Information
References
Contents
Academic Editor
- Francesco Pelliccia
Download
[1]Braunwald E. Hypertrophic cardiomyopathy: The first century 1869-1969. Global Cardiology Science & Practice. 2012; 2012: 5. https://doi.org/10.5339/gcsp.2012.5.
[2]Ommen SR, Ho CY, Asif IM, Balaji S, Burke MA, Day SM, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2024; 149: e1239–e1311. https://doi.org/10.1161/CIR.0000000000001250.
[3]Das K J, Ingles J, Bagnall RD, Semsarian C. Determining pathogenicity of genetic variants in hypertrophic cardiomyopathy: importance of periodic reassessment. Genetics in Medicine. 2014; 16: 286–293. https://doi.org/10.1038/gim.2013.138.
[4]Braunwald E. Hypertrophic Cardiomyopathy: A Brief Overview. The American Journal of Cardiology. 2024; 212S: S1–S3. https://doi.org/10.1016/j.amjcard.2023.10.075.
[5]Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2022; 79: 372–389. https://doi.org/10.1016/j.jacc.2021.12.002.
[6]Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circulation Research. 2017; 121: 749–770. https://doi.org/10.1161/CIRCRESAHA.117.311059.
[7]Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. Journal of the American College of Cardiology. 2014; 64: 83–99. https://doi.org/10.1016/j.jacc.2014.05.003.
[8]Maron BJ. Clinical Course and Management of Hypertrophic Cardiomyopathy. The New England Journal of Medicine. 2018; 379: 655–668. https://doi.org/10.1056/NEJMra1710575.
[9]Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. Medicina. 2023; 59: 1424. https://doi.org/10.3390/medicina59081424.
[10]Lopes LR, Ho CY, Elliott PM. Genetics of hypertrophic cardiomyopathy: established and emerging implications for clinical practice. European Heart Journal. 2024; 45: 2727–2734. https://doi.org/10.1093/eurheartj/ehae421.
[11]Ingles J, Burns C, Bagnall RD, Lam L, Yeates L, Sarina T, et al. Nonfamilial Hypertrophic Cardiomyopathy: Prevalence, Natural History, and Clinical Implications. Circulation. Cardiovascular Genetics. 2017; 10: e001620. https://doi.org/10.1161/CIRCGENETICS.116.001620.
[12]Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation. 2006; 114: 2232–2239. https://doi.org/10.1161/CIRCULATIONAHA.106.644682.
[13]Wigle ED, Rakowski H, Kimball BP, Williams WG. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation. 1995; 92: 1680–1692. https://doi.org/10.1161/01.cir.92.7.1680.
[14]Sherrid MV, Balaram S, Kim B, Axel L, Swistel DG. The Mitral Valve in Obstructive Hypertrophic Cardiomyopathy: A Test in Context. Journal of the American College of Cardiology. 2016; 67: 1846–1858. https://doi.org/10.1016/j.jacc.2016.01.071.
[15]Groarke JD, Galazka PZ, Cirino AL, Lakdawala NK, Thune JJ, Bundgaard H, et al. Intrinsic mitral valve alterations in hypertrophic cardiomyopathy sarcomere mutation carriers. European Heart Journal. Cardiovascular Imaging. 2018; 19: 1109–1116. https://doi.org/10.1093/ehjci/jey095.
[16]Captur G, Ho CY, Schlossarek S, Kerwin J, Mirabel M, Wilson R, et al. The embryological basis of subclinical hypertrophic cardiomyopathy. Scientific Reports. 2016; 6: 27714. https://doi.org/10.1038/srep27714.
[17]Velicki L, Jakovljevic DG, Preveden A, Golubovic M, Bjelobrk M, Ilic A, et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. BMC Cardiovascular Disorders. 2020; 20: 516. https://doi.org/10.1186/s12872-020-01807-4.
[18]Hong JH, Schaff HV, Nishimura RA, Abel MD, Dearani JA, Li Z, et al. Mitral Regurgitation in Patients With Hypertrophic Obstructive Cardiomyopathy: Implications for Concomitant Valve Procedures. Journal of the American College of Cardiology. 2016; 68: 1497–1504. https://doi.org/10.1016/j.jacc.2016.07.735.
[19]Yu EH, Omran AS, Wigle ED, Williams WG, Siu SC, Rakowski H. Mitral regurgitation in hypertrophic obstructive cardiomyopathy: relationship to obstruction and relief with myectomy. Journal of the American College of Cardiology. 2000; 36: 2219–2225. https://doi.org/10.1016/s0735-1097(00)01019-6.
[20]Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A, et al. Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. Journal of the American Society of Echocardiography. 2022; 35: 533–569. https://doi.org/10.1016/j.echo.2022.03.012.
[21]Hang D, Schaff HV, Nishimura RA, Lahr BD, Abel MD, Dearani JA, et al. Accuracy of Jet Direction on Doppler Echocardiography in Identifying the Etiology of Mitral Regurgitation in Obstructive Hypertrophic Cardiomyopathy. Journal of the American Society of Echocardiography. 2019; 32: 333–340. https://doi.org/10.1016/j.echo.2018.10.011.
[22]Wu H, Yang H, Rhee JW, Zhang JZ, Lam CK, Sallam K, et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European Heart Journal. 2019; 40: 3685–3695. https://doi.org/10.1093/eurheartj/ehz326.
[23]Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, et al. The case for myocardial ischemia in hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2009; 54: 866–875. https://doi.org/10.1016/j.jacc.2009.04.072.
[24]Pelliccia F, Cecchi F, Olivotto I, Camici PG. Microvascular Dysfunction in Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2022; 11: 6560. https://doi.org/10.3390/jcm11216560.
[25]Malahfji M, Senapati A, Debs D, Angulo C, Zhan Y, Nagueh SF, et al. Examining the impact of inducible ischemia on myocardial fibrosis and exercise capacity in hypertrophic cardiomyopathy. Scientific Reports. 2020; 10: 15977. https://doi.org/10.1038/s41598-020-71394-z.
[26]Coleman JA, Ashkir Z, Raman B, Bueno-Orovio A. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy. The International Journal of Cardiovascular Imaging. 2023; 39: 1979–1996. https://doi.org/10.1007/s10554-023-02894-y.
[27]Weissler-Snir A, Saberi S, Wong TC, Pantazis A, Owens A, Leunig A, et al. Atrial Fibrillation in Hypertrophic Cardiomyopathy. JACC. Advances. 2024; 3: 101210. https://doi.org/10.1016/j.jacadv.2024.101210.
[28]Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovascular Research. 2020; 116: 1585–1599. https://doi.org/10.1093/cvr/cvaa124.
[29]Santini L, Coppini R, Cerbai E. Ion Channel Impairment and Myofilament Ca2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells. 2021; 10: 2789. https://doi.org/10.3390/cells10102789.
[30]Wolf CM, Moskowitz IPG, Arno S, Branco DM, Semsarian C, Bernstein SA, et al. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102: 18123–18128. https://doi.org/10.1073/pnas.0509145102.
[31]Santoro F, Mango F, Mallardi A, D’Alessandro D, Casavecchia G, Gravina M, et al. Arrhythmic Risk Stratification among Patients with Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2023; 12: 3397. https://doi.org/10.3390/jcm12103397.
[32]Nollet EE, Duursma I, Rozenbaum A, Eggelbusch M, Wüst RCI, Schoonvelde SAC, et al. Mitochondrial dysfunction in human hypertrophic cardiomyopathy is linked to cardiomyocyte architecture disruption and corrected by improving NADH-driven mitochondrial respiration. European Heart Journal. 2023; 44: 1170–1185. https://doi.org/10.1093/eurheartj/ehad028.
[33]Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao M, Vander Roest AS, et al. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation. 2021; 144: 1714–1731. https://doi.org/10.1161/CIRCULATIONAHA.121.053575.
[34]Dass S, Cochlin LE, Suttie JJ, Holloway CJ, Rider OJ, Carden L, et al. Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction. European Heart Journal. 2015; 36: 1547–1554. https://doi.org/10.1093/eurheartj/ehv120.
[35]Ommen SR, Nishimura RA, Schaff HV, Dearani JA. Hypertrophic Cardiomyopathy: State of the Art. Mayo Clinic Proceedings. 2025; 100: 557–566. https://doi.org/10.1016/j.mayocp.2024.07.013.
[36]Young L, Smedira NG, Tower-Rader A, Lever H, Desai MY. Hypertrophic cardiomyopathy: A complex disease. Cleveland Clinic Journal of Medicine. 2018; 85: 399–411. https://doi.org/10.3949/ccjm.85a.17076.
[37]Finocchiaro G, Sheikh N, Biagini E, Papadakis M, Maurizi N, Sinagra G, et al. The electrocardiogram in the diagnosis and management of patients with hypertrophic cardiomyopathy. Heart Rhythm. 2020; 17: 142–151. https://doi.org/10.1016/j.hrthm.2019.07.019.
[38]Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, et al. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. Journal of the American College of Cardiology. 2020; 75: 722–733. https://doi.org/10.1016/j.jacc.2019.12.030.
[39]Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. Journal of the American College of Cardiology. 2012; 60: 705–715. https://doi.org/10.1016/j.jacc.2012.02.068.
[40]Siontis KC, Liu K, Bos JM, Attia ZI, Cohen-Shelly M, Arruda-Olson AM, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. International Journal of Cardiology. 2021; 340: 42–47. https://doi.org/10.1016/j.ijcard.2021.08.026.
[41]Carrick RT, Ahamed H, Sung E, Maron MS, Madias C, Avula V, et al. Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: A deep-learning approach. Heart Rhythm. 2024; 21: 1390–1397. https://doi.org/10.1016/j.hrthm.2024.01.031.
[42]Robyns T, Breckpot J, Nuyens D, Vandenberk B, Corveleyn A, Kuiperi C, et al. Clinical and ECG variables to predict the outcome of genetic testing in hypertrophic cardiomyopathy. European Journal of Medical Genetics. 2020; 63: 103754. https://doi.org/10.1016/j.ejmg.2019.103754.
[43]Abraham MR, Abraham TP. Role of Imaging in the Diagnosis, Evaluation, and Management of Hypertrophic Cardiomyopathy. The American Journal of Cardiology. 2024; 212S: S14–S32. https://doi.org/10.1016/j.amjcard.2023.10.081.
[44]Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2009; 54: 201–211. https://doi.org/10.1016/j.jacc.2009.02.075.
[45]Leggit JC, Whitaker D. Diagnosis and Management of Hypertrophic Cardiomyopathy: Updated Guidelines From the ACC/AHA. American Family Physician. 2022; 105: 207–209.
[46]Quarta G, Aquaro GD, Pedrotti P, Pontone G, Dellegrottaglie S, Iacovoni A, et al. Cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy: the importance of clinical context. European Heart Journal. Cardiovascular Imaging. 2018; 19: 601–610. https://doi.org/10.1093/ehjci/jex323.
[47]Rowin EJ, Maron MS. The Role of Cardiac MRI in the Diagnosis and Risk Stratification of Hypertrophic Cardiomyopathy. Arrhythmia & Electrophysiology Review. 2016; 5: 197–202. https://doi.org/10.15420/aer.2016:13:3.
[48]Hindieh W, Weissler-Snir A, Hammer H, Adler A, Rakowski H, Chan RH. Discrepant Measurements of Maximal Left Ventricular Wall Thickness Between Cardiac Magnetic Resonance Imaging and Echocardiography in Patients With Hypertrophic Cardiomyopathy. Circulation. Cardiovascular Imaging. 2017; 10: e006309. https://doi.org/10.1161/CIRCIMAGING.117.006309.
[49]Webb J, Villa A, Bekri I, Shome J, Teall T, Claridge S, et al. Usefulness of Cardiac Magnetic Resonance Imaging to Measure Left Ventricular Wall Thickness for Determining Risk Scores for Sudden Cardiac Death in Patients With Hypertrophic Cardiomyopathy. The American Journal of Cardiology. 2017; 119: 1450–1455. https://doi.org/10.1016/j.amjcard.2017.01.021.
[50]Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic Value of LGE-CMR in HCM: A Meta-Analysis. JACC. Cardiovascular Imaging. 2016; 9: 1392–1402. https://doi.org/10.1016/j.jcmg.2016.02.031.
[51]Sorajja P, Borlaug BA, Dimas VV, Fang JC, Forfia PR, Givertz MM, et al. SCAI/HFSA clinical expert consensus document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease. Catheterization and Cardiovascular Interventions. 2017; 89: E233–E247. https://doi.org/10.1002/ccd.26888.
[52]Coats CJ, Rantell K, Bartnik A, Patel A, Mist B, McKenna WJ, et al. Cardiopulmonary Exercise Testing and Prognosis in Hypertrophic Cardiomyopathy. Circulation. Heart Failure. 2015; 8: 1022–1031. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002248.
[53]Ciampi Q, Olivotto I, Peteiro J, D’Alfonso MG, Mori F, Tassetti L, et al. Prognostic Value of Reduced Heart Rate Reserve during Exercise in Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2021; 10: 1347. https://doi.org/10.3390/jcm10071347.
[54]Rodrigues T, Raposo SC, Brito D, Lopes LR. Prognostic relevance of exercise testing in hypertrophic cardiomyopathy. A systematic review. International Journal of Cardiology. 2021; 339: 83–92. https://doi.org/10.1016/j.ijcard.2021.06.051.
[55]Bayonas-Ruiz A, Muñoz-Franco FM, Ferrer V, Pérez-Caballero C, Sabater-Molina M, Tomé-Esteban MT, et al. Cardiopulmonary Exercise Test in Patients with Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2021; 10: 2312. https://doi.org/10.3390/jcm10112312.
[56]Finocchiaro G, Haddad F, Knowles JW, Caleshu C, Pavlovic A, Homburger J, et al. Cardiopulmonary responses and prognosis in hypertrophic cardiomyopathy: a potential role for comprehensive noninvasive hemodynamic assessment. JACC. Heart Failure. 2015; 3: 408–418. https://doi.org/10.1016/j.jchf.2014.11.011.
[57]Ishibashi-Ueda H, Matsuyama TA, Ohta-Ogo K, Ikeda Y. Significance and Value of Endomyocardial Biopsy Based on Our Own Experience. Circulation Journal. 2017; 81: 417–426. https://doi.org/10.1253/circj.CJ-16-0927.
[58]Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. Journal of Muscle Research and Cell Motility. 2017; 38: 303–316. https://doi.org/10.1007/s10974-017-9487-3.
[59]Shirani J, Pick R, Roberts WC, Maron BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. Journal of the American College of Cardiology. 2000; 35: 36–44. https://doi.org/10.1016/s0735-1097(99)00492-1.
[60]Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Failure Reviews. 2015; 20: 133–144. https://doi.org/10.1007/s10741-014-9470-7.
[61]Flodrova P, Flodr P, Pika T, Vymetal J, Holub D, Dzubak P, et al. Cardiac amyloidosis: from clinical suspicion to morphological diagnosis. Pathology. 2018; 50: 261–268. https://doi.org/10.1016/j.pathol.2017.10.012.
[62]McLendon PM, Robbins J. Desmin-related cardiomyopathy: an unfolding story. American Journal of Physiology. Heart and Circulatory Physiology. 2011; 301: H1220–8. https://doi.org/10.1152/ajpheart.00601.2011.
[63]Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016; 387: 2641–2654. https://doi.org/10.1016/S0140-6736(15)01274-X.
[64]Kubánek M, Schimerová T, Piherová L, Brodehl A, Krebsová A, Ratnavadivel S, et al. Desminopathy: Novel Desmin Variants, a New Cardiac Phenotype, and Further Evidence for Secondary Mitochondrial Dysfunction. Journal of Clinical Medicine. 2020; 9: 937. https://doi.org/10.3390/jcm9040937.
[65]Iorio A, Lucà F, Pozzi A, Rao CM, Chimenti C, Di Fusco SA, et al. Anderson-Fabry Disease: Red Flags for Early Diagnosis of Cardiac Involvement. Diagnostics. 2024; 14: 208. https://doi.org/10.3390/diagnostics14020208.
[66]Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm. 2022; 19: e1–e60. https://doi.org/10.1016/j.hrthm.2022.03.1225.
[67]Finocchiaro G, Westaby J, Sheppard MN, Papadakis M, Sharma S. Sudden Cardiac Death in Young Athletes: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2024; 83: 350–370. https://doi.org/10.1016/j.jacc.2023.10.032.
[68]Peterson DF, Kucera K, Thomas LC, Maleszewski J, Siebert D, Lopez-Anderson M, et al. Aetiology and incidence of sudden cardiac arrest and death in young competitive athletes in the USA: a 4-year prospective study. British Journal of Sports Medicine. 2021; 55: 1196–1203. https://doi.org/10.1136/bjsports-2020-102666.
[69]Maron BJ, Rowin EJ, Maron MS. Paradigm of Sudden Death Prevention in Hypertrophic Cardiomyopathy. Circulation Research. 2019; 125: 370–378. https://doi.org/10.1161/CIRCRESAHA.119.315159.
[70]Nistri S, Olivotto I, Betocchi S, Losi MA, Valsecchi G, Pinamonti B, et al. Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). The American Journal of Cardiology. 2006; 98: 960–965. https://doi.org/10.1016/j.amjcard.2006.05.013.
[71]Hajj-Ali A, Gaballa A, Akintoye E, Jadam S, Ramchand J, Xu B, et al. Long-Term Outcomes of Patients With Apical Hypertrophic Cardiomyopathy Utilizing a New Risk Score. JACC. Advances. 2024; 3: 101235. https://doi.org/10.1016/j.jacadv.2024.101235.
[72]Chan RH, van der Wal L, Liberato G, Rowin E, Soslow J, Maskatia S, et al. Myocardial Scarring and Sudden Cardiac Death in Young Patients With Hypertrophic Cardiomyopathy: A Multicenter Cohort Study. JAMA Cardiology. 2024; 9: 1001–1008. https://doi.org/10.1001/jamacardio.2024.2824.
[73]Chiotis S, Doundoulakis I, Zgouridou A, Piperis C, Raptis D, Peletidi A, et al. Predictors of Arrhythmic Events in Hypertrophic Cardiomyopathy Patients with an Implantable Cardioverter-Defibrillator: A Systematic Review and Meta-Analysis. European Heart Journal. Quality of Care & Clinical Outcomes. 2025. https://doi.org/10.1093/ehjqcco/qcaf021. (online ahead of print)
[74]O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). European Heart Journal. 2014; 35: 2010–2020. https://doi.org/10.1093/eurheartj/eht439.
[75]Maron MS, Rowin EJ, Wessler BS, Mooney PJ, Fatima A, Patel P, et al. Enhanced American College of Cardiology/American Heart Association Strategy for Prevention of Sudden Cardiac Death in High-Risk Patients With Hypertrophic Cardiomyopathy. JAMA Cardiology. 2019; 4: 644–657. https://doi.org/10.1001/jamacardio.2019.1391.
[76]Sylvester J, Seidenberg P, Silvis M. The dilemma of genotype positive-phenotype negative hypertrophic cardiomyopathy. Current Sports Medicine Reports. 2014; 13: 94–99. https://doi.org/10.1249/JSR.0000000000000037.
[77]Christensen EB, Vissing CR, Silajdzija E, Mills HL, Thune JJ, Larroudé C, et al. Long-term incidence of implantable cardioverter-defibrillator therapy in patients with hypertrophic cardiomyopathy: analysis of appropriate and inappropriate interventions. Heart. 2025; 111: 575–582. https://doi.org/10.1136/heartjnl-2024-325020.
[78]Francia P, Olivotto I, Lambiase PD, Autore C. Implantable cardioverter-defibrillators for hypertrophic cardiomyopathy: The Times They Are a-Changin’. Europace. 2022; 24: 1384–1394. https://doi.org/10.1093/europace/euab309.
[79]Knops RE, Olde Nordkamp LRA, Delnoy PPHM, Boersma LVA, Kuschyk J, El-Chami MF, et al. Subcutaneous or Transvenous Defibrillator Therapy. The New England Journal of Medicine. 2020; 383: 526–536. https://doi.org/10.1056/NEJMoa1915932.
[80]Liebregts M, Vriesendorp PA, Mahmoodi BK, Schinkel AFL, Michels M, ten Berg JM. A Systematic Review and Meta-Analysis of Long-Term Outcomes After Septal Reduction Therapy in Patients With Hypertrophic Cardiomyopathy. JACC. Heart Failure. 2015; 3: 896–905. https://doi.org/10.1016/j.jchf.2015.06.011.
[81]Maron BJ, Spirito P, Ackerman MJ, Casey SA, Semsarian C, Estes NAM, 3rd, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2013; 61: 1527–1535. https://doi.org/10.1016/j.jacc.2013.01.037.
[82]Zhu M, Reyes KRL, Bilgili G, Siegel RJ, Lee Claggett B, Wong TC, et al. Medical Therapies to Improve Left Ventricular Outflow Obstruction and Diastolic Function in Hypertrophic Cardiomyopathy. JACC. Advances. 2023; 2: 100622. https://doi.org/10.1016/j.jacadv.2023.100622.
[83]Coppini R, Ferrantini C, Pioner JM, Santini L, Wang ZJ, Palandri C, et al. Electrophysiological and Contractile Effects of Disopyramide in Patients With Obstructive Hypertrophic Cardiomyopathy: A Translational Study. JACC. Basic to Translational Science. 2019; 4: 795–813. https://doi.org/10.1016/j.jacbts.2019.06.004.
[84]Massera D, Sherrid MV, Adlestein E, Bokhari N, Alvarez IC, Wu WY, et al. Disopyramide Revisited for Treatment of Symptomatic Obstructive Hypertrophic Cardiomyopathy: Efficacy and Safety in Patients Treated for at Least 5 Years. Journal of the American Heart Association. 2025; 14: e037639. https://doi.org/10.1161/JAHA.124.037639.
[85]Braunwald E, Saberi S, Abraham TP, Elliott PM, Olivotto I. Mavacamten: a first-in-class myosin inhibitor for obstructive hypertrophic cardiomyopathy. European Heart Journal. 2023; 44: 4622–4633. https://doi.org/10.1093/eurheartj/ehad637.
[86]Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020; 396: 759–769. https://doi.org/10.1016/S0140-6736(20)31792-X.
[87]Garcia-Pavia P, Oręziak A, Masri A, Barriales-Villa R, Abraham TP, Owens AT, et al. Long-term effect of mavacamten in obstructive hypertrophic cardiomyopathy. European Heart Journal. 2024; 45: 5071–5083. https://doi.org/10.1093/eurheartj/ehae579.
[88]Maron MS, Masri A, Nassif ME, Barriales-Villa R, Arad M, Cardim N, et al. Aficamten for Symptomatic Obstructive Hypertrophic Cardiomyopathy. The New England Journal of Medicine. 2024; 390: 1849–1861. https://doi.org/10.1056/NEJMoa2401424.
[89]Maron MS, Masri A, Nassif ME, Barriales-Villa R, Abraham TP, Arad M, et al. Impact of Aficamten on Disease and Symptom Burden in Obstructive Hypertrophic Cardiomyopathy: Results From SEQUOIA-HCM. Journal of the American College of Cardiology. 2024; 84: 1821–1831. https://doi.org/10.1016/j.jacc.2024.09.003.
[90]Masri A, Cardoso RN, Abraham TP, Claggett BL, Coats CJ, Hegde SM, et al. Effect of Aficamten on Cardiac Structure and Function in Obstructive Hypertrophic Cardiomyopathy: SEQUOIA-HCM CMR Substudy. Journal of the American College of Cardiology. 2024; 84: 1806–1817. https://doi.org/10.1016/j.jacc.2024.08.015.
[91]Kawas RF, Anderson RL, Ingle SRB, Song Y, Sran AS, Rodriguez HM. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. The Journal of Biological Chemistry. 2017; 292: 16571–16577. https://doi.org/10.1074/jbc.M117.776815.
[92]Desai MY, Owens A, Wolski K, Geske JB, Saberi S, Wang A, et al. Mavacamten in Patients With Hypertrophic Cardiomyopathy Referred for Septal Reduction: Week 56 Results From the VALOR-HCM Randomized Clinical Trial. JAMA Cardiology. 2023; 8: 968–977. https://doi.org/10.1001/jamacardio.2023.3342.
[93]Desai MY, Owens A, Geske JB, Wolski K, Naidu SS, Smedira NG, et al. Myosin Inhibition in Patients With Obstructive Hypertrophic Cardiomyopathy Referred for Septal Reduction Therapy. Journal of the American College of Cardiology. 2022; 80: 95–108. https://doi.org/10.1016/j.jacc.2022.04.048.
[94]Desai MY, Owens A, Saberi S, Wang A, Wolski K, Cremer PC, et al. Long-Term Effects of Mavacamten on Patients Based on Hypertrophic Cardiomyopathy Pathogenic Genetic Variant Status: Insights From VALOR-HCM Trial. Circulation. Genomic and Precision Medicine. 2025; 18: e005100. https://doi.org/10.1161/CIRCGEN.125.005100.
[95]Tian Z, Li L, Li X, Wang J, Zhang Q, Li Z, et al. Effect of Mavacamten on Chinese Patients With Symptomatic Obstructive Hypertrophic Cardiomyopathy: The EXPLORER-CN Randomized Clinical Trial. JAMA Cardiology. 2023; 8: 957–965. https://doi.org/10.1001/jamacardio.2023.3030.
[96]Bristol Myers Squibb. Bristol Myers Squibb Provides Update on Phase 3 ODYSSEY-HCM Trial. 2025. Available at: https://news.bms.com/news/details/2025/Bristol-Myers-Squibb-Provides-Update-on-Phase-3-ODYSSEY-HCM-Trial/ (Accessed: 28 June 2025).
[97]Desai MY, Nissen SE, Abraham T, Olivotto I, Garcia-Pavia P, Lopes RD, et al. Mavacamten in Symptomatic Nonobstructive Hypertrophic Cardiomyopathy: Design, Rationale, and Baseline Characteristics of ODYSSEY-HCM. JACC. Heart Failure. 2025; 13: 358–370. https://doi.org/10.1016/j.jchf.2024.11.013.
[98]Desai MY, Nissen SE, Abraham T, Owens A, Olivotto I, Executive Committee of the ODYSSEY-HCM trial. Reply: Hypertrophic Cardiomyopathy With Midventricular Obstruction Is Not Nonobstructive Hypertrophic Cardiomyopathy. JACC. Heart Failure. 2025; 13: 102508. https://doi.org/10.1016/j.jchf.2025.04.015.
[99]FDA, CDER. HIGHLIGHTS OF PRESCRIBING INFORMATION. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf (Accessed: 1 May 2025).
[100]Sherrod CF, 4th, Saberi S, Nassif ME, Claggett BL, Coats CJ, Garcia-Pavia P, et al. Effect of Aficamten on Health Status Outcomes in Obstructive Hypertrophic Cardiomyopathy: Results From SEQUOIA-HCM. Journal of the American College of Cardiology. 2024; 84: 1773–1785. https://doi.org/10.1016/j.jacc.2024.08.014.
[101]Maron BJ, Dearani JA, Smedira NG, Schaff HV, Wang S, Rastegar H, et al. Ventricular Septal Myectomy for Obstructive Hypertrophic Cardiomyopathy (Analysis Spanning 60 Years Of Practice): AJC Expert Panel. The American Journal of Cardiology. 2022; 180: 124–139. https://doi.org/10.1016/j.amjcard.2022.06.007.
[102]MORROW AG, BROCKENBROUGH EC. Surgical treatment of idiopathic hypertrophic subaortic stenosis: technic and hemodynamic results of subaortic ventriculomyotomy. Annals of Surgery. 1961; 154: 181–189. https://doi.org/10.1097/00000658-196108000-00003.
[103]Holst KA, Hanson KT, Ommen SR, Nishimura RA, Habermann EB, Schaff HV. Septal Myectomy in Hypertrophic Cardiomyopathy: National Outcomes of Concomitant Mitral Surgery. Mayo Clinic Proceedings. 2019; 94: 66–73. https://doi.org/10.1016/j.mayocp.2018.07.022.
[104]Nishimura RA, Seggewiss H, Schaff HV. Hypertrophic Obstructive Cardiomyopathy: Surgical Myectomy and Septal Ablation. Circulation Research. 2017; 121: 771–783. https://doi.org/10.1161/CIRCRESAHA.116.309348.
[105]Cui H, Schaff HV, Nishimura RA, Geske JB, Dearani JA, Lahr BD, et al. Conduction Abnormalities and Long-Term Mortality Following Septal Myectomy in Patients With Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2019; 74: 645–655. https://doi.org/10.1016/j.jacc.2019.05.053.
[106]Inestroza K, Mijares-Rojas I, Matute-Martínez C, Ergui I, Albosta M, Vergara-Sanchez C, et al. In-hospital outcomes of septal myectomy vs. alcohol septal ablation for hypertrophic cardiomyopathy with outflow tract obstruction: An update and insights from the national inpatient sample from 2011 to 2019. Journal of Investigative Medicine. 2024; 72: 262–269. https://doi.org/10.1177/10815589241226959.
[107]Kotkar KD, Said SM, Dearani JA, Schaff HV. Hypertrophic obstructive cardiomyopathy: the Mayo Clinic experience. Annals of Cardiothoracic Surgery. 2017; 6: 329–336. https://doi.org/10.21037/acs.2017.07.03.
[108]Rastegar H, Boll G, Rowin EJ, Dolan N, Carroll C, Udelson JE, et al. Results of surgical septal myectomy for obstructive hypertrophic cardiomyopathy: the Tufts experience. Annals of Cardiothoracic Surgery. 2017; 6: 353–363. https://doi.org/10.21037/acs.2017.07.07.
[109]Altibi AM, Ghanem F, Zhao Y, Elman M, Cigarroa J, Nazer B, et al. Hospital Procedural Volume and Clinical Outcomes Following Septal Reduction Therapy in Obstructive Hypertrophic Cardiomyopathy. Journal of the American Heart Association. 2023; 12: e028693. https://doi.org/10.1161/JAHA.122.028693.
[110]Bali AD, Malik A, Naidu SS. Treatment Strategies for Hypertrophic Cardiomyopathy: Alcohol Septal Ablation and Procedural Step-by-Step Technique. The American Journal of Cardiology. 2024; 212S: S42–S52. https://doi.org/10.1016/j.amjcard.2023.10.064.
[111]Nguyen A, Schaff HV, Hang D, Nishimura RA, Geske JB, Dearani JA, et al. Surgical myectomy versus alcohol septal ablation for obstructive hypertrophic cardiomyopathy: A propensity score-matched cohort. The Journal of Thoracic and Cardiovascular Surgery. 2019; 157: 306–315.e3. https://doi.org/10.1016/j.jtcvs.2018.08.062.
[112]Cui H, Schaff HV, Wang S, Lahr BD, Rowin EJ, Rastegar H, et al. Survival Following Alcohol Septal Ablation or Septal Myectomy for Patients With Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2022; 79: 1647–1655. https://doi.org/10.1016/j.jacc.2022.02.032.
[113]Valeti US, Nishimura RA, Holmes DR, Araoz PA, Glockner JF, Breen JF, et al. Comparison of surgical septal myectomy and alcohol septal ablation with cardiac magnetic resonance imaging in patients with hypertrophic obstructive cardiomyopathy. Journal of the American College of Cardiology. 2007; 49: 350–357. https://doi.org/10.1016/j.jacc.2006.08.055.
[114]Alam M, Dokainish H, Lakkis N. Alcohol septal ablation for hypertrophic obstructive cardiomyopathy: a systematic review of published studies. Journal of Interventional Cardiology. 2006; 19: 319–327. https://doi.org/10.1111/j.1540-8183.2006.00153.x.
[115]Zhou M, Ta S, Hahn RT, Hsi DH, Leon MB, Hu R, et al. Percutaneous Intramyocardial Septal Radiofrequency Ablation in Patients With Drug-Refractory Hypertrophic Obstructive Cardiomyopathy. JAMA Cardiology. 2022; 7: 529–538. https://doi.org/10.1001/jamacardio.2022.0259.
[116]Li J, Wei X. Transapical beating-heart septal myectomy for hypertrophic cardiomyopathy with latent obstruction. European Journal of Cardio-Thoracic Surgery. 2024; 65: ezad425. https://doi.org/10.1093/ejcts/ezad425.
[117]Dong Z, Wang S, Liu Z, Han E, Wu C, Luo C, et al. An innovative minimally invasive approach for hypertrophic obstructive cardiomyopathy: Transaortic septal myectomy via right infra-axillary incision. JTCVS Techniques. 2024; 28: 50–58. https://doi.org/10.1016/j.xjtc.2024.09.006.
[118]Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. Management of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2022; 79: 390–414. https://doi.org/10.1016/j.jacc.2021.11.021.
[119]Yin Y, Hu W, Zhang L, Wu D, Yang C, Ye X. Clinical, echocardiographic and cardiac MRI predictors of outcomes in patients with apical hypertrophic cardiomyopathy. The International Journal of Cardiovascular Imaging. 2022; 38: 643–651. https://doi.org/10.1007/s10554-021-02430-w.
[120]Li J, Fang J, Liu Y, Wei X. Apical hypertrophic cardiomyopathy: pathophysiology, diagnosis and management. Clinical Research in Cardiology. 2024; 113: 680–693. https://doi.org/10.1007/s00392-023-02328-8.
[121]Providencia R, Elliott P, Patel K, McCready J, Babu G, Srinivasan N, et al. Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: a systematic review and meta-analysis. Heart. 2016; 102: 1533–1543. https://doi.org/10.1136/heartjnl-2016-309406.
[122]Bonner C, Spinks C, Semsarian C, Barratt A, Ingles J, McCaffery K. Psychosocial Impact of a Positive Gene Result for Asymptomatic Relatives at Risk of Hypertrophic Cardiomyopathy. Journal of Genetic Counseling. 2018; 27: 1040–1048. https://doi.org/10.1007/s10897-018-0218-8.
[123]MyPeak-1 Clinical Trial Treating HCM in Adults - Tenaya Therapeutics. 2024. Available at: https://hcmstudies.com/our-studies/mypeak-1/ (Accessed: 2 May 2025).
[124]Tahir UA, Kolm P, Kwong RY, Desai MY, Dolman SF, Deng S, et al. Protein Biomarkers of Adverse Clinical Features and Events in Sarcomeric Hypertrophic Cardiomyopathy. Circulation. Heart Failure. 2024; 17: e011707. https://doi.org/10.1161/CIRCHEARTFAILURE.124.011707.
[125]Jansen M, Algül S, Bosman LP, Michels M, van der Velden J, de Boer RA, et al. Blood-based biomarkers for the prediction of hypertrophic cardiomyopathy prognosis: a systematic review and meta-analysis. ESC Heart Failure. 2022; 9: 3418–3434. https://doi.org/10.1002/ehf2.14073.
[126]McKeown LA. Mavacamten Strikes Out in Phase III Trial of Nonobstructive HCM. 2025. Available at: https://www.tctmd.com/news/mavacamten-strikes-out-phase-iii-trial-nonobstructive-hcm (Accessed: 2 May 2025).
[127]Hypertrophic Cardiomyopathy Clinical Trials — Aficamten. 2022. Available at: https://cytokinetics.com/medicines-research/hypertrophic-cardiomyopathy-clinical-trials/ (Accessed: 2 May 2025).
[128]Maron MS, Mahmod M, Abd Samat AH, Choudhury L, Massera D, Phelan DMJ, et al. Safety and Efficacy of Metabolic Modulation With Ninerafaxstat in Patients With Nonobstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2024; 83: 2037–2048. https://doi.org/10.1016/j.jacc.2024.03.387.
Academic Editor
- Francesco Pelliccia
Article Metrics
Download
- Contents
Information
Download
Contents
1 Department of Cardiology, Rutgers Robert Wood Johnson University Hospital, New Brunswick, NJ 08901, USA
Abstract
Hypertrophic cardiomyopathy (HCM) is a multifaceted genetic disorder characterized by left ventricular hypertrophy (LVH) in the absence of alternative causes, with an estimated prevalence ranging from 1 in 200 to 1 in 500 individuals. Since HCM was first characterized in 1869, a plethora of pathogenic mutations have been identified, while ongoing research continues to elucidate the various pathophysiological mechanisms present in individuals with HCM. Comprehensive physical examination findings and multimodality imaging techniques have become crucial for accurately diagnosing and risk stratifying HCM patients. Meanwhile, recent advancements in research have contributed to a more refined definition and heightened recognition of HCM, prompting further investigations into targeted therapeutic strategies. This evolution in understanding provides alternative treatment options for patients, moving beyond traditional approaches such as myectomy or septal ablation. This review aims to systematically explore the genetic and pathophysiological underpinnings of HCM, as well as the application of multimodality imaging in identifying patients at risk for sudden cardiac death (SCD). The discussion also examines contemporary management strategies for HCM, specifically highlighting novel therapies targeting the molecular mechanisms involved in this disease.
Keywords
- hypertrophic cardiomyopathy
- sudden cardiac death
- alcohol septal ablation
- surgical myectomy
- mavacamten
- aficamten
References
- [1]
Braunwald E. Hypertrophic cardiomyopathy: The first century 1869-1969. Global Cardiology Science & Practice. 2012; 2012: 5. https://doi.org/10.5339/gcsp.2012.5. Cited within: 1Google Scholar - [2]
Ommen SR, Ho CY, Asif IM, Balaji S, Burke MA, Day SM, et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2024; 149: e1239–e1311. https://doi.org/10.1161/CIR.0000000000001250. - [3]
Das K J, Ingles J, Bagnall RD, Semsarian C. Determining pathogenicity of genetic variants in hypertrophic cardiomyopathy: importance of periodic reassessment. Genetics in Medicine. 2014; 16: 286–293. https://doi.org/10.1038/gim.2013.138. - [4]
Braunwald E. Hypertrophic Cardiomyopathy: A Brief Overview. The American Journal of Cardiology. 2024; 212S: S1–S3. https://doi.org/10.1016/j.amjcard.2023.10.075. - [5]
Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2022; 79: 372–389. https://doi.org/10.1016/j.jacc.2021.12.002. - [6]
Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circulation Research. 2017; 121: 749–770. https://doi.org/10.1161/CIRCRESAHA.117.311059. - [7]
Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. Journal of the American College of Cardiology. 2014; 64: 83–99. https://doi.org/10.1016/j.jacc.2014.05.003. - [8]
Maron BJ. Clinical Course and Management of Hypertrophic Cardiomyopathy. The New England Journal of Medicine. 2018; 379: 655–668. https://doi.org/10.1056/NEJMra1710575. - [9]
Glavaški M, Velicki L, Vučinić N. Hypertrophic Cardiomyopathy: Genetic Foundations, Outcomes, Interconnections, and Their Modifiers. Medicina. 2023; 59: 1424. https://doi.org/10.3390/medicina59081424. - [10]
Lopes LR, Ho CY, Elliott PM. Genetics of hypertrophic cardiomyopathy: established and emerging implications for clinical practice. European Heart Journal. 2024; 45: 2727–2734. https://doi.org/10.1093/eurheartj/ehae421. - [11]
Ingles J, Burns C, Bagnall RD, Lam L, Yeates L, Sarina T, et al. Nonfamilial Hypertrophic Cardiomyopathy: Prevalence, Natural History, and Clinical Implications. Circulation. Cardiovascular Genetics. 2017; 10: e001620. https://doi.org/10.1161/CIRCGENETICS.116.001620. - [12]
Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation. 2006; 114: 2232–2239. https://doi.org/10.1161/CIRCULATIONAHA.106.644682. - [13]
Wigle ED, Rakowski H, Kimball BP, Williams WG. Hypertrophic cardiomyopathy. Clinical spectrum and treatment. Circulation. 1995; 92: 1680–1692. https://doi.org/10.1161/01.cir.92.7.1680. - [14]
Sherrid MV, Balaram S, Kim B, Axel L, Swistel DG. The Mitral Valve in Obstructive Hypertrophic Cardiomyopathy: A Test in Context. Journal of the American College of Cardiology. 2016; 67: 1846–1858. https://doi.org/10.1016/j.jacc.2016.01.071. - [15]
Groarke JD, Galazka PZ, Cirino AL, Lakdawala NK, Thune JJ, Bundgaard H, et al. Intrinsic mitral valve alterations in hypertrophic cardiomyopathy sarcomere mutation carriers. European Heart Journal. Cardiovascular Imaging. 2018; 19: 1109–1116. https://doi.org/10.1093/ehjci/jey095. - [16]
Captur G, Ho CY, Schlossarek S, Kerwin J, Mirabel M, Wilson R, et al. The embryological basis of subclinical hypertrophic cardiomyopathy. Scientific Reports. 2016; 6: 27714. https://doi.org/10.1038/srep27714. - [17]
Velicki L, Jakovljevic DG, Preveden A, Golubovic M, Bjelobrk M, Ilic A, et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy. BMC Cardiovascular Disorders. 2020; 20: 516. https://doi.org/10.1186/s12872-020-01807-4. - [18]
Hong JH, Schaff HV, Nishimura RA, Abel MD, Dearani JA, Li Z, et al. Mitral Regurgitation in Patients With Hypertrophic Obstructive Cardiomyopathy: Implications for Concomitant Valve Procedures. Journal of the American College of Cardiology. 2016; 68: 1497–1504. https://doi.org/10.1016/j.jacc.2016.07.735. - [19]
Yu EH, Omran AS, Wigle ED, Williams WG, Siu SC, Rakowski H. Mitral regurgitation in hypertrophic obstructive cardiomyopathy: relationship to obstruction and relief with myectomy. Journal of the American College of Cardiology. 2000; 36: 2219–2225. https://doi.org/10.1016/s0735-1097(00)01019-6. - [20]
Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A, et al. Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. Journal of the American Society of Echocardiography. 2022; 35: 533–569. https://doi.org/10.1016/j.echo.2022.03.012. - [21]
Hang D, Schaff HV, Nishimura RA, Lahr BD, Abel MD, Dearani JA, et al. Accuracy of Jet Direction on Doppler Echocardiography in Identifying the Etiology of Mitral Regurgitation in Obstructive Hypertrophic Cardiomyopathy. Journal of the American Society of Echocardiography. 2019; 32: 333–340. https://doi.org/10.1016/j.echo.2018.10.011. - [22]
Wu H, Yang H, Rhee JW, Zhang JZ, Lam CK, Sallam K, et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients. European Heart Journal. 2019; 40: 3685–3695. https://doi.org/10.1093/eurheartj/ehz326. - [23]
Maron MS, Olivotto I, Maron BJ, Prasad SK, Cecchi F, Udelson JE, et al. The case for myocardial ischemia in hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2009; 54: 866–875. https://doi.org/10.1016/j.jacc.2009.04.072. - [24]
Pelliccia F, Cecchi F, Olivotto I, Camici PG. Microvascular Dysfunction in Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2022; 11: 6560. https://doi.org/10.3390/jcm11216560. - [25]
Malahfji M, Senapati A, Debs D, Angulo C, Zhan Y, Nagueh SF, et al. Examining the impact of inducible ischemia on myocardial fibrosis and exercise capacity in hypertrophic cardiomyopathy. Scientific Reports. 2020; 10: 15977. https://doi.org/10.1038/s41598-020-71394-z. - [26]
Coleman JA, Ashkir Z, Raman B, Bueno-Orovio A. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy. The International Journal of Cardiovascular Imaging. 2023; 39: 1979–1996. https://doi.org/10.1007/s10554-023-02894-y. - [27]
Weissler-Snir A, Saberi S, Wong TC, Pantazis A, Owens A, Leunig A, et al. Atrial Fibrillation in Hypertrophic Cardiomyopathy. JACC. Advances. 2024; 3: 101210. https://doi.org/10.1016/j.jacadv.2024.101210. - [28]
Coppini R, Santini L, Olivotto I, Ackerman MJ, Cerbai E. Abnormalities in sodium current and calcium homoeostasis as drivers of arrhythmogenesis in hypertrophic cardiomyopathy. Cardiovascular Research. 2020; 116: 1585–1599. https://doi.org/10.1093/cvr/cvaa124. - [29]
Santini L, Coppini R, Cerbai E. Ion Channel Impairment and Myofilament Ca2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells. 2021; 10: 2789. https://doi.org/10.3390/cells10102789. - [30]
Wolf CM, Moskowitz IPG, Arno S, Branco DM, Semsarian C, Bernstein SA, et al. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102: 18123–18128. https://doi.org/10.1073/pnas.0509145102. - [31]
Santoro F, Mango F, Mallardi A, D’Alessandro D, Casavecchia G, Gravina M, et al. Arrhythmic Risk Stratification among Patients with Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2023; 12: 3397. https://doi.org/10.3390/jcm12103397. - [32]
Nollet EE, Duursma I, Rozenbaum A, Eggelbusch M, Wüst RCI, Schoonvelde SAC, et al. Mitochondrial dysfunction in human hypertrophic cardiomyopathy is linked to cardiomyocyte architecture disruption and corrected by improving NADH-driven mitochondrial respiration. European Heart Journal. 2023; 44: 1170–1185. https://doi.org/10.1093/eurheartj/ehad028. - [33]
Ranjbarvaziri S, Kooiker KB, Ellenberger M, Fajardo G, Zhao M, Vander Roest AS, et al. Altered Cardiac Energetics and Mitochondrial Dysfunction in Hypertrophic Cardiomyopathy. Circulation. 2021; 144: 1714–1731. https://doi.org/10.1161/CIRCULATIONAHA.121.053575. - [34]
Dass S, Cochlin LE, Suttie JJ, Holloway CJ, Rider OJ, Carden L, et al. Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction. European Heart Journal. 2015; 36: 1547–1554. https://doi.org/10.1093/eurheartj/ehv120. - [35]
Ommen SR, Nishimura RA, Schaff HV, Dearani JA. Hypertrophic Cardiomyopathy: State of the Art. Mayo Clinic Proceedings. 2025; 100: 557–566. https://doi.org/10.1016/j.mayocp.2024.07.013. - [36]
Young L, Smedira NG, Tower-Rader A, Lever H, Desai MY. Hypertrophic cardiomyopathy: A complex disease. Cleveland Clinic Journal of Medicine. 2018; 85: 399–411. https://doi.org/10.3949/ccjm.85a.17076. - [37]
Finocchiaro G, Sheikh N, Biagini E, Papadakis M, Maurizi N, Sinagra G, et al. The electrocardiogram in the diagnosis and management of patients with hypertrophic cardiomyopathy. Heart Rhythm. 2020; 17: 142–151. https://doi.org/10.1016/j.hrthm.2019.07.019. - [38]
Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, et al. Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. Journal of the American College of Cardiology. 2020; 75: 722–733. https://doi.org/10.1016/j.jacc.2019.12.030. - [39]
Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. Journal of the American College of Cardiology. 2012; 60: 705–715. https://doi.org/10.1016/j.jacc.2012.02.068. - [40]
Siontis KC, Liu K, Bos JM, Attia ZI, Cohen-Shelly M, Arruda-Olson AM, et al. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. International Journal of Cardiology. 2021; 340: 42–47. https://doi.org/10.1016/j.ijcard.2021.08.026. - [41]
Carrick RT, Ahamed H, Sung E, Maron MS, Madias C, Avula V, et al. Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: A deep-learning approach. Heart Rhythm. 2024; 21: 1390–1397. https://doi.org/10.1016/j.hrthm.2024.01.031. - [42]
Robyns T, Breckpot J, Nuyens D, Vandenberk B, Corveleyn A, Kuiperi C, et al. Clinical and ECG variables to predict the outcome of genetic testing in hypertrophic cardiomyopathy. European Journal of Medical Genetics. 2020; 63: 103754. https://doi.org/10.1016/j.ejmg.2019.103754. - [43]
Abraham MR, Abraham TP. Role of Imaging in the Diagnosis, Evaluation, and Management of Hypertrophic Cardiomyopathy. The American Journal of Cardiology. 2024; 212S: S14–S32. https://doi.org/10.1016/j.amjcard.2023.10.081. - [44]
Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2009; 54: 201–211. https://doi.org/10.1016/j.jacc.2009.02.075. - [45]
Leggit JC, Whitaker D. Diagnosis and Management of Hypertrophic Cardiomyopathy: Updated Guidelines From the ACC/AHA. American Family Physician. 2022; 105: 207–209. - [46]
Quarta G, Aquaro GD, Pedrotti P, Pontone G, Dellegrottaglie S, Iacovoni A, et al. Cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy: the importance of clinical context. European Heart Journal. Cardiovascular Imaging. 2018; 19: 601–610. https://doi.org/10.1093/ehjci/jex323. - [47]
Rowin EJ, Maron MS. The Role of Cardiac MRI in the Diagnosis and Risk Stratification of Hypertrophic Cardiomyopathy. Arrhythmia & Electrophysiology Review. 2016; 5: 197–202. https://doi.org/10.15420/aer.2016:13:3. Cited within: 4Google Scholar - [48]
Hindieh W, Weissler-Snir A, Hammer H, Adler A, Rakowski H, Chan RH. Discrepant Measurements of Maximal Left Ventricular Wall Thickness Between Cardiac Magnetic Resonance Imaging and Echocardiography in Patients With Hypertrophic Cardiomyopathy. Circulation. Cardiovascular Imaging. 2017; 10: e006309. https://doi.org/10.1161/CIRCIMAGING.117.006309. - [49]
Webb J, Villa A, Bekri I, Shome J, Teall T, Claridge S, et al. Usefulness of Cardiac Magnetic Resonance Imaging to Measure Left Ventricular Wall Thickness for Determining Risk Scores for Sudden Cardiac Death in Patients With Hypertrophic Cardiomyopathy. The American Journal of Cardiology. 2017; 119: 1450–1455. https://doi.org/10.1016/j.amjcard.2017.01.021. - [50]
Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, et al. Prognostic Value of LGE-CMR in HCM: A Meta-Analysis. JACC. Cardiovascular Imaging. 2016; 9: 1392–1402. https://doi.org/10.1016/j.jcmg.2016.02.031. - [51]
Sorajja P, Borlaug BA, Dimas VV, Fang JC, Forfia PR, Givertz MM, et al. SCAI/HFSA clinical expert consensus document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease. Catheterization and Cardiovascular Interventions. 2017; 89: E233–E247. https://doi.org/10.1002/ccd.26888. - [52]
Coats CJ, Rantell K, Bartnik A, Patel A, Mist B, McKenna WJ, et al. Cardiopulmonary Exercise Testing and Prognosis in Hypertrophic Cardiomyopathy. Circulation. Heart Failure. 2015; 8: 1022–1031. https://doi.org/10.1161/CIRCHEARTFAILURE.114.002248. - [53]
Ciampi Q, Olivotto I, Peteiro J, D’Alfonso MG, Mori F, Tassetti L, et al. Prognostic Value of Reduced Heart Rate Reserve during Exercise in Hypertrophic Cardiomyopathy. Journal of Clinical Medicine. 2021; 10: 1347. https://doi.org/10.3390/jcm10071347. - [54]
Rodrigues T, Raposo SC, Brito D, Lopes LR. Prognostic relevance of exercise testing in hypertrophic cardiomyopathy. A systematic review. International Journal of Cardiology. 2021; 339: 83–92. https://doi.org/10.1016/j.ijcard.2021.06.051. - [55]
Bayonas-Ruiz A, Muñoz-Franco FM, Ferrer V, Pérez-Caballero C, Sabater-Molina M, Tomé-Esteban MT, et al. Cardiopulmonary Exercise Test in Patients with Hypertrophic Cardiomyopathy: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2021; 10: 2312. https://doi.org/10.3390/jcm10112312. - [56]
Finocchiaro G, Haddad F, Knowles JW, Caleshu C, Pavlovic A, Homburger J, et al. Cardiopulmonary responses and prognosis in hypertrophic cardiomyopathy: a potential role for comprehensive noninvasive hemodynamic assessment. JACC. Heart Failure. 2015; 3: 408–418. https://doi.org/10.1016/j.jchf.2014.11.011. - [57]
Ishibashi-Ueda H, Matsuyama TA, Ohta-Ogo K, Ikeda Y. Significance and Value of Endomyocardial Biopsy Based on Our Own Experience. Circulation Journal. 2017; 81: 417–426. https://doi.org/10.1253/circj.CJ-16-0927. - [58]
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. Journal of Muscle Research and Cell Motility. 2017; 38: 303–316. https://doi.org/10.1007/s10974-017-9487-3. - [59]
Shirani J, Pick R, Roberts WC, Maron BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. Journal of the American College of Cardiology. 2000; 35: 36–44. https://doi.org/10.1016/s0735-1097(99)00492-1. - [60]
Fontana M, Chung R, Hawkins PN, Moon JC. Cardiovascular magnetic resonance for amyloidosis. Heart Failure Reviews. 2015; 20: 133–144. https://doi.org/10.1007/s10741-014-9470-7. - [61]
Flodrova P, Flodr P, Pika T, Vymetal J, Holub D, Dzubak P, et al. Cardiac amyloidosis: from clinical suspicion to morphological diagnosis. Pathology. 2018; 50: 261–268. https://doi.org/10.1016/j.pathol.2017.10.012. - [62]
McLendon PM, Robbins J. Desmin-related cardiomyopathy: an unfolding story. American Journal of Physiology. Heart and Circulatory Physiology. 2011; 301: H1220–8. https://doi.org/10.1152/ajpheart.00601.2011. - [63]
Wechalekar AD, Gillmore JD, Hawkins PN. Systemic amyloidosis. Lancet. 2016; 387: 2641–2654. https://doi.org/10.1016/S0140-6736(15)01274-X. - [64]
Kubánek M, Schimerová T, Piherová L, Brodehl A, Krebsová A, Ratnavadivel S, et al. Desminopathy: Novel Desmin Variants, a New Cardiac Phenotype, and Further Evidence for Secondary Mitochondrial Dysfunction. Journal of Clinical Medicine. 2020; 9: 937. https://doi.org/10.3390/jcm9040937. - [65]
Iorio A, Lucà F, Pozzi A, Rao CM, Chimenti C, Di Fusco SA, et al. Anderson-Fabry Disease: Red Flags for Early Diagnosis of Cardiac Involvement. Diagnostics. 2024; 14: 208. https://doi.org/10.3390/diagnostics14020208. - [66]
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm. 2022; 19: e1–e60. https://doi.org/10.1016/j.hrthm.2022.03.1225. - [67]
Finocchiaro G, Westaby J, Sheppard MN, Papadakis M, Sharma S. Sudden Cardiac Death in Young Athletes: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2024; 83: 350–370. https://doi.org/10.1016/j.jacc.2023.10.032. - [68]
Peterson DF, Kucera K, Thomas LC, Maleszewski J, Siebert D, Lopez-Anderson M, et al. Aetiology and incidence of sudden cardiac arrest and death in young competitive athletes in the USA: a 4-year prospective study. British Journal of Sports Medicine. 2021; 55: 1196–1203. https://doi.org/10.1136/bjsports-2020-102666. - [69]
Maron BJ, Rowin EJ, Maron MS. Paradigm of Sudden Death Prevention in Hypertrophic Cardiomyopathy. Circulation Research. 2019; 125: 370–378. https://doi.org/10.1161/CIRCRESAHA.119.315159. - [70]
Nistri S, Olivotto I, Betocchi S, Losi MA, Valsecchi G, Pinamonti B, et al. Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). The American Journal of Cardiology. 2006; 98: 960–965. https://doi.org/10.1016/j.amjcard.2006.05.013. - [71]
Hajj-Ali A, Gaballa A, Akintoye E, Jadam S, Ramchand J, Xu B, et al. Long-Term Outcomes of Patients With Apical Hypertrophic Cardiomyopathy Utilizing a New Risk Score. JACC. Advances. 2024; 3: 101235. https://doi.org/10.1016/j.jacadv.2024.101235. - [72]
Chan RH, van der Wal L, Liberato G, Rowin E, Soslow J, Maskatia S, et al. Myocardial Scarring and Sudden Cardiac Death in Young Patients With Hypertrophic Cardiomyopathy: A Multicenter Cohort Study. JAMA Cardiology. 2024; 9: 1001–1008. https://doi.org/10.1001/jamacardio.2024.2824. - [73]
Chiotis S, Doundoulakis I, Zgouridou A, Piperis C, Raptis D, Peletidi A, et al. Predictors of Arrhythmic Events in Hypertrophic Cardiomyopathy Patients with an Implantable Cardioverter-Defibrillator: A Systematic Review and Meta-Analysis. European Heart Journal. Quality of Care & Clinical Outcomes. 2025. https://doi.org/10.1093/ehjqcco/qcaf021. (online ahead of print) Cited within: 1Google Scholar - [74]
O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). European Heart Journal. 2014; 35: 2010–2020. https://doi.org/10.1093/eurheartj/eht439. - [75]
Maron MS, Rowin EJ, Wessler BS, Mooney PJ, Fatima A, Patel P, et al. Enhanced American College of Cardiology/American Heart Association Strategy for Prevention of Sudden Cardiac Death in High-Risk Patients With Hypertrophic Cardiomyopathy. JAMA Cardiology. 2019; 4: 644–657. https://doi.org/10.1001/jamacardio.2019.1391. - [76]
Sylvester J, Seidenberg P, Silvis M. The dilemma of genotype positive-phenotype negative hypertrophic cardiomyopathy. Current Sports Medicine Reports. 2014; 13: 94–99. https://doi.org/10.1249/JSR.0000000000000037. - [77]
Christensen EB, Vissing CR, Silajdzija E, Mills HL, Thune JJ, Larroudé C, et al. Long-term incidence of implantable cardioverter-defibrillator therapy in patients with hypertrophic cardiomyopathy: analysis of appropriate and inappropriate interventions. Heart. 2025; 111: 575–582. https://doi.org/10.1136/heartjnl-2024-325020. - [78]
Francia P, Olivotto I, Lambiase PD, Autore C. Implantable cardioverter-defibrillators for hypertrophic cardiomyopathy: The Times They Are a-Changin’. Europace. 2022; 24: 1384–1394. https://doi.org/10.1093/europace/euab309. - [79]
Knops RE, Olde Nordkamp LRA, Delnoy PPHM, Boersma LVA, Kuschyk J, El-Chami MF, et al. Subcutaneous or Transvenous Defibrillator Therapy. The New England Journal of Medicine. 2020; 383: 526–536. https://doi.org/10.1056/NEJMoa1915932. - [80]
Liebregts M, Vriesendorp PA, Mahmoodi BK, Schinkel AFL, Michels M, ten Berg JM. A Systematic Review and Meta-Analysis of Long-Term Outcomes After Septal Reduction Therapy in Patients With Hypertrophic Cardiomyopathy. JACC. Heart Failure. 2015; 3: 896–905. https://doi.org/10.1016/j.jchf.2015.06.011. - [81]
Maron BJ, Spirito P, Ackerman MJ, Casey SA, Semsarian C, Estes NAM, 3rd, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. Journal of the American College of Cardiology. 2013; 61: 1527–1535. https://doi.org/10.1016/j.jacc.2013.01.037. - [82]
Zhu M, Reyes KRL, Bilgili G, Siegel RJ, Lee Claggett B, Wong TC, et al. Medical Therapies to Improve Left Ventricular Outflow Obstruction and Diastolic Function in Hypertrophic Cardiomyopathy. JACC. Advances. 2023; 2: 100622. https://doi.org/10.1016/j.jacadv.2023.100622. - [83]
Coppini R, Ferrantini C, Pioner JM, Santini L, Wang ZJ, Palandri C, et al. Electrophysiological and Contractile Effects of Disopyramide in Patients With Obstructive Hypertrophic Cardiomyopathy: A Translational Study. JACC. Basic to Translational Science. 2019; 4: 795–813. https://doi.org/10.1016/j.jacbts.2019.06.004. - [84]
Massera D, Sherrid MV, Adlestein E, Bokhari N, Alvarez IC, Wu WY, et al. Disopyramide Revisited for Treatment of Symptomatic Obstructive Hypertrophic Cardiomyopathy: Efficacy and Safety in Patients Treated for at Least 5 Years. Journal of the American Heart Association. 2025; 14: e037639. https://doi.org/10.1161/JAHA.124.037639. - [85]
Braunwald E, Saberi S, Abraham TP, Elliott PM, Olivotto I. Mavacamten: a first-in-class myosin inhibitor for obstructive hypertrophic cardiomyopathy. European Heart Journal. 2023; 44: 4622–4633. https://doi.org/10.1093/eurheartj/ehad637. - [86]
Olivotto I, Oreziak A, Barriales-Villa R, Abraham TP, Masri A, Garcia-Pavia P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020; 396: 759–769. https://doi.org/10.1016/S0140-6736(20)31792-X. - [87]
Garcia-Pavia P, Oręziak A, Masri A, Barriales-Villa R, Abraham TP, Owens AT, et al. Long-term effect of mavacamten in obstructive hypertrophic cardiomyopathy. European Heart Journal. 2024; 45: 5071–5083. https://doi.org/10.1093/eurheartj/ehae579. - [88]
Maron MS, Masri A, Nassif ME, Barriales-Villa R, Arad M, Cardim N, et al. Aficamten for Symptomatic Obstructive Hypertrophic Cardiomyopathy. The New England Journal of Medicine. 2024; 390: 1849–1861. https://doi.org/10.1056/NEJMoa2401424. - [89]
Maron MS, Masri A, Nassif ME, Barriales-Villa R, Abraham TP, Arad M, et al. Impact of Aficamten on Disease and Symptom Burden in Obstructive Hypertrophic Cardiomyopathy: Results From SEQUOIA-HCM. Journal of the American College of Cardiology. 2024; 84: 1821–1831. https://doi.org/10.1016/j.jacc.2024.09.003. - [90]
Masri A, Cardoso RN, Abraham TP, Claggett BL, Coats CJ, Hegde SM, et al. Effect of Aficamten on Cardiac Structure and Function in Obstructive Hypertrophic Cardiomyopathy: SEQUOIA-HCM CMR Substudy. Journal of the American College of Cardiology. 2024; 84: 1806–1817. https://doi.org/10.1016/j.jacc.2024.08.015. - [91]
Kawas RF, Anderson RL, Ingle SRB, Song Y, Sran AS, Rodriguez HM. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. The Journal of Biological Chemistry. 2017; 292: 16571–16577. https://doi.org/10.1074/jbc.M117.776815. - [92]
Desai MY, Owens A, Wolski K, Geske JB, Saberi S, Wang A, et al. Mavacamten in Patients With Hypertrophic Cardiomyopathy Referred for Septal Reduction: Week 56 Results From the VALOR-HCM Randomized Clinical Trial. JAMA Cardiology. 2023; 8: 968–977. https://doi.org/10.1001/jamacardio.2023.3342. - [93]
Desai MY, Owens A, Geske JB, Wolski K, Naidu SS, Smedira NG, et al. Myosin Inhibition in Patients With Obstructive Hypertrophic Cardiomyopathy Referred for Septal Reduction Therapy. Journal of the American College of Cardiology. 2022; 80: 95–108. https://doi.org/10.1016/j.jacc.2022.04.048. - [94]
Desai MY, Owens A, Saberi S, Wang A, Wolski K, Cremer PC, et al. Long-Term Effects of Mavacamten on Patients Based on Hypertrophic Cardiomyopathy Pathogenic Genetic Variant Status: Insights From VALOR-HCM Trial. Circulation. Genomic and Precision Medicine. 2025; 18: e005100. https://doi.org/10.1161/CIRCGEN.125.005100. - [95]
Tian Z, Li L, Li X, Wang J, Zhang Q, Li Z, et al. Effect of Mavacamten on Chinese Patients With Symptomatic Obstructive Hypertrophic Cardiomyopathy: The EXPLORER-CN Randomized Clinical Trial. JAMA Cardiology. 2023; 8: 957–965. https://doi.org/10.1001/jamacardio.2023.3030. - [96]
Bristol Myers Squibb. Bristol Myers Squibb Provides Update on Phase 3 ODYSSEY-HCM Trial. 2025. Available at: https://news.bms.com/news/details/2025/Bristol-Myers-Squibb-Provides-Update-on-Phase-3-ODYSSEY-HCM-Trial/ (Accessed: 28 June 2025). - [97]
Desai MY, Nissen SE, Abraham T, Olivotto I, Garcia-Pavia P, Lopes RD, et al. Mavacamten in Symptomatic Nonobstructive Hypertrophic Cardiomyopathy: Design, Rationale, and Baseline Characteristics of ODYSSEY-HCM. JACC. Heart Failure. 2025; 13: 358–370. https://doi.org/10.1016/j.jchf.2024.11.013. - [98]
Desai MY, Nissen SE, Abraham T, Owens A, Olivotto I, Executive Committee of the ODYSSEY-HCM trial. Reply: Hypertrophic Cardiomyopathy With Midventricular Obstruction Is Not Nonobstructive Hypertrophic Cardiomyopathy. JACC. Heart Failure. 2025; 13: 102508. https://doi.org/10.1016/j.jchf.2025.04.015. - [99]
FDA, CDER. HIGHLIGHTS OF PRESCRIBING INFORMATION. 2022. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf (Accessed: 1 May 2025). - [100]
Sherrod CF, 4th, Saberi S, Nassif ME, Claggett BL, Coats CJ, Garcia-Pavia P, et al. Effect of Aficamten on Health Status Outcomes in Obstructive Hypertrophic Cardiomyopathy: Results From SEQUOIA-HCM. Journal of the American College of Cardiology. 2024; 84: 1773–1785. https://doi.org/10.1016/j.jacc.2024.08.014. - [101]
Maron BJ, Dearani JA, Smedira NG, Schaff HV, Wang S, Rastegar H, et al. Ventricular Septal Myectomy for Obstructive Hypertrophic Cardiomyopathy (Analysis Spanning 60 Years Of Practice): AJC Expert Panel. The American Journal of Cardiology. 2022; 180: 124–139. https://doi.org/10.1016/j.amjcard.2022.06.007. - [102]
MORROW AG, BROCKENBROUGH EC. Surgical treatment of idiopathic hypertrophic subaortic stenosis: technic and hemodynamic results of subaortic ventriculomyotomy. Annals of Surgery. 1961; 154: 181–189. https://doi.org/10.1097/00000658-196108000-00003. - [103]
Holst KA, Hanson KT, Ommen SR, Nishimura RA, Habermann EB, Schaff HV. Septal Myectomy in Hypertrophic Cardiomyopathy: National Outcomes of Concomitant Mitral Surgery. Mayo Clinic Proceedings. 2019; 94: 66–73. https://doi.org/10.1016/j.mayocp.2018.07.022. - [104]
Nishimura RA, Seggewiss H, Schaff HV. Hypertrophic Obstructive Cardiomyopathy: Surgical Myectomy and Septal Ablation. Circulation Research. 2017; 121: 771–783. https://doi.org/10.1161/CIRCRESAHA.116.309348. - [105]
Cui H, Schaff HV, Nishimura RA, Geske JB, Dearani JA, Lahr BD, et al. Conduction Abnormalities and Long-Term Mortality Following Septal Myectomy in Patients With Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2019; 74: 645–655. https://doi.org/10.1016/j.jacc.2019.05.053. - [106]
Inestroza K, Mijares-Rojas I, Matute-Martínez C, Ergui I, Albosta M, Vergara-Sanchez C, et al. In-hospital outcomes of septal myectomy vs. alcohol septal ablation for hypertrophic cardiomyopathy with outflow tract obstruction: An update and insights from the national inpatient sample from 2011 to 2019. Journal of Investigative Medicine. 2024; 72: 262–269. https://doi.org/10.1177/10815589241226959. - [107]
Kotkar KD, Said SM, Dearani JA, Schaff HV. Hypertrophic obstructive cardiomyopathy: the Mayo Clinic experience. Annals of Cardiothoracic Surgery. 2017; 6: 329–336. https://doi.org/10.21037/acs.2017.07.03. - [108]
Rastegar H, Boll G, Rowin EJ, Dolan N, Carroll C, Udelson JE, et al. Results of surgical septal myectomy for obstructive hypertrophic cardiomyopathy: the Tufts experience. Annals of Cardiothoracic Surgery. 2017; 6: 353–363. https://doi.org/10.21037/acs.2017.07.07. - [109]
Altibi AM, Ghanem F, Zhao Y, Elman M, Cigarroa J, Nazer B, et al. Hospital Procedural Volume and Clinical Outcomes Following Septal Reduction Therapy in Obstructive Hypertrophic Cardiomyopathy. Journal of the American Heart Association. 2023; 12: e028693. https://doi.org/10.1161/JAHA.122.028693. - [110]
Bali AD, Malik A, Naidu SS. Treatment Strategies for Hypertrophic Cardiomyopathy: Alcohol Septal Ablation and Procedural Step-by-Step Technique. The American Journal of Cardiology. 2024; 212S: S42–S52. https://doi.org/10.1016/j.amjcard.2023.10.064. - [111]
Nguyen A, Schaff HV, Hang D, Nishimura RA, Geske JB, Dearani JA, et al. Surgical myectomy versus alcohol septal ablation for obstructive hypertrophic cardiomyopathy: A propensity score-matched cohort. The Journal of Thoracic and Cardiovascular Surgery. 2019; 157: 306–315.e3. https://doi.org/10.1016/j.jtcvs.2018.08.062. - [112]
Cui H, Schaff HV, Wang S, Lahr BD, Rowin EJ, Rastegar H, et al. Survival Following Alcohol Septal Ablation or Septal Myectomy for Patients With Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2022; 79: 1647–1655. https://doi.org/10.1016/j.jacc.2022.02.032. - [113]
Valeti US, Nishimura RA, Holmes DR, Araoz PA, Glockner JF, Breen JF, et al. Comparison of surgical septal myectomy and alcohol septal ablation with cardiac magnetic resonance imaging in patients with hypertrophic obstructive cardiomyopathy. Journal of the American College of Cardiology. 2007; 49: 350–357. https://doi.org/10.1016/j.jacc.2006.08.055. - [114]
Alam M, Dokainish H, Lakkis N. Alcohol septal ablation for hypertrophic obstructive cardiomyopathy: a systematic review of published studies. Journal of Interventional Cardiology. 2006; 19: 319–327. https://doi.org/10.1111/j.1540-8183.2006.00153.x. - [115]
Zhou M, Ta S, Hahn RT, Hsi DH, Leon MB, Hu R, et al. Percutaneous Intramyocardial Septal Radiofrequency Ablation in Patients With Drug-Refractory Hypertrophic Obstructive Cardiomyopathy. JAMA Cardiology. 2022; 7: 529–538. https://doi.org/10.1001/jamacardio.2022.0259. - [116]
Li J, Wei X. Transapical beating-heart septal myectomy for hypertrophic cardiomyopathy with latent obstruction. European Journal of Cardio-Thoracic Surgery. 2024; 65: ezad425. https://doi.org/10.1093/ejcts/ezad425. - [117]
Dong Z, Wang S, Liu Z, Han E, Wu C, Luo C, et al. An innovative minimally invasive approach for hypertrophic obstructive cardiomyopathy: Transaortic septal myectomy via right infra-axillary incision. JTCVS Techniques. 2024; 28: 50–58. https://doi.org/10.1016/j.xjtc.2024.09.006. - [118]
Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, et al. Management of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2022; 79: 390–414. https://doi.org/10.1016/j.jacc.2021.11.021. - [119]
Yin Y, Hu W, Zhang L, Wu D, Yang C, Ye X. Clinical, echocardiographic and cardiac MRI predictors of outcomes in patients with apical hypertrophic cardiomyopathy. The International Journal of Cardiovascular Imaging. 2022; 38: 643–651. https://doi.org/10.1007/s10554-021-02430-w. - [120]
Li J, Fang J, Liu Y, Wei X. Apical hypertrophic cardiomyopathy: pathophysiology, diagnosis and management. Clinical Research in Cardiology. 2024; 113: 680–693. https://doi.org/10.1007/s00392-023-02328-8. - [121]
Providencia R, Elliott P, Patel K, McCready J, Babu G, Srinivasan N, et al. Catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: a systematic review and meta-analysis. Heart. 2016; 102: 1533–1543. https://doi.org/10.1136/heartjnl-2016-309406. - [122]
Bonner C, Spinks C, Semsarian C, Barratt A, Ingles J, McCaffery K. Psychosocial Impact of a Positive Gene Result for Asymptomatic Relatives at Risk of Hypertrophic Cardiomyopathy. Journal of Genetic Counseling. 2018; 27: 1040–1048. https://doi.org/10.1007/s10897-018-0218-8. - [123]
MyPeak-1 Clinical Trial Treating HCM in Adults - Tenaya Therapeutics. 2024. Available at: https://hcmstudies.com/our-studies/mypeak-1/ (Accessed: 2 May 2025). - [124]
Tahir UA, Kolm P, Kwong RY, Desai MY, Dolman SF, Deng S, et al. Protein Biomarkers of Adverse Clinical Features and Events in Sarcomeric Hypertrophic Cardiomyopathy. Circulation. Heart Failure. 2024; 17: e011707. https://doi.org/10.1161/CIRCHEARTFAILURE.124.011707. - [125]
Jansen M, Algül S, Bosman LP, Michels M, van der Velden J, de Boer RA, et al. Blood-based biomarkers for the prediction of hypertrophic cardiomyopathy prognosis: a systematic review and meta-analysis. ESC Heart Failure. 2022; 9: 3418–3434. https://doi.org/10.1002/ehf2.14073. - [126]
McKeown LA. Mavacamten Strikes Out in Phase III Trial of Nonobstructive HCM. 2025. Available at: https://www.tctmd.com/news/mavacamten-strikes-out-phase-iii-trial-nonobstructive-hcm (Accessed: 2 May 2025). - [127]
Hypertrophic Cardiomyopathy Clinical Trials — Aficamten. 2022. Available at: https://cytokinetics.com/medicines-research/hypertrophic-cardiomyopathy-clinical-trials/ (Accessed: 2 May 2025). - [128]
Maron MS, Mahmod M, Abd Samat AH, Choudhury L, Massera D, Phelan DMJ, et al. Safety and Efficacy of Metabolic Modulation With Ninerafaxstat in Patients With Nonobstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology. 2024; 83: 2037–2048. https://doi.org/10.1016/j.jacc.2024.03.387.
