Information
References
Contents
Academic Editor
- David A. Pérez Martínez
Download
[1]Hostinar CE, Gunnar MR. Social Support Can Buffer against Stress and Shape Brain Activity. AJOB Neuroscience. 2015; 6: 34–42. https://doi.org/10.1080/21507740.2015.1047054.
[2]American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed., text rev.). Editorial médica Panamericana: España. 2022.
[3]Maercker A, Cloitre M, Bachem R, Schlumpf YR, Khoury B, Hitchcock C, et al. Complex post-traumatic stress disorder. Lancet (London, England). 2022; 400: 60–72. https://doi.org/10.1016/S0140-6736(22)00821-2.
[4]Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2022; 47: 247–259. https://doi.org/10.1038/s41386-021-01155-7.
[5]Mary A, Dayan J, Leone G, Postel C, Fraisse F, Malle C, et al. Resilience after trauma: The role of memory suppression. Science (New York, N.Y.). 2020; 367: eaay8477. https://doi.org/10.1126/science.aay8477.
[6]Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nature Reviews. Neuroscience. 2018; 19: 535–551. https://doi.org/10.1038/s41583-018-0039-7.
[7]Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2008; 33: 56–72. https://doi.org/10.1038/sj.npp.1301555.
[8]Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, et al. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nature Reviews. Neurology. 2022; 18: 273–288. https://doi.org/10.1038/s41582-022-00635-8.
[9]Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2023; 48: 113–120. https://doi.org/10.1038/s41386-022-01370-w.
[10]Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science (New York, N.Y.). 2021; 374: eaba6905. https://doi.org/10.1126/science.aba6905.
[11]Nicholson EL, Garry MI, Ney LJ, Hsu CMK, Zuj DV, Felmingham KL. The influence of the BDNF Val66Met genotype on emotional recognition memory in post-traumatic stress disorder. Scientific Reports. 2023; 13: 5033. https://doi.org/10.1038/s41598-023-30787-6.
[12]Contractor AA, Almeida IM, Fentem A, Griffith EL, Kaur G, Slavish DC. Posttraumatic Stress Disorder Symptoms and Sleep Disturbances Among Asian Indians: A Systematic Review. Trauma, Violence & Abuse. 2024; 25: 1468–1483. https://doi.org/10.1177/15248380231184207.
[13]Germine LT, Joormann J, Passell E, Rutter LA, Scheuer L, Martini P, et al. Neurocognition after motor vehicle collision and adverse post-traumatic neuropsychiatric sequelae within 8 weeks: Initial findings from the AURORA study. Journal of Affective Disorders. 2022; 298: 57–67. https://doi.org/10.1016/j.jad.2021.10.104.
[14]Admon R, Milad MR, Hendler T. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends in Cognitive Sciences. 2013; 17: 337–347. https://doi.org/10.1016/j.tics.2013.05.005.
[15]Al Abed AS, Ducourneau EG, Bouarab C, Sellami A, Marighetto A, Desmedt A. Preventing and treating PTSD-like memory by trauma contextualization. Nature Communications. 2020; 11: 4220. https://doi.org/10.1038/s41467-020-18002-w.
[16]Zukerman G, Pinhas M, Icht M. Hypervigilance or shutdown? Electrophysiological processing of trauma-unrelated aversive stimuli after traumatic life events. Experimental Brain Research. 2023; 241: 1185–1197. https://doi.org/10.1007/s00221-023-06578-w.
[17]Perl O, Duek O, Kulkarni KR, Gordon C, Krystal JH, Levy I, et al. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nature Neuroscience. 2023; 26: 2226–2236. https://doi.org/10.1038/s41593-023-01483-5.
[18]Niu W, Duan Y, Kang Y, Cao X, Xue Q. Propofol improves learning and memory in post-traumatic stress disorder (PTSD) mice via recovering hippocampus synaptic plasticity. Life Sciences. 2022; 293: 120349. https://doi.org/10.1016/j.lfs.2022.120349.
[19]Brunet A, Saumier D, Liu A, Streiner DL, Tremblay J, Pitman RK. Reduction of PTSD Symptoms With Pre-Reactivation Propranolol Therapy: A Randomized Controlled Trial. The American Journal of Psychiatry. 2018; 175: 427–433. https://doi.org/10.1176/appi.ajp.2017.17050481.
[20]Roullet P, Vaiva G, Véry E, Bourcier A, Yrondi A, Dupuch L, et al. Traumatic memory reactivation with or without propranolol for PTSD and comorbid MD symptoms: a randomised clinical trial. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2021; 46: 1643–1649. https://doi.org/10.1038/s41386-021-00984-w.
[21]Raij T, Nummenmaa A, Marin MF, Porter D, Furtak S, Setsompop K, et al. Prefrontal Cortex Stimulation Enhances Fear Extinction Memory in Humans. Biological Psychiatry. 2018; 84: 129–137. https://doi.org/10.1016/j.biopsych.2017.10.022.
[22]Dittert N, Hüttner S, Polak T, Herrmann MJ. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS). Frontiers in Behavioral Neuroscience. 2018; 12: 76. https://doi.org/10.3389/fnbeh.2018.00076.
[23]Edinoff AN, Hegefeld TL, Petersen M, Patterson JC, 2nd, Yossi C, Slizewski J, et al. Transcranial Magnetic Stimulation for Post-traumatic Stress Disorder. Frontiers in Psychiatry. 2022; 13: 701348. https://doi.org/10.3389/fpsyt.2022.701348.
[24]Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Molecular Psychiatry. 2020; 25: 2251–2274. https://doi.org/10.1038/s41380-019-0639-2.
[25]Frodl T, Schüle C, Schmitt G, Born C, Baghai T, Zill P, et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Archives of General Psychiatry. 2007; 64: 410–416. https://doi.org/10.1001/archpsyc.64.4.410.
[26]Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell. 2022; 185: 62–76. https://doi.org/10.1016/j.cell.2021.12.003.
[27]Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109: 1305–1310. https://doi.org/10.1073/pnas.1114122109.
[28]Liu M, Kay JC, Shen S, Qiao LY. Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLCγ, PKC, and PI3K/Akt pathways during colitis. Journal of Neuroinflammation. 2015; 12: 151. https://doi.org/10.1186/s12974-015-0371-z.
[29]Reimers JM, Loweth JA, Wolf ME. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons. The European Journal of Neuroscience. 2014; 39: 1159–1169. https://doi.org/10.1111/ejn.12422.
[30]Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR, et al. Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry. 2009; 14: 681–695. https://doi.org/10.1038/mp.2008.143.
[31]Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron. 1998; 20: 709–726. https://doi.org/10.1016/s0896-6273(00)81010-7.
[32]Difede J, Cukor J, Wyka K, Olden M, Hoffman H, Lee FS, et al. D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: a pilot randomized clinical trial. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2014; 39: 1052–1058. https://doi.org/10.1038/npp.2013.317.
[33]de Kleine RA, Hendriks GJ, Kusters WJC, Broekman TG, van Minnen A. A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biological Psychiatry. 2012; 71: 962–968. https://doi.org/10.1016/j.biopsych.2012.02.033.
[34]Rothbaum BO, Price M, Jovanovic T, Norrholm SD, Gerardi M, Dunlop B, et al. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. The American Journal of Psychiatry. 2014; 171: 640–648. https://doi.org/10.1176/appi.ajp.2014.13121625.
[35]Vielkind U, Walencewicz A, Levine JM, Bohn MC. Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. Journal of Neuroscience Research. 1990; 27: 360–373. https://doi.org/10.1002/jnr.490270315.
[36]Chao LL, Tosun D, Woodward SH, Kaufer D, Neylan TC. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder. Frontiers in Behavioral Neuroscience. 2015; 9: 333. https://doi.org/10.3389/fnbeh.2015.00333.
[37]Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. Preservation of a remote fear memory requires new myelin formation. Nature Neuroscience. 2020; 23: 487–499. https://doi.org/10.1038/s41593-019-0582-1.
[38]Long KLP, Chao LL, Kazama Y, An A, Hu KY, Peretz L, et al. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Translational Psychiatry. 2021; 11: 631. https://doi.org/10.1038/s41398-021-01745-5.
[39]Gibson EM, Geraghty AC, Monje M. Bad wrap: Myelin and myelin plasticity in health and disease. Developmental Neurobiology. 2018; 78: 123–135. https://doi.org/10.1002/dneu.22541.
[40]Guo Y, Wu H, Dong D, Zhou F, Li Z, Zhao L, et al. Stress and the brain: Emotional support mediates the association between myelination in the right supramarginal gyrus and perceived chronic stress. Neurobiology of Stress. 2022; 22: 100511. https://doi.org/10.1016/j.ynstr.2022.100511.
[41]Steinbeis N, Bernhardt BC, Singer T. Age-related differences in function and structure of rSMG and reduced functional connectivity with DLPFC explains heightened emotional egocentricity bias in childhood. Social Cognitive and Affective Neuroscience. 2015; 10: 302–310. https://doi.org/10.1093/scan/nsu057.
[42]Kritikos M, Huang C, Clouston SAP, Pellecchia AC, Santiago-Michels S, Carr MA, et al. DTI Connectometry Analysis Reveals White Matter Changes in Cognitively Impaired World Trade Center Responders at Midlife. Journal of Alzheimer’s Disease: JAD. 2022; 89: 1075–1089. https://doi.org/10.3233/JAD-220255.
[43]O’Doherty DCM, Ryder W, Paquola C, Tickell A, Chan C, Hermens DF, et al. White matter integrity alterations in post-traumatic stress disorder. Human Brain Mapping. 2018; 39: 1327–1338. https://doi.org/10.1002/hbm.23920.
[44]Sanjuan PM, Thoma R, Claus ED, Mays N, Caprihan A. Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: a diffusion tensor imaging study. Psychiatry Research. 2013; 214: 260–268. https://doi.org/10.1016/j.pscychresns.2013.09.002.
[45]Dennis EL, Disner SG, Fani N, Salminen LE, Logue M, Clarke EK, et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Molecular Psychiatry. 2021; 26: 4315–4330. https://doi.org/10.1038/s41380-019-0631-x.
[46]Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2023; 48: 113–120. https://doi.org/10.1038/s41386-022-01370-w.
[47]Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences. 1996; 19: 126–130. https://doi.org/10.1016/s0166-2236(96)80018-x.
[48]Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature. 2023; 618: 790–798. https://doi.org/10.1038/s41586-023-06204-3.
[49]Schnurr PP, Hamblen JL, Wolf J, Coller R, Collie C, Fuller MA, et al. The Management of Posttraumatic Stress Disorder and Acute Stress Disorder: Synopsis of the 2023 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guideline. Annals of Internal Medicine. 2024; 177: 363–374. https://doi.org/10.7326/M23-2757.
[50]Resick PA, Schnicke MK. Cognitive processing therapy for sexual assault victims. Journal of Consulting and Clinical Psychology. 1992; 60: 748–756. https://doi.org/10.1037//0022-006x.60.5.748.
[51]Shalev A, Liberzon I, Marmar C. Post-Traumatic Stress Disorder. The New England Journal of Medicine. 2017; 376: 2459–2469. https://doi.org/10.1056/NEJMra1612499.
[52]Graziano RC, Vuper TC, Yetter MA, Bruce SE. Treatment outcome of posttraumatic stress disorder: A white matter tract analysis. Journal of Anxiety Disorders. 2021; 81: 102412. https://doi.org/10.1016/j.janxdis.2021.102412.
[53]Kennis M, van Rooij SJH, Tromp DPM, Fox AS, Rademaker AR, Kahn RS, et al. Treatment Outcome-Related White Matter Differences in Veterans with Posttraumatic Stress Disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2015; 40: 2434–2442. https://doi.org/10.1038/npp.2015.94.
[54]Korgaonkar MS, Felmingham KL, Klimova A, Erlinger M, Williams LM, Bryant RA. White matter anisotropy and response to cognitive behavior therapy for posttraumatic stress disorder. Translational Psychiatry. 2021; 11: 14. https://doi.org/10.1038/s41398-020-01143-3.
[55]Hoskins M, Pearce J, Bethell A, Dankova L, Barbui C, Tol WA, et al. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. The British Journal of Psychiatry: the Journal of Mental Science. 2015; 206: 93–100. https://doi.org/10.1192/bjp.bp.114.148551.
[56]Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2023; 48: 104–112. https://doi.org/10.1038/s41386-022-01389-z.
[57]Cherian KN, Keynan JN, Anker L, Faerman A, Brown RE, Shamma A, et al. Magnesium-ibogaine therapy in veterans with traumatic brain injuries. Nature Medicine. 2024; 30: 373–381. https://doi.org/10.1038/s41591-023-02705-w.
[58]Mitchell JM, Bogenschutz M, Lilienstein A, Harrison C, Kleiman S, Parker-Guilbert K, et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nature Medicine. 2021; 27: 1025–1033. https://doi.org/10.1038/s41591-021-01336-3.
[59]Mitchell JM, Ot’alora G M, van der Kolk B, Shannon S, Bogenschutz M, Gelfand Y, et al. MDMA-assisted therapy for moderate to severe PTSD: a randomized, placebo-controlled phase 3 trial. Nature Medicine. 2023; 29: 2473–2480. https://doi.org/10.1038/s41591-023-02565-4.
[60]Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron. 2019; 102: 75–90. https://doi.org/10.1016/j.neuron.2019.03.013.
[61]Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science (New York, N.Y.). 2019; 364: eaat8078. https://doi.org/10.1126/science.aat8078.
[62]Holmes SE, Finnema SJ, Naganawa M, DellaGioia N, Holden D, Fowles K, et al. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain. Molecular Psychiatry. 2022; 27: 2273–2281. https://doi.org/10.1038/s41380-022-01465-2.
[63]Fukumoto K, Fogaça MV, Liu RJ, Duman CH, Li XY, Chaki S, et al. Medial PFC AMPA receptor and BDNF signaling are required for the rapid and sustained antidepressant-like effects of 5-HT1A receptor stimulation. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2020; 45: 1725–1734. https://doi.org/10.1038/s41386-020-0705-0.
[64]Hasler G. Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums. 2020; 25: 445–447. https://doi.org/10.1017/S1092852919001007.
Academic Editor
- David A. Pérez Martínez
Article Metrics
Download
- Contents
Information
Download
Contents
1 Departamento de Psicobiología, CES Cardenal Cisneros (Centro Adscrito a la Universidad Complutense de Madrid), E-28006 Madrid, España
†Estos autores contribuyeron por igual.
Abstract
Post-traumatic stress disorder (PTSD) develops in response to a traumatic experience, whether real or threatening, which produces emotions of intense fear and memory problems, significantly damaging the quality of life of those who manifest it. In recent years, anatomical-functional changes in the amygdala-hippocampus-prefrontal cortex circuit have begun to be studied as a key factor in the prevention, vulnerability, and treatment of PTSD, with neuroplasticity being one of the factors of greatest interest. Therefore, this review will address the latest published data regarding PTSD and neuroplasticity.
Data from preclinical and clinical models support that a traumatic experience modifies both synaptic plasticity through electrophysiological and chemical variables, as well as myelin plasticity which enables short and long-distance connections. This remodelling of circuitry is crucial for the development of PTSD. However, it is also closely associated with prevention and positive treatment outcomes. Variables such as social support or the use of psychotherapy following a traumatic experience are linked to a good prognosis.
Therefore, there is an interesting connection between neuroplasticity and PTSD, although many questions remain open today, along with promising lines of prevention and intervention, including psychedelic substances.
Keywords
- myelin
- neuroplasticity
- psychedelics
- psychological trauma
- PTSD
- synapses
References
- [1]
Hostinar CE, Gunnar MR. Social Support Can Buffer against Stress and Shape Brain Activity. AJOB Neuroscience. 2015; 6: 34–42. https://doi.org/10.1080/21507740.2015.1047054. - [2]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed., text rev.). Editorial médica Panamericana: España. 2022. - [3]
Maercker A, Cloitre M, Bachem R, Schlumpf YR, Khoury B, Hitchcock C, et al. Complex post-traumatic stress disorder. Lancet (London, England). 2022; 400: 60–72. https://doi.org/10.1016/S0140-6736(22)00821-2. - [4]
Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2022; 47: 247–259. https://doi.org/10.1038/s41386-021-01155-7. - [5]
Mary A, Dayan J, Leone G, Postel C, Fraisse F, Malle C, et al. Resilience after trauma: The role of memory suppression. Science (New York, N.Y.). 2020; 367: eaay8477. https://doi.org/10.1126/science.aay8477. - [6]
Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nature Reviews. Neuroscience. 2018; 19: 535–551. https://doi.org/10.1038/s41583-018-0039-7. - [7]
Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2008; 33: 56–72. https://doi.org/10.1038/sj.npp.1301555. - [8]
Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, et al. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nature Reviews. Neurology. 2022; 18: 273–288. https://doi.org/10.1038/s41582-022-00635-8. - [9]
Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2023; 48: 113–120. https://doi.org/10.1038/s41386-022-01370-w. - [10]
Bonetto G, Belin D, Káradóttir RT. Myelin: A gatekeeper of activity-dependent circuit plasticity? Science (New York, N.Y.). 2021; 374: eaba6905. https://doi.org/10.1126/science.aba6905. - [11]
Nicholson EL, Garry MI, Ney LJ, Hsu CMK, Zuj DV, Felmingham KL. The influence of the BDNF Val66Met genotype on emotional recognition memory in post-traumatic stress disorder. Scientific Reports. 2023; 13: 5033. https://doi.org/10.1038/s41598-023-30787-6. - [12]
Contractor AA, Almeida IM, Fentem A, Griffith EL, Kaur G, Slavish DC. Posttraumatic Stress Disorder Symptoms and Sleep Disturbances Among Asian Indians: A Systematic Review. Trauma, Violence & Abuse. 2024; 25: 1468–1483. https://doi.org/10.1177/15248380231184207. Cited within: 2Google Scholar - [13]
Germine LT, Joormann J, Passell E, Rutter LA, Scheuer L, Martini P, et al. Neurocognition after motor vehicle collision and adverse post-traumatic neuropsychiatric sequelae within 8 weeks: Initial findings from the AURORA study. Journal of Affective Disorders. 2022; 298: 57–67. https://doi.org/10.1016/j.jad.2021.10.104. - [14]
Admon R, Milad MR, Hendler T. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends in Cognitive Sciences. 2013; 17: 337–347. https://doi.org/10.1016/j.tics.2013.05.005. - [15]
Al Abed AS, Ducourneau EG, Bouarab C, Sellami A, Marighetto A, Desmedt A. Preventing and treating PTSD-like memory by trauma contextualization. Nature Communications. 2020; 11: 4220. https://doi.org/10.1038/s41467-020-18002-w. - [16]
Zukerman G, Pinhas M, Icht M. Hypervigilance or shutdown? Electrophysiological processing of trauma-unrelated aversive stimuli after traumatic life events. Experimental Brain Research. 2023; 241: 1185–1197. https://doi.org/10.1007/s00221-023-06578-w. - [17]
Perl O, Duek O, Kulkarni KR, Gordon C, Krystal JH, Levy I, et al. Neural patterns differentiate traumatic from sad autobiographical memories in PTSD. Nature Neuroscience. 2023; 26: 2226–2236. https://doi.org/10.1038/s41593-023-01483-5. - [18]
Niu W, Duan Y, Kang Y, Cao X, Xue Q. Propofol improves learning and memory in post-traumatic stress disorder (PTSD) mice via recovering hippocampus synaptic plasticity. Life Sciences. 2022; 293: 120349. https://doi.org/10.1016/j.lfs.2022.120349. - [19]
Brunet A, Saumier D, Liu A, Streiner DL, Tremblay J, Pitman RK. Reduction of PTSD Symptoms With Pre-Reactivation Propranolol Therapy: A Randomized Controlled Trial. The American Journal of Psychiatry. 2018; 175: 427–433. https://doi.org/10.1176/appi.ajp.2017.17050481. - [20]
Roullet P, Vaiva G, Véry E, Bourcier A, Yrondi A, Dupuch L, et al. Traumatic memory reactivation with or without propranolol for PTSD and comorbid MD symptoms: a randomised clinical trial. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2021; 46: 1643–1649. https://doi.org/10.1038/s41386-021-00984-w. - [21]
Raij T, Nummenmaa A, Marin MF, Porter D, Furtak S, Setsompop K, et al. Prefrontal Cortex Stimulation Enhances Fear Extinction Memory in Humans. Biological Psychiatry. 2018; 84: 129–137. https://doi.org/10.1016/j.biopsych.2017.10.022. - [22]
Dittert N, Hüttner S, Polak T, Herrmann MJ. Augmentation of Fear Extinction by Transcranial Direct Current Stimulation (tDCS). Frontiers in Behavioral Neuroscience. 2018; 12: 76. https://doi.org/10.3389/fnbeh.2018.00076. - [23]
Edinoff AN, Hegefeld TL, Petersen M, Patterson JC, 2nd, Yossi C, Slizewski J, et al. Transcranial Magnetic Stimulation for Post-traumatic Stress Disorder. Frontiers in Psychiatry. 2022; 13: 701348. https://doi.org/10.3389/fpsyt.2022.701348. - [24]
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Molecular Psychiatry. 2020; 25: 2251–2274. https://doi.org/10.1038/s41380-019-0639-2. - [25]
Frodl T, Schüle C, Schmitt G, Born C, Baghai T, Zill P, et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Archives of General Psychiatry. 2007; 64: 410–416. https://doi.org/10.1001/archpsyc.64.4.410. - [26]
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell. 2022; 185: 62–76. https://doi.org/10.1016/j.cell.2021.12.003. - [27]
Jeanneteau FD, Lambert WM, Ismaili N, Bath KG, Lee FS, Garabedian MJ, et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109: 1305–1310. https://doi.org/10.1073/pnas.1114122109. - [28]
Liu M, Kay JC, Shen S, Qiao LY. Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLC , PKC, and PI3K/Akt pathways during colitis. Journal of Neuroinflammation. 2015; 12: 151. https://doi.org/10.1186/s12974-015-0371-z. - [29]
Reimers JM, Loweth JA, Wolf ME. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons. The European Journal of Neuroscience. 2014; 39: 1159–1169. https://doi.org/10.1111/ejn.12422. - [30]
Gatt JM, Nemeroff CB, Dobson-Stone C, Paul RH, Bryant RA, Schofield PR, et al. Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry. 2009; 14: 681–695. https://doi.org/10.1038/mp.2008.143. - [31]
Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron. 1998; 20: 709–726. https://doi.org/10.1016/s0896-6273(00)81010-7. - [32]
Difede J, Cukor J, Wyka K, Olden M, Hoffman H, Lee FS, et al. D-cycloserine augmentation of exposure therapy for post-traumatic stress disorder: a pilot randomized clinical trial. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2014; 39: 1052–1058. https://doi.org/10.1038/npp.2013.317. - [33]
de Kleine RA, Hendriks GJ, Kusters WJC, Broekman TG, van Minnen A. A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biological Psychiatry. 2012; 71: 962–968. https://doi.org/10.1016/j.biopsych.2012.02.033. - [34]
Rothbaum BO, Price M, Jovanovic T, Norrholm SD, Gerardi M, Dunlop B, et al. A randomized, double-blind evaluation of D-cycloserine or alprazolam combined with virtual reality exposure therapy for posttraumatic stress disorder in Iraq and Afghanistan War veterans. The American Journal of Psychiatry. 2014; 171: 640–648. https://doi.org/10.1176/appi.ajp.2014.13121625. - [35]
Vielkind U, Walencewicz A, Levine JM, Bohn MC. Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. Journal of Neuroscience Research. 1990; 27: 360–373. https://doi.org/10.1002/jnr.490270315. - [36]
Chao LL, Tosun D, Woodward SH, Kaufer D, Neylan TC. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder. Frontiers in Behavioral Neuroscience. 2015; 9: 333. https://doi.org/10.3389/fnbeh.2015.00333. - [37]
Pan S, Mayoral SR, Choi HS, Chan JR, Kheirbek MA. Preservation of a remote fear memory requires new myelin formation. Nature Neuroscience. 2020; 23: 487–499. https://doi.org/10.1038/s41593-019-0582-1. - [38]
Long KLP, Chao LL, Kazama Y, An A, Hu KY, Peretz L, et al. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Translational Psychiatry. 2021; 11: 631. https://doi.org/10.1038/s41398-021-01745-5. - [39]
Gibson EM, Geraghty AC, Monje M. Bad wrap: Myelin and myelin plasticity in health and disease. Developmental Neurobiology. 2018; 78: 123–135. https://doi.org/10.1002/dneu.22541. - [40]
Guo Y, Wu H, Dong D, Zhou F, Li Z, Zhao L, et al. Stress and the brain: Emotional support mediates the association between myelination in the right supramarginal gyrus and perceived chronic stress. Neurobiology of Stress. 2022; 22: 100511. https://doi.org/10.1016/j.ynstr.2022.100511. - [41]
Steinbeis N, Bernhardt BC, Singer T. Age-related differences in function and structure of rSMG and reduced functional connectivity with DLPFC explains heightened emotional egocentricity bias in childhood. Social Cognitive and Affective Neuroscience. 2015; 10: 302–310. https://doi.org/10.1093/scan/nsu057. - [42]
Kritikos M, Huang C, Clouston SAP, Pellecchia AC, Santiago-Michels S, Carr MA, et al. DTI Connectometry Analysis Reveals White Matter Changes in Cognitively Impaired World Trade Center Responders at Midlife. Journal of Alzheimer’s Disease: JAD. 2022; 89: 1075–1089. https://doi.org/10.3233/JAD-220255. - [43]
O’Doherty DCM, Ryder W, Paquola C, Tickell A, Chan C, Hermens DF, et al. White matter integrity alterations in post-traumatic stress disorder. Human Brain Mapping. 2018; 39: 1327–1338. https://doi.org/10.1002/hbm.23920. - [44]
Sanjuan PM, Thoma R, Claus ED, Mays N, Caprihan A. Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: a diffusion tensor imaging study. Psychiatry Research. 2013; 214: 260–268. https://doi.org/10.1016/j.pscychresns.2013.09.002. - [45]
Dennis EL, Disner SG, Fani N, Salminen LE, Logue M, Clarke EK, et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: results from the PGC-ENIGMA PTSD consortium. Molecular Psychiatry. 2021; 26: 4315–4330. https://doi.org/10.1038/s41380-019-0631-x. - [46]
Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2023; 48: 113–120. https://doi.org/10.1038/s41386-022-01370-w. - [47]
Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends in Neurosciences. 1996; 19: 126–130. https://doi.org/10.1016/s0166-2236(96)80018-x. - [48]
Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature. 2023; 618: 790–798. https://doi.org/10.1038/s41586-023-06204-3. - [49]
Schnurr PP, Hamblen JL, Wolf J, Coller R, Collie C, Fuller MA, et al. The Management of Posttraumatic Stress Disorder and Acute Stress Disorder: Synopsis of the 2023 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guideline. Annals of Internal Medicine. 2024; 177: 363–374. https://doi.org/10.7326/M23-2757. - [50]
Resick PA, Schnicke MK. Cognitive processing therapy for sexual assault victims. Journal of Consulting and Clinical Psychology. 1992; 60: 748–756. https://doi.org/10.1037//0022-006x.60.5.748. - [51]
Shalev A, Liberzon I, Marmar C. Post-Traumatic Stress Disorder. The New England Journal of Medicine. 2017; 376: 2459–2469. https://doi.org/10.1056/NEJMra1612499. - [52]
Graziano RC, Vuper TC, Yetter MA, Bruce SE. Treatment outcome of posttraumatic stress disorder: A white matter tract analysis. Journal of Anxiety Disorders. 2021; 81: 102412. https://doi.org/10.1016/j.janxdis.2021.102412. - [53]
Kennis M, van Rooij SJH, Tromp DPM, Fox AS, Rademaker AR, Kahn RS, et al. Treatment Outcome-Related White Matter Differences in Veterans with Posttraumatic Stress Disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2015; 40: 2434–2442. https://doi.org/10.1038/npp.2015.94. - [54]
Korgaonkar MS, Felmingham KL, Klimova A, Erlinger M, Williams LM, Bryant RA. White matter anisotropy and response to cognitive behavior therapy for posttraumatic stress disorder. Translational Psychiatry. 2021; 11: 14. https://doi.org/10.1038/s41398-020-01143-3. - [55]
Hoskins M, Pearce J, Bethell A, Dankova L, Barbui C, Tol WA, et al. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. The British Journal of Psychiatry: the Journal of Mental Science. 2015; 206: 93–100. https://doi.org/10.1192/bjp.bp.114.148551. - [56]
Calder AE, Hasler G. Towards an understanding of psychedelic-induced neuroplasticity. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2023; 48: 104–112. https://doi.org/10.1038/s41386-022-01389-z. - [57]
Cherian KN, Keynan JN, Anker L, Faerman A, Brown RE, Shamma A, et al. Magnesium-ibogaine therapy in veterans with traumatic brain injuries. Nature Medicine. 2024; 30: 373–381. https://doi.org/10.1038/s41591-023-02705-w. - [58]
Mitchell JM, Bogenschutz M, Lilienstein A, Harrison C, Kleiman S, Parker-Guilbert K, et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nature Medicine. 2021; 27: 1025–1033. https://doi.org/10.1038/s41591-021-01336-3. - [59]
Mitchell JM, Ot’alora G M, van der Kolk B, Shannon S, Bogenschutz M, Gelfand Y, et al. MDMA-assisted therapy for moderate to severe PTSD: a randomized, placebo-controlled phase 3 trial. Nature Medicine. 2023; 29: 2473–2480. https://doi.org/10.1038/s41591-023-02565-4. - [60]
Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron. 2019; 102: 75–90. https://doi.org/10.1016/j.neuron.2019.03.013. - [61]
Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science (New York, N.Y.). 2019; 364: eaat8078. https://doi.org/10.1126/science.aat8078. - [62]
Holmes SE, Finnema SJ, Naganawa M, DellaGioia N, Holden D, Fowles K, et al. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain. Molecular Psychiatry. 2022; 27: 2273–2281. https://doi.org/10.1038/s41380-022-01465-2. - [63]
Fukumoto K, Fogaça MV, Liu RJ, Duman CH, Li XY, Chaki S, et al. Medial PFC AMPA receptor and BDNF signaling are required for the rapid and sustained antidepressant-like effects of 5-HT1A receptor stimulation. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2020; 45: 1725–1734. https://doi.org/10.1038/s41386-020-0705-0. - [64]
Hasler G. Toward specific ways to combine ketamine and psychotherapy in treating depression. CNS Spectrums. 2020; 25: 445–447. https://doi.org/10.1017/S1092852919001007.
Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
