IMR Press / FBL / Volume 27 / Issue 12 / DOI: 10.31083/j.fbl2712336
Open Access Original Research
PYCR in Kidney Renal Papillary Cell Carcinoma: Expression, Prognosis, Gene Regulation Network, and Regulation Targets
Show Less
1 Department of Parasitology, Guangdong Medical University, 524023 Zhanjiang, Guangdong, China
2 Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong, China
*Correspondence: chenjv1990@126.com (Jv Chen); styl1987@126.com (Yongli Situ)
Academic Editor: Alfonso Urbanucci
Front. Biosci. (Landmark Ed) 2022, 27(12), 336; https://doi.org/10.31083/j.fbl2712336
Submitted: 2 September 2022 | Revised: 17 November 2022 | Accepted: 25 November 2022 | Published: 28 December 2022
Copyright: © 2022 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.
Abstract

Background: Pyrroline-5-carboxylate reductase (PYCR) includes three human genes encoding three isozymes, PYCR1, PYCR2, and PYCR3 (or PYCRL), which facilitate the final step in the conversion of glutamine to proline. These genes play important roles in regulating the cell cycle and redox homeostasis as well as promoting growth signaling pathways. Proline is abnormally upregulated in a variety of cancers, and as the last key enzyme in proline production, PYCR plays an integral role in promoting tumorigenesis and cancer progression. However, its role in patients with kidney renal papillary cell carcinoma (KIRP) has not been fully elucidated. In this study, we aimed to systematically analyze the expression, gene regulatory network, prognostic value, and target prediction of PYCR in patients with KIRP, elucidate the association between PYCR expression and KIRP, and identify potential new targets for the clinical treatment of KIRP. Methods: We systematically analyzed the expression, prognosis, gene regulatory network, and regulatory targets of PYCR1, PYCR2, and PYCRL in KIRP using multiple online databases including cBioPortal, STRING, MethSurv, GeneMANIA, Gene Expression Profiling Interactive Analysis (GEPIA), Metascape, UALCAN, LinkedOmics, and TIMER. Results: The expression levels of PYCR1, PYCR2, and PYCRL were considerably upregulated in patients with KIRP based on sample type, sex, age, and individual cancer stage. PYCR1 and PYCR2 transcript levels were markedly upregulated in females than in males, and patients aged 2140 years had higher PYCR1 and PYCR2 transcript levels than those in other age groups. Interestingly, PYCR2 transcript levels gradually decreased with age. In addition, the expressions of PYCR1 and PYCR2 were notably correlated with the pathological stage of KIRP. Patients with KIRP with low PYCR1 and PYCR2 expression had longer survival than those with high PYCR1 and PYCR2 expression. PYCR1, PYCR2, and PYCRL were altered by 4%, 7%, and 6%, respectively, in 280 patients with KIRP. The methylation levels of cytosine-phosphate-guanine (CpG) sites in PYCR were markedly correlated with the prognosis of patients with KIRP. PYCR1, PYCR2, PYCRL, and their neighboring genes form a complex network of interactions. The molecular functions of the genes, as demonstrated by their corresponding Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, included calcium channel activity, phospholipid binding, RNA polymerase II-specificity, and kinase and GTPase-regulatory activities. PYCR1, PYCR2, and PYCRL targeted miR-21, miR-221, and miR-222, resulting in a better prognosis of KIRP. We analyzed mRNA sequencing data from 290 patients with KIRP and found that ADA, NPM3, and TKT were positively associated with PYCR1 expression; PFDN2, JTB, and HAX1 were positively correlated with PYCR2 expression; SHARPIN, YDJC, and NUBP2 were positively correlated with PYCRL expression; PYCR1 was positively correlated with B cell and CD8+ T-cell infiltration levels; macrophage infiltration was negatively correlated with PYCR2 expression; and PYCRL expression was negatively correlated with B-cell, CD8+ T cell, and dendritic cell infiltration levels. Conclusions: PYCR1, PYCR2, and PYCRL may be potential therapeutic and prognostic biomarkers for patients with KIRP. The regulation of microRNAs (miRNAs), including miR-21, miR-221, and miR-222, may prove an important strategy for KIRP treatment.

Keywords
PYCR1
PYCR2
PYCRL
kidney renal papillary cell carcinoma
target prediction
gene regulation network
Funding
4SG21202G/Guangdong province ordinary colleges and universities young innovative talents project
CMEI2021KPYJ00310/national pharmaceutical economic information network science and technology communication innovation project of chinese pharmaceutical association
4SG22292G/postdoctoral Foundation of Guangdong Medical University
Zhanke[2010]174/the project of financial fund science and technology special competitive allocation of Zhanjiang
Figures
Fig. 1.
Share
Back to top