Information
References
Contents
Academic Editor
- Jaume Sastre-Garriga
Download
[1]Ríos-Lago M, Benito-León J, Paúl-Lapedriza N, Tirapu-Ustárroz J. Neuropsicología del daño cerebral adquirido. En Viguera (ed.) Manual de neuropsicología (pp. 307–335). 2a. Viguera Editores: Barcelona. 2008.
[2]Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal. 2016; 37: 3232–3245. https://doi.org/10.1093/eurheartj/ehw334.
[3]Casado Pérez D. Instituto Universitario de Integración Comunitaria (INICO) y Federación Española de Daño Cerebral (FEDACE) (2021): Estudio de investigación. Modelos de atención al daño cerebral en España. Federación Española de Daño Cerebral. Revista Española de Discapacidad (REDIS): Madrid. 2021; 9: 301–303. (In Spanish)
[4]Buergo Zuaznábar MÁ, Fernández Concepción O. Guías de práctica clínica. Enfermedad cerebrovascular (pp. 170). Editorial Ciencias Médicas: La Habana. 2009.
[5]Sharkey P, Sik Lányi C, Standen PJ. Proceedings of the 4th international conference on disability, virtual reality and associated technologies (ICDVRAT 2002) [Internet] (pp. 304). In Sharkey P, Sik Lányi C, Standen PJ, (eds.) The University of Reading: Reading, UK. 2002. Available at: https://centaur.reading.ac.uk/27454/ (Accessed: 24 Junio 2024).
[6]Fernández-Sánchez M, Aza-Hernández A, Verdugo-Alonso MA. Models of public care for the population with acquired brain injury in Spain: a study of the situation by Spanish autonomous communities. Revista De Neurologia. 2022; 74: 245–257. (In Spanish) https://doi.org/10.33588/rn.7408.2021372.
[7]Cicerone KD, Dahlberg C, Kalmar K, Langenbahn DM, Malec JF, Bergquist TF, et al. Evidence-based cognitive rehabilitation: recommendations for clinical practice. Archives of Physical Medicine and Rehabilitation. 2000; 81: 1596–1615. https://doi.org/10.1053/apmr.2000.19240.
[8]Ylvisaker M, Hanks R, Johnson-Greene D. Perspectives on rehabilitation of individuals with cognitive impairment after brain injury: rationale for reconsideration of theoretical paradigms. The Journal of Head Trauma Rehabilitation. 2002; 17: 191–209. https://doi.org/10.1097/00001199-200206000-00002.
[9]Jeffay E, Ponsford J, Harnett A, Janzen S, Patsakos E, Douglas J, et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part III: Executive Functions. The Journal of Head Trauma Rehabilitation. 2023; 38: 52–64. https://doi.org/10.1097/HTR.0000000000000834.
[10]Ponsford J, Velikonja D, Janzen S, Harnett A, McIntyre A, Wiseman-Hakes C, et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part II: Attention and Information Processing Speed. The Journal of Head Trauma Rehabilitation. 2023; 38: 38–51. https://doi.org/10.1097/HTR.0000000000000839.
[11]Velikonja D, Ponsford J, Janzen S, Harnett A, Patsakos E, Kennedy M, et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part V: Memory. The Journal of Head Trauma Rehabilitation. 2023; 38: 83–102. https://doi.org/10.1097/HTR.0000000000000837.
[12]Bogner J, Dijkers M, Hade EM, Beaulieu C, Montgomery E, Giuffrida C, et al. Contextualized Treatment in Traumatic Brain Injury Inpatient Rehabilitation: Effects on Outcomes During the First Year After Discharge. Archives of Physical Medicine and Rehabilitation. 2019; 100: 1810–1817. https://doi.org/10.1016/j.apmr.2018.12.037.
[13]Botella C, Quero S, Baños RM, Perpiñá C, García Palacios A, Riva G. Virtual reality and psychotherapy. Studies in Health Technology and Informatics. 2004; 99: 37–54.
[14]Jerald J. What is Virtual Reality. The VR Book: Human-Centered Design for Virtual Reality [Internet]. Association for Computing Machinery and Morgan & Claypool. 2018. Available at: https://doi.org/10.1145/2792790.2792793 (Accessed: 29 de octubre de 2023).
[15]Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Topics in Stroke Rehabilitation. 2007; 14: 52–61. https://doi.org/10.1310/tsr1402-52.
[16]Smith SA. Virtual reality in episodic memory research: A review. Psychonomic Bulletin & Review. 2019; 26: 1213–1237. https://doi.org/10.3758/s13423-019-01605-w.
[17]Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews [Internet]. 2017. Available at: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD008349.pub4/full/es (Accessed: 3 de noviembre de 2023).
[18]Maggio MG, Latella D, Maresca G, Sciarrone F, Manuli A, Naro A, et al. Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview. The Journal of Neuroscience Nursing: Journal of the American Association of Neuroscience Nurses. 2019; 51: 101–105. https://doi.org/10.1097/JNN.0000000000000423.
[19]Manuli A, Maggio MG, Latella D, Cannavò A, Balletta T, De Luca R, et al. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. Journal of Stroke and Cerebrovascular Diseases: the Official Journal of National Stroke Association. 2020; 29: 104994. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104994.
[20]Park M, Ha Y. Effects of Virtual Reality-Based Cognitive Rehabilitation in Stroke Patients: A Randomized Controlled Trial. Healthcare (Basel, Switzerland). 2023; 11: 2846. https://doi.org/10.3390/healthcare11212846.
[21]Shi J, Ma SJ, Hu J, Hu ZK, Xia JY, Xu HY. The effects of computer-aided cognitive rehabilitation combined with virtual reality technology on event-related potential P300 and cognitive function of patients with cognitive impairment after stroke. European Review for Medical and Pharmacological Sciences. 2023; 27: 8993–9000. https://doi.org/10.26355/eurrev_202310_33923.
[22]Specht J, Stegmann B, Gross H, Krakow K. Cognitive Training With Head-Mounted Display Virtual Reality in Neurorehabilitation: Pilot Randomized Controlled Trial. JMIR Serious Games. 2023; 11: e45816. https://doi.org/10.2196/45816.
[23]Alashram AR, Annino G, Padua E, Romagnoli C, Mercuri NB. Cognitive rehabilitation post traumatic brain injury: A systematic review for emerging use of virtual reality technology. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia. 2019; 66: 209–219. https://doi.org/10.1016/j.jocn.2019.04.026.
[24]Chen X, Liu F, Lin S, Yu L, Lin R. Effects of Virtual Reality Rehabilitation Training on Cognitive Function and Activities of Daily Living of Patients With Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation. 2022; 103: 1422–1435. https://doi.org/10.1016/j.apmr.2022.03.012.
[25]Shin H, Kim K. Virtual reality for cognitive rehabilitation after brain injury: a systematic review. Journal of Physical Therapy Science. 2015; 27: 2999–3002. https://doi.org/10.1589/jpts.27.2999.
[26]Faria AL, Latorre J, Silva Cameirão M, Bermúdez I Badia S, Llorens R. Ecologically valid virtual reality-based technologies for assessment and rehabilitation of acquired brain injury: a systematic review. Frontiers in Psychology. 2023; 14: 1233346. https://doi.org/10.3389/fpsyg.2023.1233346.
[27]Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Espanola De Cardiologia. 2021; 74: 790–799. (In Spanish) https://doi.org/10.1016/j.rec.2021.07.010.
[28]Barker TH, Stone JC, Sears K, Klugar M, Tufanaru C, Leonardi-Bee J, et al. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evidence Synthesis. 2023; 21: 494–506. https://doi.org/10.11124/JBIES-22-00430.
[29]Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L. Chapter 3: Systematic Reviews of Effectiveness. JBI Manual for Evidence Synthesis. JBI: Adelaide, Australia. 2019.
[30]Chatterjee K, Buchanan A, Cottrell K, Hughes S, Day TW, John NW. Immersive Virtual Reality for the Cognitive Rehabilitation of Stroke Survivors. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society. 2022; 30: 719–728. https://doi.org/10.1109/TNSRE.2022.3158731.
[31]Faria AL, Andrade A, Soares L, I Badia SB. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. Journal of Neuroengineering and Rehabilitation. 2016; 13: 96. https://doi.org/10.1186/s12984-016-0204-z.
[32]Faria AL, Pinho MS, Bermúdez I Badia S. A comparison of two personalization and adaptive cognitive rehabilitation approaches: a randomized controlled trial with chronic stroke patients. Journal of Neuroengineering and Rehabilitation. 2020; 17: 78. https://doi.org/10.1186/s12984-020-00691-5.
[33]Gamito P, Oliveira J, Coelho C, Morais D, Lopes P, Pacheco J, et al. Cognitive training on stroke patients via virtual reality-based serious games. Disability and Rehabilitation. 2017; 39: 385–388. https://doi.org/10.3109/09638288.2014.934925.
[34]Poulin V, Korner-Bitensky N, Bherer L, Lussier M, Dawson DR. Comparison of two cognitive interventions for adults experiencing executive dysfunction post-stroke: a pilot study. Disability and Rehabilitation. 2017; 39: 1–13. https://doi.org/10.3109/09638288.2015.1123303.
[35]De Luca R, Gangemi A, Maggio MG, Bonanno M, Calderone A, Mazzurco Masi VM, et al. Effects of Virtual Rehabilitation Training on Post-Stroke Executive and Praxis Skills and Depression Symptoms: A Quasi-Randomised Clinical Trial. Diagnostics (Basel, Switzerland). 2024; 14: 1892. https://doi.org/10.3390/diagnostics14171892.
[36]Oliveira J, Gamito P, Lopes B, Silva AR, Galhordas J, Pereira E, et al. Computerized cognitive training using virtual reality on everyday life activities for patients recovering from stroke. Disability and Rehabilitation. Assistive Technology. 2020; 17: 298–303. https://doi.org/10.1080/17483107.2020.1749891.
[37]Manivannan S, Al-Amri M, Postans M, Westacott LJ, Gray W, Zaben M. The Effectiveness of Virtual Reality Interventions for Improvement of Neurocognitive Performance After Traumatic Brain Injury: A Systematic Review. The Journal of Head Trauma Rehabilitation. 2019; 34: E52–E65. https://doi.org/10.1097/HTR.0000000000000412.
[38]Moreno A, Wall KJ, Thangavelu K, Craven L, Ward E, Dissanayaka NN. A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders. Alzheimer’s & Dementia (New York, N. Y.). 2019; 5: 834–850. https://doi.org/10.1016/j.trci.2019.09.016.
[39]Aulisio MC, Han DY, Glueck AC. Virtual reality gaming as a neurorehabilitation tool for brain injuries in adults: A systematic review. Brain Injury. 2020; 34: 1322–1330. https://doi.org/10.1080/02699052.2020.1802779.
[40]Son C, Park JH. Ecological Effects of VR-Based Cognitive Training on ADL and IADL in MCI and AD patients: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19: 15875. https://doi.org/10.3390/ijerph192315875.
[41]Mitrovic A, Mathews M, Ohlsson S, Holland J, McKinlay A. Computer-Based Post-Stroke Rehabilitation of Prospective Memory. Journal of Applied Research in Memory and Cognition. 2016; 5: 204–214.
[42]Vilageliu-Jordà E, Enseñat-Cantallops A, García-Molina A. Use of immersive virtual reality for cognitive rehabilitation of patients with brain injury. Revista de Neurología. 2022; 74: 331–339. (In Spanish) https://doi.org/10.33588/rn.7410.2022034.
[43]Rebenitsch L, Owen C. Review on cybersickness in applications and visual displays. Virtual Reality. 2016; 20: 101–125. https://doi.org/10.1007/s10055-016-0285-9.
[44]Zhang B, Li D, Liu Y, Wang J, Xiao Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. Journal of Advanced Nursing. 2021; 77: 3255–3273. https://doi.org/10.1111/jan.14800.
[45]Oh YB, Kim GW, Han KS, Won YH, Park SH, Seo JH, et al. Efficacy of Virtual Reality Combined With Real Instrument Training for Patients With Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation. 2019; 100: 1400–1408. https://doi.org/10.1016/j.apmr.2019.03.013.
[46]Brady SR. The Delphi Method. Handbook for methodological approaches to community-based research: Qualitive, quantitive, and mixed methods (pp. 61–68). Oxford Academic: Oxford, England. 2015.
Academic Editor
- Jaume Sastre-Garriga
Article Metrics
Download
- Contents
Information
Download
Contents
1 Facultad de Ciencias de la Salud, Universidad Alfonso X el Sabio, 28016 Madrid, España
2 Facultad de Ciencias de la Salud, Universidad Internacional de Empresa, 28023 Madrid, España
Abstract
Virtual reality (VR) generates a virtual environment with which one can interact as if it were real. In Stroke,which represents one of the highest causes of cognitive impairment in Europe, the use of VR in cognitive rehabilitation hasbeen studied through the performance of different types of tasks, which could have different impacts. For this reason, theobjective of this study was to review the use of VR tasks based exclusively on daily activities for the cognitive rehabilitationof people with stroke over 18 years of age.
A search was carried out of the databases PubMed, Web of Science,and Scopus, obtaining 531 articles that, after applying inclusion/exclusion criteria, were reduced to eight (six randomizedclinical trials and two quasi-experimental studies).
The number of positive results was higher than the number ofnegative results only in global cognitive function. In specific cognitive functions the number of positive results was lowerthan the negatives.
These results highlight the need to carry out more studies with larger samples to obtainrobust results and conclusions. Furthermore, this study highlights the value of research in this topic due to the interestinglines of future research.
Keywords
- virtual reality
- stroke
- activities of daily living
- stroke rehabilitation
- neuropsychology
References
- [1]
Ríos-Lago M, Benito-León J, Paúl-Lapedriza N, Tirapu-Ustárroz J. Neuropsicología del daño cerebral adquirido. En Viguera (ed.) Manual de neuropsicología (pp. 307–335). 2a. Viguera Editores: Barcelona. 2008. - [2]
Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal. 2016; 37: 3232–3245. https://doi.org/10.1093/eurheartj/ehw334. - [3]
Casado Pérez D. Instituto Universitario de Integración Comunitaria (INICO) y Federación Española de Daño Cerebral (FEDACE) (2021): Estudio de investigación. Modelos de atención al daño cerebral en España. Federación Española de Daño Cerebral. Revista Española de Discapacidad (REDIS): Madrid. 2021; 9: 301–303. (In Spanish) - [4]
Buergo Zuaznábar MÁ, Fernández Concepción O. Guías de práctica clínica. Enfermedad cerebrovascular (pp. 170). Editorial Ciencias Médicas: La Habana. 2009. - [5]
Sharkey P, Sik Lányi C, Standen PJ. Proceedings of the 4th international conference on disability, virtual reality and associated technologies (ICDVRAT 2002) [Internet] (pp. 304). In Sharkey P, Sik Lányi C, Standen PJ, (eds.) The University of Reading: Reading, UK. 2002. Available at: https://centaur.reading.ac.uk/27454/ (Accessed: 24 Junio 2024). - [6]
Fernández-Sánchez M, Aza-Hernández A, Verdugo-Alonso MA. Models of public care for the population with acquired brain injury in Spain: a study of the situation by Spanish autonomous communities. Revista De Neurologia. 2022; 74: 245–257. (In Spanish) https://doi.org/10.33588/rn.7408.2021372. - [7]
Cicerone KD, Dahlberg C, Kalmar K, Langenbahn DM, Malec JF, Bergquist TF, et al. Evidence-based cognitive rehabilitation: recommendations for clinical practice. Archives of Physical Medicine and Rehabilitation. 2000; 81: 1596–1615. https://doi.org/10.1053/apmr.2000.19240. - [8]
Ylvisaker M, Hanks R, Johnson-Greene D. Perspectives on rehabilitation of individuals with cognitive impairment after brain injury: rationale for reconsideration of theoretical paradigms. The Journal of Head Trauma Rehabilitation. 2002; 17: 191–209. https://doi.org/10.1097/00001199-200206000-00002. - [9]
Jeffay E, Ponsford J, Harnett A, Janzen S, Patsakos E, Douglas J, et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part III: Executive Functions. The Journal of Head Trauma Rehabilitation. 2023; 38: 52–64. https://doi.org/10.1097/HTR.0000000000000834. - [10]
Ponsford J, Velikonja D, Janzen S, Harnett A, McIntyre A, Wiseman-Hakes C, et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part II: Attention and Information Processing Speed. The Journal of Head Trauma Rehabilitation. 2023; 38: 38–51. https://doi.org/10.1097/HTR.0000000000000839. - [11]
Velikonja D, Ponsford J, Janzen S, Harnett A, Patsakos E, Kennedy M, et al. INCOG 2.0 Guidelines for Cognitive Rehabilitation Following Traumatic Brain Injury, Part V: Memory. The Journal of Head Trauma Rehabilitation. 2023; 38: 83–102. https://doi.org/10.1097/HTR.0000000000000837. - [12]
Bogner J, Dijkers M, Hade EM, Beaulieu C, Montgomery E, Giuffrida C, et al. Contextualized Treatment in Traumatic Brain Injury Inpatient Rehabilitation: Effects on Outcomes During the First Year After Discharge. Archives of Physical Medicine and Rehabilitation. 2019; 100: 1810–1817. https://doi.org/10.1016/j.apmr.2018.12.037. - [13]
Botella C, Quero S, Baños RM, Perpiñá C, García Palacios A, Riva G. Virtual reality and psychotherapy. Studies in Health Technology and Informatics. 2004; 99: 37–54. - [14]
Jerald J. What is Virtual Reality. The VR Book: Human-Centered Design for Virtual Reality [Internet]. Association for Computing Machinery and Morgan & Claypool. 2018. Available at: https://doi.org/10.1145/2792790.2792793 (Accessed: 29 de octubre de 2023). Cited within: 1Google Scholar - [15]
Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Topics in Stroke Rehabilitation. 2007; 14: 52–61. https://doi.org/10.1310/tsr1402-52. - [16]
Smith SA. Virtual reality in episodic memory research: A review. Psychonomic Bulletin & Review. 2019; 26: 1213–1237. https://doi.org/10.3758/s13423-019-01605-w. Cited within: 1Google Scholar - [17]
Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews [Internet]. 2017. Available at: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD008349.pub4/full/es (Accessed: 3 de noviembre de 2023). - [18]
Maggio MG, Latella D, Maresca G, Sciarrone F, Manuli A, Naro A, et al. Virtual Reality and Cognitive Rehabilitation in People With Stroke: An Overview. The Journal of Neuroscience Nursing: Journal of the American Association of Neuroscience Nurses. 2019; 51: 101–105. https://doi.org/10.1097/JNN.0000000000000423. - [19]
Manuli A, Maggio MG, Latella D, Cannavò A, Balletta T, De Luca R, et al. Can robotic gait rehabilitation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A randomized controlled trial involving three different protocols. Journal of Stroke and Cerebrovascular Diseases: the Official Journal of National Stroke Association. 2020; 29: 104994. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104994. - [20]
Park M, Ha Y. Effects of Virtual Reality-Based Cognitive Rehabilitation in Stroke Patients: A Randomized Controlled Trial. Healthcare (Basel, Switzerland). 2023; 11: 2846. https://doi.org/10.3390/healthcare11212846. - [21]
Shi J, Ma SJ, Hu J, Hu ZK, Xia JY, Xu HY. The effects of computer-aided cognitive rehabilitation combined with virtual reality technology on event-related potential P300 and cognitive function of patients with cognitive impairment after stroke. European Review for Medical and Pharmacological Sciences. 2023; 27: 8993–9000. https://doi.org/10.26355/eurrev_202310_33923. - [22]
Specht J, Stegmann B, Gross H, Krakow K. Cognitive Training With Head-Mounted Display Virtual Reality in Neurorehabilitation: Pilot Randomized Controlled Trial. JMIR Serious Games. 2023; 11: e45816. https://doi.org/10.2196/45816. - [23]
Alashram AR, Annino G, Padua E, Romagnoli C, Mercuri NB. Cognitive rehabilitation post traumatic brain injury: A systematic review for emerging use of virtual reality technology. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia. 2019; 66: 209–219. https://doi.org/10.1016/j.jocn.2019.04.026. - [24]
Chen X, Liu F, Lin S, Yu L, Lin R. Effects of Virtual Reality Rehabilitation Training on Cognitive Function and Activities of Daily Living of Patients With Poststroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation. 2022; 103: 1422–1435. https://doi.org/10.1016/j.apmr.2022.03.012. - [25]
Shin H, Kim K. Virtual reality for cognitive rehabilitation after brain injury: a systematic review. Journal of Physical Therapy Science. 2015; 27: 2999–3002. https://doi.org/10.1589/jpts.27.2999. - [26]
Faria AL, Latorre J, Silva Cameirão M, Bermúdez I Badia S, Llorens R. Ecologically valid virtual reality-based technologies for assessment and rehabilitation of acquired brain injury: a systematic review. Frontiers in Psychology. 2023; 14: 1233346. https://doi.org/10.3389/fpsyg.2023.1233346. - [27]
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Espanola De Cardiologia. 2021; 74: 790–799. (In Spanish) https://doi.org/10.1016/j.rec.2021.07.010. - [28]
Barker TH, Stone JC, Sears K, Klugar M, Tufanaru C, Leonardi-Bee J, et al. The revised JBI critical appraisal tool for the assessment of risk of bias for randomized controlled trials. JBI Evidence Synthesis. 2023; 21: 494–506. https://doi.org/10.11124/JBIES-22-00430. - [29]
Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L. Chapter 3: Systematic Reviews of Effectiveness. JBI Manual for Evidence Synthesis. JBI: Adelaide, Australia. 2019. - [30]
Chatterjee K, Buchanan A, Cottrell K, Hughes S, Day TW, John NW. Immersive Virtual Reality for the Cognitive Rehabilitation of Stroke Survivors. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society. 2022; 30: 719–728. https://doi.org/10.1109/TNSRE.2022.3158731. - [31]
Faria AL, Andrade A, Soares L, I Badia SB. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. Journal of Neuroengineering and Rehabilitation. 2016; 13: 96. https://doi.org/10.1186/s12984-016-0204-z. - [32]
Faria AL, Pinho MS, Bermúdez I Badia S. A comparison of two personalization and adaptive cognitive rehabilitation approaches: a randomized controlled trial with chronic stroke patients. Journal of Neuroengineering and Rehabilitation. 2020; 17: 78. https://doi.org/10.1186/s12984-020-00691-5. - [33]
Gamito P, Oliveira J, Coelho C, Morais D, Lopes P, Pacheco J, et al. Cognitive training on stroke patients via virtual reality-based serious games. Disability and Rehabilitation. 2017; 39: 385–388. https://doi.org/10.3109/09638288.2014.934925. - [34]
Poulin V, Korner-Bitensky N, Bherer L, Lussier M, Dawson DR. Comparison of two cognitive interventions for adults experiencing executive dysfunction post-stroke: a pilot study. Disability and Rehabilitation. 2017; 39: 1–13. https://doi.org/10.3109/09638288.2015.1123303. - [35]
De Luca R, Gangemi A, Maggio MG, Bonanno M, Calderone A, Mazzurco Masi VM, et al. Effects of Virtual Rehabilitation Training on Post-Stroke Executive and Praxis Skills and Depression Symptoms: A Quasi-Randomised Clinical Trial. Diagnostics (Basel, Switzerland). 2024; 14: 1892. https://doi.org/10.3390/diagnostics14171892. - [36]
Oliveira J, Gamito P, Lopes B, Silva AR, Galhordas J, Pereira E, et al. Computerized cognitive training using virtual reality on everyday life activities for patients recovering from stroke. Disability and Rehabilitation. Assistive Technology. 2020; 17: 298–303. https://doi.org/10.1080/17483107.2020.1749891. - [37]
Manivannan S, Al-Amri M, Postans M, Westacott LJ, Gray W, Zaben M. The Effectiveness of Virtual Reality Interventions for Improvement of Neurocognitive Performance After Traumatic Brain Injury: A Systematic Review. The Journal of Head Trauma Rehabilitation. 2019; 34: E52–E65. https://doi.org/10.1097/HTR.0000000000000412. - [38]
Moreno A, Wall KJ, Thangavelu K, Craven L, Ward E, Dissanayaka NN. A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders. Alzheimer’s & Dementia (New York, N. Y.). 2019; 5: 834–850. https://doi.org/10.1016/j.trci.2019.09.016. Cited within: 1Google Scholar - [39]
Aulisio MC, Han DY, Glueck AC. Virtual reality gaming as a neurorehabilitation tool for brain injuries in adults: A systematic review. Brain Injury. 2020; 34: 1322–1330. https://doi.org/10.1080/02699052.2020.1802779. - [40]
Son C, Park JH. Ecological Effects of VR-Based Cognitive Training on ADL and IADL in MCI and AD patients: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19: 15875. https://doi.org/10.3390/ijerph192315875. - [41]
Mitrovic A, Mathews M, Ohlsson S, Holland J, McKinlay A. Computer-Based Post-Stroke Rehabilitation of Prospective Memory. Journal of Applied Research in Memory and Cognition. 2016; 5: 204–214. - [42]
Vilageliu-Jordà E, Enseñat-Cantallops A, García-Molina A. Use of immersive virtual reality for cognitive rehabilitation of patients with brain injury. Revista de Neurología. 2022; 74: 331–339. (In Spanish) https://doi.org/10.33588/rn.7410.2022034. - [43]
Rebenitsch L, Owen C. Review on cybersickness in applications and visual displays. Virtual Reality. 2016; 20: 101–125. https://doi.org/10.1007/s10055-016-0285-9. - [44]
Zhang B, Li D, Liu Y, Wang J, Xiao Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. Journal of Advanced Nursing. 2021; 77: 3255–3273. https://doi.org/10.1111/jan.14800. - [45]
Oh YB, Kim GW, Han KS, Won YH, Park SH, Seo JH, et al. Efficacy of Virtual Reality Combined With Real Instrument Training for Patients With Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation. 2019; 100: 1400–1408. https://doi.org/10.1016/j.apmr.2019.03.013. - [46]
Brady SR. The Delphi Method. Handbook for methodological approaches to community-based research: Qualitive, quantitive, and mixed methods (pp. 61–68). Oxford Academic: Oxford, England. 2015.
Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
