. Hube: The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect Immun 71, 3227–3234 (2003)
- [27] L. Romani: Immunity to fungal infections. Nat Rev Immunol 11, 275–288 (2011)
- [28] L. Romani: Innate and adaptive immunity to systemic Candida albicans infection. In Fungal Immunology. From an organ perspective. Eds: P. Fidel, G. Huffnagle. Springer, New York. 377–402 (2005)
- [29] M. S. Lionakis: New insights into innate immune control of systemic candidiasis. Med Mycol 52, 555–564 (2014)
- [30] T. Zelante, C. Montagnoli, S. Bozza, R. Gaziano, S. Bellocchio, P. Bonifazi, S. Moretti, F. Fallarino, P. Puccetti, L. Romani: Receptors and pathways in innate antifungal immunity: the implication for tolerance and immunity to fungi. Adv Exp Med Biol 590, 209–221 (2007)
- [31] S. J. Szabo, B. M. Sullivan, S. L. Peng, L. H. Glimcher: Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 21, 713–758 (2003)
- [32] D. Gozalbo, V. Maneu, M. L. Gil: Role of IFN-gamma in immune responses to Candida albicans infections. Front Biosci (Landmark Ed.) 1, 1279–1290 (2014)
- [33] E. Cenci, L. Romani, A. Vecchiarelli, P. Puccetti, F. Bistoni: T cell subsets and IFN-gamma production in resistance to systemic candidosis in immunized mice. J Immunol 144, 4333–4339 (1990)
- [34] L. Romani, S. Mocci, C. Bietta, L. Lanfaloni, P. Puccetti, F. Bistoni: Th1 and Th2 cytokine secretion patterns in murine candidiasis: association of Th1 responses with acquired resistance. Infect Immun 59, 4647–4654 (1991)
- [35] A. Mencacci, G. Del Sero, E. Cenci, C. F. d’Ostiani, A. Bacci, C. Montagnoli, M. Kopf, L. Romani: Endogenous Interleukin 4 Is Required for Development of Protective CD4+ T Helper Type 1 Cell Responses to Candida albicans. J Exp Med 187, 307–317 (1998)
- [36] A. Mencacci, E. Cenci, G. Del Sero, C. Fe d’Ostiani, P. Mosci, G. Trinchieri, L. Adorini, L. Romani: IL-10 is required for development of protective Th1 responses in IL-12-deficient mice upon Candida albicans infection. J Immunol 161, 6228–6237 (1998)
- [37] L. Romani: Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr Opin Microbiol 2, 363–367 (1999)
- [38] C. F. d’Ostiani, G. Del Sero, A. Bacci, C. Montagnoli, A. Spreca, A. Mencacci, P. Ricciardi-Castagnoli, L. Romani: Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 191, 1661–1674 (2000)
- [39] L. Romani, C. Montagnoli, S. Bozza, K. Perruccio, A. Spreca, P. Allavena, S. Verbeek, R. A. Calderone, F. Bistoni, P. Puccetti: The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int Immunol 16, 149–161 (2004)
- [40] C. A. A. van der Graaf, M. G. Netea, I. Verschueren, J. W. M. van der Meer, B. J. Kullberg: Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 73, 7458–7464 (2005)
- [41] G. Romagnoli, R. Nisini, P. Chiani, S. Mariotti, R. Teloni, A. Cassone, A. Torosantucci: The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J Leukoc Biol 75, 117–126 (2004)
- [42] P. Chiani, C. Bromuro, A. Torosantucci: Defective induction of interleukin-12 in human monocytes by germ-tube forms of Candida albicans. Infect Immun 68, 5628–5634 (2000)
- [43] A. Torosantucci, G. Romagnoli, P. Chiani, A. Stringaro, P. Crateri, S. Mariotti, R. Teloni, G. Arancia, A. Cassone, R. Nisini: Candida albicans yeast and germ tube forms interfere differently with human monocyte differentiation into dendritic cells: a novel dimorphism-dependent mechanism to escape the host’s immune response. Infect Immun 72, 833–843 (2004)
- [44] J. P. Richardson, D. L. Moyes: Adaptive immune responses to Candida albicans infection. Virulence, in press (2015)
- [45] E. V Acosta-Rodriguez, L. Rivino, J. Geginat, D. Jarrossay, M. Gattorno, A. Lanzavecchia, F. Sallusto, G. Napolitani: Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8, 639–646 (2007)
- [46] S. LeibundGut-Landmann, O. Gross, M. J. Robinson, F. Osorio, E. C. Slack, S. V. Tsoni, E. Schweighoffer, V. Tybulewicz, G. D. Brown, J. Ruland, C. Reis e Sousa: Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8, 630–638 (2007)
- [47] N. W. Palm, R. Medzhitov: Antifungal defense turns 17. Nat Immunol 8, 549–551 (2007)
- [48] S. Joly, N. Ma, J. J. Sadler, D. R. Soll, S. L. Cassel, F. S. Sutterwala: Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183, 3578–3581 (2009)
- [49] A. G. Hise, J. Tomalka, S. Ganesan, K. Patel, B. A. Hall, G. D. Brown, K. A. Fitzgerald: An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe 5 487–497 (2009)
- [50] O. Gross, H. Poeck, M. Bscheider, C. Dostert, N. Hannesschläger, S. Endres, G. Hartmann, A. Tardivel, E. Schweighoffer, V. Tybulewicz, A. Mocsai, J. Tschopp, J. Ruland: Syk kinase signalling couples to the NLRP3 inflammasome for anti-fungal host defence. Nature 459, 433–436 (2009)
- [51] M. Wellington, K. Koselny, F. S. Sutterwala, D. J. Krysan: Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell 13, 329–340 (2014)
- [52] S. M. Levitz: Interactions of Toll-like receptors with fungi. Microbes Infect 6, 1351–1355 (2004)
- [53] M. G. Netea, C. Van Der Graaf, J. W. M. Van Der Meer, B. J. Kullberg: Recognition of fungal pathogens by toll-like receptors. Eur J Clin Microbiol Infect Dis 23, 672–676 (2004)
- [54] M. L. Gil, D. Gozalbo: TLR2, but not TLR4, triggers cytokine production by murine cells in response to Candida albicans yeasts and hyphae. Microbes Infect 8, 2299–2304 (2006)
- [55] M. G. Netea, N. A. R. Gow, C. A. Munro, S. Bates, C. Collins, G. Ferwerda, R. P. Hobson, G. Bertram, H. B. Hughes, T. Jansen, L. Jacobs, E. T. Buurman, K. Gijzen, D. L. Williams, R. Torensma, A. McKinnon, D. M. MacCallum, F. C. Odds, J. W. M. Van der Meer, A. J. P. Brown, B. J. Kullberg: Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116, 1642–1650 (2006)
- [56] K. Sato, X. Yang, T. Yudate, J.-S. Chung, J. Wu, K. Luby-Phelps, R. P. Kimberly, D. Underhill, P. D. Cruz, K. Ariizumi: Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281, 38854–38866 (2006)
- [57] R. A. Drummond, G. D. Brown: The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 14, 392–399 (2011)
- [58] S. Saijo, Y. Iwakura: Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol 23, 467–472 (2011)
- [59] J. R. Linden, M. E. De Paepe, S. S. Laforce-Nesbitt, J. M. Bliss: Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol 51, 641–51 (2013)
- [60] S. Akira, K. Takeda: Toll-like receptor signalling. Nat Rev Immunol 4, 499–511 (2004)
- [61] A. P. West, A. A. Koblansky, S. Ghosh: Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 22, 409–437 (2006)
- [62] D. Kabelitz, R. Medzhitov: Innate immunity-cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 19, 1-3 (2007)
- [63] T. Kawai, S. Akira: TLR signaling. Semin Immunol 19, 24–32 (2007)
- [64] K. Miyake: Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol 19, 3–10 (2007)
- [65] M. Sasai, M. Yamamoto: Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. Int Rev Immunol 32, 116–33 (2013)
- [66] S. Akira, S. Uematsu, O. Takeuchi: Pathogen recognition and innate immunity. Cell 124, 783–801 (2006)
- [67] R. Medzhitov: TLR-mediated innate immune recognition. Semin Immunol 19, 1–2 (2007)
- [68] O. Takeuchi, T. Kawai, P. Mühlradt, M. Morr, J. Radolf, A. Zychlinsky, K. Takeda, S. Akira: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13, 933–940 (2001)
- [69] O. Takeuchi, S. Sato, T. Horiuchi, K. Hoshino, K. Takeda, Z. Dong, R. L. Modlin, S. Akira: Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169, 10–14 (2002)
- [70] H. K. Lee, A. Iwasaki: Innate control of adaptive immunity: dendritic cells and beyond. Semin Immunol 19, 48–55 (2007)
- [71] T. Kawasaki, T. Kawai: Toll-like receptor signaling pathways. Front Immunol 5, 461 (2014)
- [72] D. M. Underhill, A. Ozinsky, A. M. Hajjar, A. Stevens, C. B. Wilson, M. Bassetti, A. Aderem: The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999)
- [73] S. Shoham, C. Huang, J. M. Chen, D. T. Golenbock, S. M. Levitz: Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 166, 4620–4626 (2001)
- [74] J. E. Wang, A. Warris, E. A. Ellingsen, P. F. Jørgensen, T. H. Flo, T. Espevik, R. Solberg, P. E. Verweij, A. O. Aasen: Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 69, 2402–2406 (2001)
- [75] M. G. Netea, C. A. A. Van Der Graaf, A. G. Vonk, I. Verschueren, J. W. M. Van Der Meer, B. J. Kullberg: The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis 185, 1483–1489 (2002)
- [76] C. Bourgeois, K. Kuchler: Fungal pathogens-a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol 2, 142 (2012)
- [77] K. L. Becker, D. C. Ifrim, J. Quintin, M. G. Netea, F. L. van de Veerdonk: Antifungal innate immunity: recognition and inflammatory networks. Semin Immunopathol Immunopathol 37, 107–116 (2015)
- [78] S. Bellocchio, C. Montagnoli, S. Bozza, R. Gaziano, G. Rossi, S. S. Mambula, A. Vecchi, A. Mantovani, S. M. Levitz, L. Romani: The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172, 3059–3069 (2004)
- [79] E. Villamon, D. Gozalbo, P. Roig, C. Murciano, J. E. O’Connor, D. Fradelizi, M. L. Gil: Myeloid differentiation factor 88 (MyD88) is required for murine resistance to Candida albicans and is critically involved in Candida-induced production of cytokines. Eur Cytokine Netw 15, 263–271 (2004)
- [80] E. Villamon, D. Gozalbo, P. Roig, J. E. O’Connor, D. Fradelizi, M. L. Gil: Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect 6, 1–7 (2004)
- [81] M. G. Netea, R. Sutmuller, C. Hermann, C. A. A. Van der Graaf, J. W. M. Van der Meer, J. H. van Krieken, T. Hartung, G. Adema, B. J. Kullberg: Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172, 3712–3718 (2004)
- [82] E. Villamon, D. Gozalbo, P. Roig, J. E. O’Connor, M. L. Ferrandiz, D. Fradelizi, M. L. Gil: Toll-like receptor 2 is dispensable for acquired host immune resistance to Candida albicans in a murine model of disseminated candidiasis. Microbes Infect 6, 542–548 (2004)
- [83] M. G. Netea, F. Van De Veerdonk, I. Verschueren, J. W. M. Van Der Meer, B. J. Kullberg: Role of TLR1 and TLR6 in the host defense against disseminated candidiasis. FEMS Immunol Med Microbiol 52, 118–123 (2008)
- [84] C. Murciano, E. Villamon, D. Gozalbo, P. Roig, J. E. O’Connor, M. L. Gil: Toll-like receptor 4 defective mice carrying point or null mutations do not show increased susceptibility to Candida albicans in a model of hematogenously disseminated infection. Med Mycol 44, 149–157 (2006)
- [85] G. G. Gauglitz, H. Callenberg, G. Weindl, H. C. Korting: Host defence against Candida albicans and the role of pattern-recognition receptors. Acta Derm Venereol 92, 291–298 (2012)
- [86] F. L. van de Veerdonk, M. G. Netea, T. J. Jansen, L. Jacobs, I. Verschueren, J. W. M. van der Meer, B. J. Kullberg: Redundant role of TLR9 for anti-Candida host defense. Immunobiology 213, 613–620 (2008)
- [87] C. Biondo, A. Malara, A. Costa, G. Signorino, F. Cardile, A. Midiri, R. Galbo, S. Papasergi, M. Domina, M. Pugliese, G. Teti, G. Mancuso, C. Beninati: Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol 42, 2632–2643 (2012)
- [88] D. M. Underhill, A. Ozinsky: Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20, 825–852 (2002)
- [89] D. M. Underhill, A. Ozinsky: Toll-like receptors: Key mediators of microbe detection. Curr Opin Immunol 14, 103–110 (2002)
- [90] D. M. Underhill, B. Gantner: Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes Infect 6, 1368–1373 (2004)
- [91] K. A. Marr, S. A. Balajee, T. R. Hawn, A. Ozinsky, U. Pham, S. Akira, A. Aderem, W. C. Liles: Differential role of MyD88 in macrophage-mediated responses to opportunistic fungal pathogens. Infect Immun 71, 5280–5286 (2003)
- [92] B. N. Gantner, R. M. Simmons, S. J. Canavera, S. Akira, D. M. Underhill: Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197, 1107–1117 (2003)
- [93] J. R. Linden, D. Kunkel, S. S. Laforce-Nesbitt, J. M. Bliss: The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cell Microbiol 15, 1127–1142 (2013)
- [94] A. Roeder, C. J. Kirschning, M. Schaller, G. Weindl, H. Wagner, H.-C. Korting, R. A. Rupec: Induction of nuclear factor-kappa B and c-Jun/activator protein-1 via toll-like receptor 2 in macrophages by antimycotic-treated Candida albicans. J Infect Dis 190, 1318–1326 (2004)
- [95] E. Blasi, A. Mucci, R. Neglia, F. Pezzini, B. Colombari, D. Radzioch, A. Cossarizza, E. Lugli, G. Volpini, G. Del Giudice, S. Peppoloni: Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans. FEMS Immunol Med Microbiol 44, 69–79 (2005)
- [96] M. L. Gil, D. Fradelizi, D. Gozalbo: TLR2: for or against Candida albicans? Trends Microbiol 13, 298–299 (2005)
- [97] M. Netea, J. van der Meer, B. Kullberg: Both TLR2 and TLR4 are involved in the recognition of Candida albicans. Microbes Infect 8, 2821–2822 (2006)
- [98] M. L. Gil, D. Gozalbo: Candida albicans: to be or not to be recognized by TLR4? Microbes Infect 8, 2823–2824 (2006)
- [99] C. Murciano, A. Yañez, M. L. Gil, D. Gozalbo: Both viable and killed Candida albicans cells induce in vitro production of TNF-alpha and IFN-gamma in murine cells through a TLR2-dependent signalling. Eur Cytokine Netw 18, 38–43 (2007)
- [100] H. Tada, E. Nemoto, H. Shimauchi, T. Watanabe, T. Mikami, T. Matsumoto, N. Ohno, H. Tamura, K. Shibata, S. Akashi, K. Miyake, S. Sugawara, H. Takada: Saccharomyces cerevisiae-and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14-and Toll-like receptor 4-dependent manner. Microbiol Immunol 46, 503–512 (2002)
- [101] A. Roeder, C. J. Kirschning, R. A. Rupec, M. Schaller, H. C. Korting: Toll-like receptors and innate antifungal responses. Trends Microbiol 12, 44–49 (2004)
- [102] P. V. Kasperkovitz, N. S. Khan, J. M. Tam, M. K. Mansour, P. J. Davids, J. M. Vyas: Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect Immun 79, 4858–4867 (2011)
- [103] S. P. Smeekens, A. Ng, V. Kumar, M. D. Johnson, T. S. Plantinga, C. van Diemen, P. Arts, E. T. P. Verwiel, M. S. Gresnigt, K. Fransen, S. van Sommeren, M. Oosting, S.-C. Cheng, L. a B. Joosten, A. Hoischen, B.-J. Kullberg, W. K. Scott, J. R. Perfect, J. W. M. van der Meer, C. Wijmenga, M. G. Netea, R. J. Xavier: Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4, 1342 (2013)
- [104] C. Bourgeois, O. Majer, I. E. Frohner, I. Lesiak-Markowicz, K.-S. Hildering, W. Glaser, S. Stockinger, T. Decker, S. Akira, M. Müller, K. Kuchler: Conventional dendritic cells mount a type I IFN response against Candida spp. requiring novel phagosomal TLR7-mediated IFN-β signaling. J Immunol 186, 3104–3112 (2011)
- [105] C. DelFresno, D. Soulat, S. Roth, K. Blazek, I. Udalova, D. Sancho, J. Ruland, C. Ardavin: Interferon-β Production via Dectin-1-Syk-IRF5 Signaling in Dendritic Cells Is Crucial for Immunity to C. albicans. Immunity 38, 1176–1186 (2013)
- [106] P. Miramon, L. Kasper, B. Hube: Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 202, 183–195 (2013)
- [107] V. Tessarolli, T. H. Gasparoto, H. R. Lima, E. A. Figueira, T. P. Garlet, S. A. Torres, G. P. Garlet, J. S. Da Silva, A. P. Campanelli: Absence of TLR2 influences survival of neutrophils after infection with Candida albicans. Med Mycol 48, 129–140 (2010)
- [108] S. Bozza, R. Gaziano, G. B. Lipford, C. Montagnoli, A. Bacci, P. Di Francesco, V. P. Kurup, H. Wagner, L. Romani: Vaccination of mice against invasive aspergillosis with recombinant Aspergillus proteins and CpG oligodeoxynucleotides as adjuvants. Microbes Infect 4, 1281–1290 (2002)
- [109] A. A. M. Krieg: CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20, 709–60 (2002)
- [110] K. Miyagi, K. Kawakami, Y. Kinjo, K. Uezu, T. Kinjo, K. Nakamura, A. Saito: CpG oligodeoxynucleotides promote the host protective response against infection with Cryptococcus neoformans through induction of interferon-gamma production by CD4+ T cells. Clin Exp Immunol 140, 220–229 (2005)
- [111] S. Ito, J. Pedras-Vasconcelos, D. M. Klinman: CpG oligodeoxynucleotides increase the susceptibility of normal mice to infection by Candida albicans. Infect Immun 73, 6154–6156 (2005)
- [112] J. H. Choi, H. M. Ko, S. J. Park, K. J. Kim, S. H. Kim, S. Y. Im: CpG oligodeoxynucleotides protect mice from lethal challenge with Candida albicans via a pathway involving tumor necrosis factor-alpha-dependent interleukin-12 induction. FEMS Immunol Med Microbiol 51, 155–162 (2007)
- [113] M. Yordanov, P. Dimitrova, S. Danova, N. Ivanovska: Candida albicans double-stranded DNA can participate in the host defense against disseminated candidiasis. Microbes Infect 7, 178–186 (2005)
- [114] C. Biondo, G. Signorino, A. Costa, A. Midiri, E. Gerace, R. Galbo, A. Bellantoni, A. Malara, C. Beninati, G. Teti, G. Mancuso: Recognition of yeast nucleic acids triggers a host-protective type I interferon response. Eur J Immunol 41, 1969–1979 (2011)
- [115] A. Miyazato, K. Nakamura, N. Yamamoto, H. M. Mora-Montes, M. Tanaka, Y. Abe, D. Tanno, K. Inden, X. Gang, K. Ishii, K. Takeda, S. Akira, S. Saijo, Y. Iwakura, Y. Adachi, N. Ohno, K. Mitsutake, N. A. R. Gow, M. Kaku, K. Kawakami: Toll-like receptor 9-dependent activation of myeloid dendritic cells by deoxynucleic acids from Candida albicans. Infect Immun 77, 3056–3064 (2009)
- [116] S. Sakaguchi: Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531–562 (2004)
- [117] Y. Belkaid, B. T. Rouse: Natural regulatory T cells in infectious disease. Nat Immunol 6, 353–360 (2005)
- [118] R. P. M. Sutmuller, M. E. Morgan, M. G. Netea, O. Grauer, G. J. Adema: Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27, 387–393 (2006)
- [119] N. Whibley, S. L. Gaffen. Brothers in Arms: Th17 and Treg Responses in Candida albicans Immunity. PLoS Pathog 10, e1004456 (2014)
- [120] C. Montagnoli, A. Bacci, S. Bozza, R. Gaziano, P. Mosci, A. Sharpe, L. Romani: B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J Immunol 169, 6298–6308 (2002)
- [121] R. P. M. Sutmuller, M. H. M. G. M. den Brok, M. Kramer, E. J. Bennink, L. W. J. Toonen, B.-J. Kullberg, L. A. Joosten, S. Akira, M. G. Netea, G. J. Adema: Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116, 485–494 (2006)
- [122] C. Pasare, R. Medzhitov: Toll-dependent control mechanisms of CD4 T cell activation. Immunity. 21, 733–741 (2004)
- [123] Y. Yang, C. T. Huang, X. Huang, D. M. Pardoll: Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5, 508–515 (2004)
- [124] C. Pasare, R. Medzhitov: Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 560, 11–18 (2005)
- [125] I. Caramalho, T. Lopes-Carvalho, D. Ostler, S. Zelenay, M. Haury, J. Demengeot: Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197, 403–411 (2003)
- [126] M. G. Netea, J. W. M. Van Der Meer, B. J. Kullberg: Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 12, 484–488 (2004)
- [127] N. Whibley, D. M. Maccallum, M. A. Vickers, S. Zafreen, H. Waldmann, S. Hori, S. L. Gaffen, N. A. R. Gow, R. N. Barker, A. M. Hall: Expansion of Foxp3+ T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol 44, 1069–1083 (2014)
- [128] W. Huang, L. Na, P. L. Fidel, P. Schwarzenberger: Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis190, 624–631 (2004)
- [129] T. Zelante, A. De Luca, P. Bonifazi, C. Montagnoli, S. Bozza, S. Moretti, M. L. Belladonna, C. Vacca, C. Conte, P. Mosci, F. Bistoni, P. Puccetti, R. A. Kastelein, M. Kopf, L. Romani: IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37, 2695–2706 (2007)
- [130] F. Annunziato, L. Cosmi, V. Santarlasci, L. Maggi, F. Liotta, B. Mazzinghi, E. Parente, L. Fili, S. Ferri, F. Frosali, F. Giudici, P. Romagnani, P. Parronchi, F. Tonelli, E. Maggi, S. Romagnani: Phenotypic and functional features of human Th17 cells. J Exp Med 204, 1849–1861 (2007)
- [131] C. R. Ruprecht, A. Lanzavecchia: Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol. 36, 810–816 (2006)
- [132] D. Kabelitz: Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol 19, 39–45 (2007)
- [133] B. Jin, T. Sun, X. H. Yu, Y. X. Yang, A. E. T. Yeo: The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol 2012, 836485 (2012)
- [134] T. Imanishi, H. Hara, S. Suzuki, N. Suzuki, S. Akira, T. Saito: Cutting edge: TLR2 directly triggers Th1 effector functions. J Immunol 178, 6715–6719 (2007)
- [135] Y. Nagai, K. P. Garrett, S. Ohta, U. Bahrun, T. Kouro, S. Akira, K. Takatsu, P. W. Kincade: Toll-like Receptors on Hematopoietic Progenitor Cells Stimulate Innate Immune System Replenishment. Immunity 24, 801–812 (2006)
- [136] A. Yañez, H. S. Goodridge, D. Gozalbo, M. L. Gil: TLRs control hematopoiesis during infection. Eur J Immunol 43, 2526–2533 (2013)
- [137] A. Yañez, C. Murciano, J. E. O’Connor, D. Gozalbo, M. L. Gil: Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect 11, 531–535 (2009)
- [138] A. Yañez, A. Flores, C. Murciano, J. E. O’Connor, D. Gozalbo, M. L. Gil: Signalling through TLR2/MyD88 induces differentiation of murine bone marrow stem and progenitor cells to functional phagocytes in response to Candida albicans. Cell Microbiol 12, 114–128 (2010)
- [139] A. Yañez, J. Megias, J. E. O’Connor, D. Gozalbo, M. L. Gil: Candida albicans induces selective development of macrophages and monocyte derived dendritic cells by a TLR2 dependent signalling. PLoS One 6, e24761 (2011)
- [140] A. Yañez, N. Hassanzadeh-Kiabi, M. Y. Ng, J. Megias, A. Subramanian, G. Y. Liu, D. M. Underhill, M. L. Gil, H. S. Goodridge: Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce. Eur J Immunol 43, 2114–2125 (2013)
- [141] J. Megias, A. Yañez, S. Moriano, J. E. O’Connor, D. Gozalbo, M. L. Gil: Direct toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells 30, 1486–1495 (2012)
- [142] J. Megias, V. Maneu, P. Salvador, D. Gozalbo, M. L. Gil: Candida albicans stimulates in vivo differentiation of haematopoietic stem and progenitor cells towards macrophages by a TLR2-dependent signalling. Cell Microbiol 15, 1143–1153 (2013)
- [143] A. Khosravi, A. Yañez, J. G. Price, A. Chow, M. Merad, H. S. Goodridge, S. K. Mazmanian: Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15, 374–381 (2014)
- [144] M. Balmer, C. Schürch, Y. Saito, M. Geuking, H. Li, M. Cuenca, L. Kovtonyuk, K. McCoy, S. Hapfelmeier, A. Ochsenbein, M. Manz, E. Slack, A. Macpherson: Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J Immunol 193, 5273–5283 (2014)
- [145] M. S. Lionakis, M. Swamydas, B. G. Fischer, T. S. Plantinga, M. D. Johnson, M. Jaeger, N. M. Green, A. Masedunskas, R. Weigert, C. Mikelis, W. Wan, C. C. R. Lee, J. K. Lim, A. Rivollier, J. C. Yang, G. M. Laird, R. T. Wheeler, B. D. Alexander, J. R. Perfect, J. L. Gao, B. J. Kullberg, M. G. Netea, P. M. Murphy: CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J Clin Invest 123, 5035–5051 (2013)
- [146] T. Jouault, A. Bernigaud, G. Lepage, P. A. Trinel, D. Poulain: The Candida albicans phospholipomannan induces in vitro production of tumour necrosis factor-alpha from human and murine macrophages. Immunology 83, 268–273 (1994)
- [147] T. Jouault, C. Fradin, P. A. Trinel, A. Bernigaud, D. Poulain: Early signal transduction induced by Candida albicans in macrophages through shedding of a glycolipid. J Infect Dis 178, 792–802 (1998)
- [148] T. Jouault, S. Ibata-Ombetta, O. Takeuchi, P. A. Trinel, P. Sacchetti, P. Lefebvre, S. Akira, D. Poulain: Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188, 165–172 (2003)
- [149] C. Fradin, E. S. Bernardes, T. Jouault: Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation. Semin Immunopathol 37, 123–130 (2015)
- [150] M. Li, Q. Chen, Y. Shen, W. Liu: Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through Toll-like receptor 2. Exp Dermatol 18, 603–610 (2009)
- [151] J. Wagener, G. Weindl, P. W. J. de Groot, A. D. de Boer, S. Kaesler, S. Thavaraj, O. Bader, D. Mailänder-Sanchez, C. Borelli, M. Weig, T. Biedermann, J. R. Naglik, H. C. Korting, M. Schaller: Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One 7, e50518 (2012)
- [152] T. H. Gasparoto, V. Tessarolli, T. P. Garlet, S. A. Torres, G. P. Garlet, J. S. da Silva, A. P. Campanelli: Absence of functional TLR4 impairs response of macrophages after Candida albicans infection. Med Mycol 48, 1009–1017 (2010)
- [153] M. G. Netea, N. A. R. Gow, L. A. B. Joosten, I. Verschueren, J. W. M. van der Meer, B. J. Kullberg: Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors. Med Mycol 48, 897–903 (2010)
- [154] R. T. Wheeler, G. R. Fink: A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2, 328–339 (2006)
- [155] A. Plaine, A. Yañez, C. Murciano, C. Gaillardin, M. L. Gil, M. L. Richard, D. Gozalbo: Enhanced proinflammatory response to the Candida albicans gpi7 null mutant by murine cells. Microbes Infect 10, 382–389 (2008)
- [156] G. M. Barton, J. C. Kagan, R. Medzhitov: Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7, 49–56 (2006)
- [157] G. D. Brown, P. R. Taylor, D. M. Reid, J. A. Willment, D. L. Williams, L. Martinez-Pomares, S. Y. C. Wong, S. Gordon: Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196, 407–412 (2002)
- [158] G. D. Brown, J. Herre, D. L. Williams, J. A. Willment, A. S. J. Marshall, S. Gordon: Dectin-1 mediates the biological effects of beta-glucans. J Exp Med. 197, 1119–1124 (2003)
- [159] J. Herre, S. Gordon, G. D. Brown: Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 40, 869–876 (2004)
- [160] N. C. Rogers, E. C. Slack, A. D. Edwards, M. A. Nolte, O. Schulz, E. Schweighoffer, D. L. Williams, S. Gordon, V. L. Tybulewicz, G. D. Brown, C. Reis E Sousa: Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507–517 (2005)
- [161] O. Gross, A. Gewies, K. Finger, M. Schäfer, T. Sparwasser, C. Peschel, I. Förster, J. Ruland: Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006)
- [162] B. N. Gantner, R. M. Simmons, D. M. Underhill: Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24, 1277–1286 (2005)
- [163] A. Torosantucci, P. Chiani, A. Cassone: Differential chemokine response of human monocytes to yeast and hyphal forms of Candida albicans and its relation to the beta-1,6 glucan of the fungal cell wall. J Leukoc Biol. 68, 923–932 (2000)
- [164] L. L. Zhu, X. Q. Zhao, C. Jiang, Y. You, X. P. Chen, Y. Y. Jiang, X. M. Jia, X. Lin: C-type lectin receptors dectin-3 and dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013)
- [165] N. Hernandez-Santos, S. L. Gaffen: Th17 cells in immunity to Candida albicans. Cell Host Microbe 11, 425–435 (2012)
- [166] S. Saijo, N. Fujikado, T. Furuta, S. Chung, H. Kotaki, K. Seki, K. Sudo, S. Akira, Y. Adachi, N. Ohno, T. Kinjo, K. Nakamura, K. Kawakami, Y. Iwakura: Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8, 39–46 (2007)
- [167] P. R. Taylor, S. V. Tsoni, J. A. Willment, K. M. Dennehy, M. Rosas, H. Findon, K. Haynes, C. Steele, M. Botto, S. Gordon, G. D. Brown: Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8, 31–38 (2007)
- [168] B. Ferwerda, G. Ferwerda, T. S. Plantinga, J. A. Willment, A. B. van Spriel, H. Venselaar, C. C. Elbers, M. D. Johnson, A. Cambi, C. Huysamen, L. Jacobs, T. Jansen, K. Verheijen, L. Masthoff, S. A. Morre, G. Vriend, D. L. Williams, J. R. Perfect, L. A. B. Joosten, C. Wijmenga, J. W. M. van der Meer, G. J. Adema, B. J. Kullberg, G. D. Brown, M. G. Netea: Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361, 1760–1767 (2009)
- [169] S. Saijo, S. Ikeda, K. Yamabe, S. Kakuta, H. Ishigame, A. Akitsu, N. Fujikado, T. Kusaka, S. Kubo, S. Chung, R. Komatsu, N. Miura, Y. Adachi, N. Ohno, K. Shibuya, N. Yamamoto, K. Kawakami, S. Yamasaki, T. Saito, S. Akira, Y. Iwakura: Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32, 681–691 (2010)
- [170] L. Bi, S. Gojestani, W. Wu, Y. M. S. Hsu, J. Zhu, K. Ariizumi, X. Lin: CARD9 mediates dectin-2-induced IκBα kinase ubiquitination leading to activation of NF-κB in response to stimulation by the hyphal form of Candida albicans. J Biol Chem 285, 25969–25977 (2010)
- [171] S. J. Lee, N. Y. Zheng, M. Clavijo, M. C. Nussenzweig: Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun 71, 437–445 (2003)
- [172] C. A. Wells, J. A. Salvage-Jones, X. Li, K. Hitchens, S. Butcher, R. Z. Murray, A. G. Beckhouse, Y.-L.-S. Lo, S. Manzanero, C. Cobbold, K. Schroder, B. Ma, S. Orr, L. Stewart, D. Lebus, P. Sobieszczuk, D. A. Hume, J. Stow, H. Blanchard, R. B. Ashman: The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180, 7404–7413 (2008)
- [173] A. Cambi, M. G. Netea, H. M. Mora-Montes, N. A. R. Gow, S. V. Hato, D. W. Lowman, B. J. Kullberg, R. Torensma, D. L. Williams, C. G. Figdor: Dendritic cell interaction with Candida albicans critically depends on N-linked Mannan. J Biol Chem 283, 20590–20599 (2008)
- [174] K. Takahara, T. Arita, S. Tokieda, N. Shibata, Y. Okawa, H. Tateno, J. Hirabayashi, K. Inabaa: Difference in fine specificity to polysaccharides of Candida albicans: Mannoprotein between mouse SIGNR1 and human DC-SIGN. Infect Immun 80, 1699–1706 (2012)
- [175] C. Fradin, D. Poulain, T. Jouault: beta-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect Immun 68, 4391–4398 (2000)
- [176] T. Jouault, M. El Abed-El Behi, M. Martinez-Esparza, L. Breuilh, P. A. Trinel, M. Chamaillard, F. Trottein, D. Poulain: Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177, 4679–4687 (2006)
- [177] A. Esteban, M. W. Popp, V. K. Vyas, K. Strijbis, H. L. Ploegh, G. R. Fink: Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci USA 108, 14270–14275 (2011)
- [178] S. P. Smeekens, F. L. van de Veerdonk, J. W. M. van der Meer, B. J. Kullberg, L. A. B. Joosten, M. G. Netea: The Candida Th17 response is dependent on mannan-and beta-glucan-induced prostaglandin E2. Int Immunol 22, 889–895 (2010)
- [179] G. Ferwerda, F. Meyer-Wentrup, B. J. Kullberg, M. G. Netea, G. J. Adema: Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol 10, 2058–2066 (2008)
- [180] K. Takahara, S. Tokieda, K. Nagaoka, T. Takeda, Y. Kimura, K. Inaba: C-type lectin SIGNR1 enhances cellular oxidative burst response against C. albicans in cooperation with Dectin-1. Eur J Immunol 41, 1435–1444 (2011)
- [181] K. Takahara, S. Tokieda, K. Nagaoka, K. Inaba: Efficient capture of Candida albicans and zymosan by SIGNR1 augments TLR2-dependent TNF-α production. Int Immunol 24, 89–96 (2012)
- [182] K. Nagaoka, K. Takahara, K. Tanaka, H. Yoshida, R. M. Steinman, S. I. Saitoh, S. Akashi-Takamura, K. Miyake, Y. S. Kang, C. G. Park, K. Inaba: Association of SIGNR1 with TLR4-MD-2 enhances signal transduction by recognition of LPS in gram-negative bacteria. Int Immunol 17, 827–836 (2005)
