Information
References
Contents
Academic Editor
- Jaume Sastre-Garriga
Download
[1]Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010; 51: 676–685. https://doi.org/10.1111/j.1528-1167.2010.02522.x.
[2]McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE. The genetic landscape of the epileptic encephalopathies of infancy and childhood. The Lancet. Neurology. 2016; 15: 304–316. https://doi.org/10.1016/S1474-4422(15)00250-1.
[3]Sands TT, Gelinas JN. Epilepsy and Encephalopathy. Pediatric Neurology. 2024; 150: 24–31. https://doi.org/10.1016/j.pediatrneurol.2023.09.019.
[4]Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58: 512–521. https://doi.org/10.1111/epi.13709.
[5]Bertocchi I, Cambiaghi M, Hasan MT. Advances toward precision therapeutics for developmental and epileptic encephalopathies. Frontiers in Neuroscience. 2023; 17: 1140679. https://doi.org/10.3389/fnins.2023.1140679.
[6]Muzio MR, Cascella M, Al Khalili Y. Landau-Kleffner Syndrome. StatPearls Publishing: Florida. 2023.
[7]Chowdhury N, Bansal AR, Goyal R, Nikhila G. Cerebral dominance in an unusual case of Landau-Kleffner syndrome. BMJ Case Reports. 2021; 14: e246696. https://doi.org/10.1136/bcr-2021-246696.
[8]Benítez-Burraco A, Hoshi K, Murphy E. Language deficits in GRIN2A mutations and Landau–Kleffner syndrome as neural dysrhythmias. Journal of Neurolinguistics. 2023; 67: 101139. https://doi.org/10.1016/j.jneuroling.2023.101139.
[9]Tuft M, Årva M, Bjørnvold M, Wilson JA, Nakken KO. Landau-Kleffner syndrome. Tidsskrift for Den Norske Laegeforening: Tidsskrift for Praktisk Medicin, Ny Raekke. 2015; 135: 2061–2064. https://doi.org/10.4045/tidsskr.15.0162.
[10]Kaga M, Inagaki M, Ohta R. Epidemiological study of Landau-Kleffner syndrome (LKS) in Japan. Brain & Development. 2014; 36: 284–286. https://doi.org/10.1016/j.braindev.2013.04.012.
[11]Stefanatos G. Changing perspectives on Landau-Kleffner syndrome. The Clinical Neuropsychologist. 2011; 25: 963–988. https://doi.org/10.1080/13854046.2011.614779.
[12]de Almeida Motta GC, Goes LS, de Aguiar PHSP, Santos FF, Pacheco CC, Franceschini PR, et al. landau-Kleffner syndrome: A systematic review and two illustrative cases. Revista Chilena de Neurocirugía. 2021; 47: 67–73. https://doi.org/10.36593/revchilneurocir.v47i2.250.
[13]Kawai M, Abe Y, Yumoto M, Kubota M. Aphasia and a Dual-Stream Language Model in a 4-Year-Old Female with Landau-Kleffner Syndrome. Neuropediatrics. 2022; 53: 295–298. https://doi.org/10.1055/s-0041-1733983.
[14]Clark M, Holmes H, Ngoh A, Siyani V, Wilson G. Overview of Landau–Kleffner syndrome: early treatment, tailored education and therapy improve outcome. Paediatrics and Child Health. 2021; 31: 207–219. https://doi.org/10.1016/j.paed.2021.02.005.
[15]Kaga M, Kaga K. Modern Otology and Neurotology Landau-Kleffner Syndrome and Central Auditory Disorders in Children. Disponible en: http://www.springer.com/series/10581 (Accedido: 26 de mayo de 2024)
[16]Lesca G, Møller RS, Rudolf G, Hirsch E, Hjalgrim H, Szepetowski P. Update on the genetics of the epilepsy-aphasia spectrum and role of GRIN2A mutations. Epileptic Disorders: International Epilepsy Journal with Videotape. 2019; 21: 41–47. https://doi.org/10.1684/epd.2019.1056.
[17]Arts WFM, Aarsen FK, Scheltens-de Boer M, Catsman-Berrevoets CE. Landau-Kleffner syndrome and CSWS syndrome: treatment with intravenous immunoglobulins. Epilepsia. 2009; 50: 55–58. https://doi.org/10.1111/j.1528-1167.2009.02221.x.
[18]Zeager M, Heard T, Woolf AD. Lead poisoning in two children with Landau-Kleffner syndrome. Clinical Toxicology (Philadelphia, Pa.). 2012; 50: 448. https://doi.org/10.3109/15563650.2012.685523.
[19]De Tiège X, Trotta N, Op de Beeck M, Bourguignon M, Marty B, Wens V, et al. Neurophysiological activity underlying altered brain metabolism in epileptic encephalopathies with CSWS. Epilepsy Research. 2013; 105: 316–325. https://doi.org/10.1016/j.eplepsyres.2013.02.025.
[20]Lesca G, Rudolf G, Labalme A, Hirsch E, Arzimanoglou A, Genton P, et al. Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: genomic dissection makes the link with autism. Epilepsia. 2012; 53: 1526–1538. https://doi.org/10.1111/j.1528-1167.2012.03559.x.
[21]Gong P, Xue J, Jiao X, Zhang Y, Yang Z. Genetic Etiologies in Developmental and/or Epileptic Encephalopathy With Electrical Status Epilepticus During Sleep: Cohort Study. Frontiers in Genetics. 2021; 12: 607965. https://doi.org/10.3389/fgene.2021.607965.
[22]Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B, et al. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia. 2014; 55: 858–865. https://doi.org/10.1111/epi.12645.
[23]Strehlow V, Heyne HO, Vlaskamp DRM, Marwick KFM, Rudolf G, de Bellescize J, et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain: a Journal of Neurology. 2019; 142: 80–92. https://doi.org/10.1093/brain/awy304.
[24]Turner SJ, Morgan AT, Perez ER, Scheffer IE. New genes for focal epilepsies with speech and language disorders. Current Neurology and Neuroscience Reports. 2015; 15: 35. https://doi.org/10.1007/s11910-015-0554-0.
[25]Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 1996; 16: 19–30. https://doi.org/10.1523/JNEUROSCI.16-01-00019.1996.
[26]Bi H, Sze CI. N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. Journal of the Neurological Sciences. 2002; 200: 11–18. https://doi.org/10.1016/s0022-510x(02)00087-4.
[27]Clinton SM, Meador-Woodruff JH. Abnormalities of the NMDA Receptor and Associated Intracellular Molecules in the Thalamus in Schizophrenia and Bipolar Disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2004; 29: 1353–1362. https://doi.org/10.1038/sj.npp.1300451.
[28]Chapman DE, Keefe KA, Wilcox KS. Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. Journal of Neurophysiology. 2003; 89: 69–80. https://doi.org/10.1152/jn.00342.2002.
[29]Kocsis B. State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors. Sleep. 2012; 35: 1011–1016. https://doi.org/10.5665/sleep.1972.
[30]Murphy E. The Oscillatory Nature of Language. Cambridge University Press: Cambridge, Reino Unido. 2020. https://doi.org/10.1017/9781108864466.
[31]Caraballo RH, Cejas N, Chamorro N, Kaltenmeier MC, Fortini S, Soprano AM. Landau-Kleffner syndrome: a study of 29 patients. Seizure. 2014; 23: 98–104. https://doi.org/10.1016/j.seizure.2013.09.016.
[32]Baumer FM, Cardon AL, Porter BE. Language Dysfunction in Pediatric Epilepsy. The Journal of Pediatrics. 2018; 194: 13–21. https://doi.org/10.1016/j.jpeds.2017.10.031.
[33]Avanzini G, Depaulis A, Tassinari A, de Curtis M. Do seizures and epileptic activity worsen epilepsy and deteriorate cognitive function? Epilepsia. 2013; 54: 14–21. https://doi.org/10.1111/epi.12418.
[34]Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Medicine Reviews. 2006; 10: 49–62. https://doi.org/10.1016/j.smrv.2005.05.002.
[35]Halász P, Szűcs A. Sleep and Epilepsy Link by Plasticity. Frontiers in Neurology. 2020; 11: 911. https://doi.org/10.3389/fneur.2020.00911.
[36]Tassinari CA, Rubboli G. Cognition and paroxysmal EEG activities: from a single spike to electrical status epilepticus during sleep. Epilepsia. 2006; 47: 40–43. https://doi.org/10.1111/j.1528-1167.2006.00686.x.
[37]Halász P, Kelemen A, Rosdy B, Rásonyi G, Clemens B, Szűcs A. Perisylvian epileptic network revisited. Seizure. 2019; 65: 31–41. https://doi.org/10.1016/j.seizure.2018.12.003.
[38]de Andrés I, Garzón M, Reinoso-Suárez F. Functional Anatomy of Non-REM Sleep. Frontiers in Neurology. 2011; 2: 70. https://doi.org/10.3389/fneur.2011.00070.
[39]Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron. 2023; 111: 2312–2328. https://doi.org/10.1016/j.neuron.2023.05.002.
[40]Vieira M, Yong XLH, Roche KW, Anggono V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. Journal of Neurochemistry. 2020; 154: 121–143. https://doi.org/10.1111/jnc.14970.
[41]Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nature Genetics. 2013; 45: 1061–1066. https://doi.org/10.1038/ng.2726.
[42]Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nature Genetics. 2013; 45: 1073–1076. https://doi.org/10.1038/ng.2727.
[43]Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nature Genetics. 2013; 45: 1067–1072. https://doi.org/10.1038/ng.2728.
[44]Li X, Xie LL, Han W, Hong SQ, Ma JN, Wang J, et al. Clinical Forms and GRIN2A Genotype of Severe End of Epileptic-Aphasia Spectrum Disorder. Frontiers in Pediatrics. 2020; 8: 574803. https://doi.org/10.3389/fped.2020.574803.
[45]Addis L, Virdee JK, Vidler LR, Collier DA, Pal DK, Ursu D. Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency - molecular profiling and functional rescue. Scientific Reports. 2017; 7: 66. https://doi.org/10.1038/s41598-017-00115-w.
[46]Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics. 2014; 46: 310–315. https://doi.org/10.1038/ng.2892.
[47]Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2006; 26: 1604–1615. https://doi.org/10.1523/JNEUROSCI.4722-05.2006.
[48]Dumas TC. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Progress in Neurobiology. 2005; 76: 189–211. https://doi.org/10.1016/j.pneurobio.2005.08.002.
[49]Lussier MP, Sanz-Clemente A, Roche KW. Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications. The Journal of Biological Chemistry. 2015; 290: 28596–28603. https://doi.org/10.1074/jbc.R115.652750.
[50]Mota Vieira M, Nguyen TA, Wu K, Badger JD, 2nd, Collins BM, Anggono V, et al. An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKIIα Phosphorylation of GluN2A and NMDA Receptor Trafficking. Cell Reports. 2020; 32: 108104. https://doi.org/10.1016/j.celrep.2020.108104.
[51]Becker LL, Kaindl AM. Corticosteroids in childhood epilepsies: A systematic review. Frontiers in Neurology. 2023; 14: 1142253. https://doi.org/10.3389/fneur.2023.1142253.
[52]Lagae L. Rational treatment options with AEDs and ketogenic diet in Landau-Kleffner syndrome: still waiting after all these years. Epilepsia. 2009; 50: 59–62. https://doi.org/10.1111/j.1528-1167.2009.02222.x.
[53]Sidhu R, Barnes G, Tuchman R. Antiepileptic Drugs (AEDs). In Volkmar FR, (ed.) Encyclopedia of Autism Spectrum Disorders. Springer: Cham. 2021. https://doi.org/10.1007/978-3-319-91280-6_2024.
[54]Borowicz-Reutt K, Krawczyk M, Czernia J. Ketogenic Diet in the Treatment of Epilepsy. Nutrients. 2024; 16: 1258. https://doi.org/10.3390/nu16091258.
[55]Wang S, Weil AG, Ibrahim GM, Fallah A, Korman B, Ragheb J, et al. Surgical management of pediatric patients with encephalopathy due to electrical status epilepticus during sleep (ESES). Epileptic Disorders: International Epilepsy Journal with Videotape. 2020; 22: 39–54. https://doi.org/10.1684/epd.2020.1129.
[56]van der Meulen I, Pangalila RF, van de Sandt-Koenderman WME. Cognitive linguistic Treatment in Landau Kleffner Syndrome: Improvement in Daily Life Communication. Child Neurology Open. 2021; 8: 2329048X211022196. https://doi.org/10.1177/2329048X211022196.
[57]Kuriakose S, Lang R, Boyer K, Lee A, Lancioni G. Rehabilitation issues in Landau-Kleffner syndrome. Developmental Neurorehabilitation. 2012; 15: 317–321. https://doi.org/10.3109/17518423.2012.701241.
[58]Mikati MA, Shamseddine AN. Management of Landau-Kleffner syndrome. Paediatric Drugs. 2005; 7: 377–389. https://doi.org/10.2165/00148581-200507060-00006.
Academic Editor
- Jaume Sastre-Garriga
Article Metrics
Download
- Contents
Information
Download
Contents
Landau-Kleffner Syndrome: Current Etiopathogenesis and Management
1 Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México
2 Coordinación de Investigación, Hospital Ángeles Lindavista, 07760 Ciudad de México, México
3 Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510 Ciudad de México, México
Abstract
Landau-Kleffner syndrome is a developmental epileptic encephalopathy that manifests mainly in pediatric patients, characterized by verbal auditory agnosia and focal, bilateral, and focal and diffuse epileptic activity, visualized through electroencephalographic recordings performed during sleep. It is a rare syndrome with a variable, multifactorial presentation and unknown etiology, although it has a genetic component in some cases. It is often associated with variants of the glutamate ionotropic receptor N-methyl-D-aspartate (NMDA) type subunit 2A (GRIN2A) gene, which encodes an NMDA receptor subunit of the same name that is involved in various neurophysiological processes. Modifications to this receptor could be associated with the clinical manifestations observed in patients. This review proposes a pathophysiological mechanism related to one of the clinical presentations of this disease, using information published in recent years, and contributes to the understanding of its pathology and the improvement of its management. This syndrome is a rare and complex disease; both its diagnosis and treatment are challenging, limiting patients’ therapeutic options and compromising their quality of life.
Keywords
- aphasia
- molecular diagnosis
- electroencephalogram
- acquired epilepsy
- GRIN2A protein
- molecularly targeted therapy
References
- [1]
Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010; 51: 676–685. https://doi.org/10.1111/j.1528-1167.2010.02522.x. - [2]
McTague A, Howell KB, Cross JH, Kurian MA, Scheffer IE. The genetic landscape of the epileptic encephalopathies of infancy and childhood. The Lancet. Neurology. 2016; 15: 304–316. https://doi.org/10.1016/S1474-4422(15)00250-1. - [3]
Sands TT, Gelinas JN. Epilepsy and Encephalopathy. Pediatric Neurology. 2024; 150: 24–31. https://doi.org/10.1016/j.pediatrneurol.2023.09.019. - [4]
Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017; 58: 512–521. https://doi.org/10.1111/epi.13709. - [5]
Bertocchi I, Cambiaghi M, Hasan MT. Advances toward precision therapeutics for developmental and epileptic encephalopathies. Frontiers in Neuroscience. 2023; 17: 1140679. https://doi.org/10.3389/fnins.2023.1140679. - [6]
Muzio MR, Cascella M, Al Khalili Y. Landau-Kleffner Syndrome. StatPearls Publishing: Florida. 2023. - [7]
Chowdhury N, Bansal AR, Goyal R, Nikhila G. Cerebral dominance in an unusual case of Landau-Kleffner syndrome. BMJ Case Reports. 2021; 14: e246696. https://doi.org/10.1136/bcr-2021-246696. - [8]
Benítez-Burraco A, Hoshi K, Murphy E. Language deficits in GRIN2A mutations and Landau–Kleffner syndrome as neural dysrhythmias. Journal of Neurolinguistics. 2023; 67: 101139. https://doi.org/10.1016/j.jneuroling.2023.101139. - [9]
Tuft M, Årva M, Bjørnvold M, Wilson JA, Nakken KO. Landau-Kleffner syndrome. Tidsskrift for Den Norske Laegeforening: Tidsskrift for Praktisk Medicin, Ny Raekke. 2015; 135: 2061–2064. https://doi.org/10.4045/tidsskr.15.0162. - [10]
Kaga M, Inagaki M, Ohta R. Epidemiological study of Landau-Kleffner syndrome (LKS) in Japan. Brain & Development. 2014; 36: 284–286. https://doi.org/10.1016/j.braindev.2013.04.012. - [11]
Stefanatos G. Changing perspectives on Landau-Kleffner syndrome. The Clinical Neuropsychologist. 2011; 25: 963–988. https://doi.org/10.1080/13854046.2011.614779. - [12]
de Almeida Motta GC, Goes LS, de Aguiar PHSP, Santos FF, Pacheco CC, Franceschini PR, et al. landau-Kleffner syndrome: A systematic review and two illustrative cases. Revista Chilena de Neurocirugía. 2021; 47: 67–73. https://doi.org/10.36593/revchilneurocir.v47i2.250. - [13]
Kawai M, Abe Y, Yumoto M, Kubota M. Aphasia and a Dual-Stream Language Model in a 4-Year-Old Female with Landau-Kleffner Syndrome. Neuropediatrics. 2022; 53: 295–298. https://doi.org/10.1055/s-0041-1733983. - [14]
Clark M, Holmes H, Ngoh A, Siyani V, Wilson G. Overview of Landau–Kleffner syndrome: early treatment, tailored education and therapy improve outcome. Paediatrics and Child Health. 2021; 31: 207–219. https://doi.org/10.1016/j.paed.2021.02.005. - [15]
Kaga M, Kaga K. Modern Otology and Neurotology Landau-Kleffner Syndrome and Central Auditory Disorders in Children. Disponible en: http://www.springer.com/series/10581 (Accedido: 26 de mayo de 2024) - [16]
Lesca G, Møller RS, Rudolf G, Hirsch E, Hjalgrim H, Szepetowski P. Update on the genetics of the epilepsy-aphasia spectrum and role of GRIN2A mutations. Epileptic Disorders: International Epilepsy Journal with Videotape. 2019; 21: 41–47. https://doi.org/10.1684/epd.2019.1056. - [17]
Arts WFM, Aarsen FK, Scheltens-de Boer M, Catsman-Berrevoets CE. Landau-Kleffner syndrome and CSWS syndrome: treatment with intravenous immunoglobulins. Epilepsia. 2009; 50: 55–58. https://doi.org/10.1111/j.1528-1167.2009.02221.x. - [18]
Zeager M, Heard T, Woolf AD. Lead poisoning in two children with Landau-Kleffner syndrome. Clinical Toxicology (Philadelphia, Pa.). 2012; 50: 448. https://doi.org/10.3109/15563650.2012.685523. - [19]
De Tiège X, Trotta N, Op de Beeck M, Bourguignon M, Marty B, Wens V, et al. Neurophysiological activity underlying altered brain metabolism in epileptic encephalopathies with CSWS. Epilepsy Research. 2013; 105: 316–325. https://doi.org/10.1016/j.eplepsyres.2013.02.025. - [20]
Lesca G, Rudolf G, Labalme A, Hirsch E, Arzimanoglou A, Genton P, et al. Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: genomic dissection makes the link with autism. Epilepsia. 2012; 53: 1526–1538. https://doi.org/10.1111/j.1528-1167.2012.03559.x. - [21]
Gong P, Xue J, Jiao X, Zhang Y, Yang Z. Genetic Etiologies in Developmental and/or Epileptic Encephalopathy With Electrical Status Epilepticus During Sleep: Cohort Study. Frontiers in Genetics. 2021; 12: 607965. https://doi.org/10.3389/fgene.2021.607965. - [22]
Conroy J, McGettigan PA, McCreary D, Shah N, Collins K, Parry-Fielder B, et al. Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia. 2014; 55: 858–865. https://doi.org/10.1111/epi.12645. - [23]
Strehlow V, Heyne HO, Vlaskamp DRM, Marwick KFM, Rudolf G, de Bellescize J, et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype. Brain: a Journal of Neurology. 2019; 142: 80–92. https://doi.org/10.1093/brain/awy304. - [24]
Turner SJ, Morgan AT, Perez ER, Scheffer IE. New genes for focal epilepsies with speech and language disorders. Current Neurology and Neuroscience Reports. 2015; 15: 35. https://doi.org/10.1007/s11910-015-0554-0. - [25]
Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 1996; 16: 19–30. https://doi.org/10.1523/JNEUROSCI.16-01-00019.1996. - [26]
Bi H, Sze CI. N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. Journal of the Neurological Sciences. 2002; 200: 11–18. https://doi.org/10.1016/s0022-510x(02)00087-4. - [27]
Clinton SM, Meador-Woodruff JH. Abnormalities of the NMDA Receptor and Associated Intracellular Molecules in the Thalamus in Schizophrenia and Bipolar Disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2004; 29: 1353–1362. https://doi.org/10.1038/sj.npp.1300451. - [28]
Chapman DE, Keefe KA, Wilcox KS. Evidence for functionally distinct synaptic NMDA receptors in ventromedial versus dorsolateral striatum. Journal of Neurophysiology. 2003; 89: 69–80. https://doi.org/10.1152/jn.00342.2002. - [29]
Kocsis B. State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors. Sleep. 2012; 35: 1011–1016. https://doi.org/10.5665/sleep.1972. - [30]
Murphy E. The Oscillatory Nature of Language. Cambridge University Press: Cambridge, Reino Unido. 2020. https://doi.org/10.1017/9781108864466. - [31]
Caraballo RH, Cejas N, Chamorro N, Kaltenmeier MC, Fortini S, Soprano AM. Landau-Kleffner syndrome: a study of 29 patients. Seizure. 2014; 23: 98–104. https://doi.org/10.1016/j.seizure.2013.09.016. - [32]
Baumer FM, Cardon AL, Porter BE. Language Dysfunction in Pediatric Epilepsy. The Journal of Pediatrics. 2018; 194: 13–21. https://doi.org/10.1016/j.jpeds.2017.10.031. - [33]
Avanzini G, Depaulis A, Tassinari A, de Curtis M. Do seizures and epileptic activity worsen epilepsy and deteriorate cognitive function? Epilepsia. 2013; 54: 14–21. https://doi.org/10.1111/epi.12418. - [34]
Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Medicine Reviews. 2006; 10: 49–62. https://doi.org/10.1016/j.smrv.2005.05.002. - [35]
Halász P, Szűcs A. Sleep and Epilepsy Link by Plasticity. Frontiers in Neurology. 2020; 11: 911. https://doi.org/10.3389/fneur.2020.00911. - [36]
Tassinari CA, Rubboli G. Cognition and paroxysmal EEG activities: from a single spike to electrical status epilepticus during sleep. Epilepsia. 2006; 47: 40–43. https://doi.org/10.1111/j.1528-1167.2006.00686.x. - [37]
Halász P, Kelemen A, Rosdy B, Rásonyi G, Clemens B, Szűcs A. Perisylvian epileptic network revisited. Seizure. 2019; 65: 31–41. https://doi.org/10.1016/j.seizure.2018.12.003. - [38]
de Andrés I, Garzón M, Reinoso-Suárez F. Functional Anatomy of Non-REM Sleep. Frontiers in Neurology. 2011; 2: 70. https://doi.org/10.3389/fneur.2011.00070. - [39]
Dupuis JP, Nicole O, Groc L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron. 2023; 111: 2312–2328. https://doi.org/10.1016/j.neuron.2023.05.002. - [40]
Vieira M, Yong XLH, Roche KW, Anggono V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. Journal of Neurochemistry. 2020; 154: 121–143. https://doi.org/10.1111/jnc.14970. - [41]
Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nature Genetics. 2013; 45: 1061–1066. https://doi.org/10.1038/ng.2726. - [42]
Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nature Genetics. 2013; 45: 1073–1076. https://doi.org/10.1038/ng.2727. - [43]
Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nature Genetics. 2013; 45: 1067–1072. https://doi.org/10.1038/ng.2728. - [44]
Li X, Xie LL, Han W, Hong SQ, Ma JN, Wang J, et al. Clinical Forms and GRIN2A Genotype of Severe End of Epileptic-Aphasia Spectrum Disorder. Frontiers in Pediatrics. 2020; 8: 574803. https://doi.org/10.3389/fped.2020.574803. - [45]
Addis L, Virdee JK, Vidler LR, Collier DA, Pal DK, Ursu D. Epilepsy-associated GRIN2A mutations reduce NMDA receptor trafficking and agonist potency - molecular profiling and functional rescue. Scientific Reports. 2017; 7: 66. https://doi.org/10.1038/s41598-017-00115-w. - [46]
Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics. 2014; 46: 310–315. https://doi.org/10.1038/ng.2892. - [47]
Kinney JW, Davis CN, Tabarean I, Conti B, Bartfai T, Behrens MM. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2006; 26: 1604–1615. https://doi.org/10.1523/JNEUROSCI.4722-05.2006. - [48]
Dumas TC. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Progress in Neurobiology. 2005; 76: 189–211. https://doi.org/10.1016/j.pneurobio.2005.08.002. - [49]
Lussier MP, Sanz-Clemente A, Roche KW. Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and -Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications. The Journal of Biological Chemistry. 2015; 290: 28596–28603. https://doi.org/10.1074/jbc.R115.652750. - [50]
Mota Vieira M, Nguyen TA, Wu K, Badger JD, 2nd, Collins BM, Anggono V, et al. An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKII Phosphorylation of GluN2A and NMDA Receptor Trafficking. Cell Reports. 2020; 32: 108104. https://doi.org/10.1016/j.celrep.2020.108104. - [51]
Becker LL, Kaindl AM. Corticosteroids in childhood epilepsies: A systematic review. Frontiers in Neurology. 2023; 14: 1142253. https://doi.org/10.3389/fneur.2023.1142253. - [52]
Lagae L. Rational treatment options with AEDs and ketogenic diet in Landau-Kleffner syndrome: still waiting after all these years. Epilepsia. 2009; 50: 59–62. https://doi.org/10.1111/j.1528-1167.2009.02222.x. - [53]
Sidhu R, Barnes G, Tuchman R. Antiepileptic Drugs (AEDs). In Volkmar FR, (ed.) Encyclopedia of Autism Spectrum Disorders. Springer: Cham. 2021. https://doi.org/10.1007/978-3-319-91280-6_2024. - [54]
Borowicz-Reutt K, Krawczyk M, Czernia J. Ketogenic Diet in the Treatment of Epilepsy. Nutrients. 2024; 16: 1258. https://doi.org/10.3390/nu16091258. - [55]
Wang S, Weil AG, Ibrahim GM, Fallah A, Korman B, Ragheb J, et al. Surgical management of pediatric patients with encephalopathy due to electrical status epilepticus during sleep (ESES). Epileptic Disorders: International Epilepsy Journal with Videotape. 2020; 22: 39–54. https://doi.org/10.1684/epd.2020.1129. - [56]
van der Meulen I, Pangalila RF, van de Sandt-Koenderman WME. Cognitive linguistic Treatment in Landau Kleffner Syndrome: Improvement in Daily Life Communication. Child Neurology Open. 2021; 8: 2329048X211022196. https://doi.org/10.1177/2329048X211022196. - [57]
Kuriakose S, Lang R, Boyer K, Lee A, Lancioni G. Rehabilitation issues in Landau-Kleffner syndrome. Developmental Neurorehabilitation. 2012; 15: 317–321. https://doi.org/10.3109/17518423.2012.701241. - [58]
Mikati MA, Shamseddine AN. Management of Landau-Kleffner syndrome. Paediatric Drugs. 2005; 7: 377–389. https://doi.org/10.2165/00148581-200507060-00006.
Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
