Information
References
Contents
Download
[1]AC Pan, DW Borhani, RO Dror and DE Shaw: Molecular determinants of drug-receptor binding kinetics. Drug Discov Today 18(13-14), 667-673 (2013)
[2]RA Copeland, DL Pompliano and TD Meek: Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 6(3), 249-249 (2007)
[3]PJ Tummino and RA Copeland: Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47(32), 8465-8465 (2008)
[4]A Chang, J Schiebel, W Yu, GR Bommineni, P Pan, MV Baxter, A Khanna, CA Sotriffer, C Kisker and PJ Tonge: Rational optimization of drug-target residence time: insights from inhibitor binding to the staphylococcus aureus Fabl enzyme-product complex. Biochemistry 52(24), 4217-4228 (2013)
[5]H Lu and PJ Tonge: Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol 14(4), 467-474 (2010)
[6]H Guan, ML Lamb, B Peng, S Huang, N DeGrace, J Read, S Hussain, J Wu, C Rivard, M Alimzhanov, G Bebernitz, K Bell, M Ye, M Zinda and S Ioannidis: Discovery of novel Jak2-Stat pathway inhibitors with extended residence time on target. Bioorg Med Chem Lett 23(10), 3105-3110 (2013)
[7]SJ Ramsey, NJ Attkins, R Fish and H van der Graaf: Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo. Br J Pharmacol 164(3), 992-1007 (2011)
[8]DC Swinney, P Beavis, KT Chuang, Y Zheng, I Lee, P Gee, J Deval, DM Rotstein, M Dioszegi, P Ravendran, J Zhang, S Sankuratri, R Kondru and G Vauquelin: A study of the molecular mechanism of binding kinetics and long residence times of human CCR5 receptor small molecule allosteric ligands. Br J Pharmacol, 171(14), 3364-3375 (2014)
[9]CF Shuman, PO Markgren, M Hamalainen and UH Danielson: Elucidation of HIV-1 protease resistance by characterization of interaction kinetics between inhibitors and enzyme variants. Antiviral Res, 58(3), 235-242 (2003)
[10]BK Ganser-Pornillos, M Yeager and WI Sundquist: The structural biology of HIV assembly. Curr Opin Struct Biol 18(2), 203-217 (2008)
[11]M Congreve, CW Murray and TL Blundell: Keynote review: structural biology and drug discovery. Drug Discov Today 10(13), 895-907 (2005)
[12]M Held and F Noe: Calculating kinetics and pathways of protein-ligand association. Eur J Cell Biol 91(4), 357-364 (2012)
[13]BC Kim, T Young, E Harder, RA Friesner and BJ Berne: Structure and dynamics of the solvation of bovine pancreatic trypsin inhibitor in explicit water: a comparative study of the effects of solvent and protein polarizability. J Phys Chem B 109(34), 16529-16538 (2005)
[14]I Buch, T Giorgino and G De Fabritiis: Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci USA 108(25), 10184-10189 (2011)
[15]JB Chaires: Calorimetry and thermodynamics in drug design. Annu Rev Biophys, 37, 135-151 (2008)
[16]GG Ferenczy and GM Keseru: Thermodynamics guided lead discovery and optimization. Drug Discov Today, 15(21-22), 919-932 (2010)
[17]GA Holdgate and WHJ Ward: Measurements of binding thermodynamics in drug discovery. Drug Discov Today, 10(22), 1543-1550 (2005)
[18]AK Ghosh, BD Chapsal, IT Weber and H Mitsuya: Design of HIV protease inhibitors targeting protein backbone: An effective strategy for combating drug resistance. Acc Chem Res, 41(1), 78-86 (2008)
[19]MD Altman, EA Nalivaika, M Prabu-Jeyabalan, CA Schiffer and B Tidor: Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins, 70(3), 678-694 (2008)
[20]W You, Y-M Huang, S Kizhake, A Natarajan and C-e Chang: Characterization of Promiscuous Binding of Phosphor Ligands to Breast-Cancer-Gene 1 (BRCA1) C-Terminal (BRCT): Molecular Dynamics, Free Energy, Entropy and Inhibitor Design. PLoS Comput Biol In Press (2016)
[21]D Shukla, Y Meng, B Roux and VS Pande: Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 5 (2014)
[22]S Decherchi, A Berteotti, G Bottegoni, W Rocchia and A Cavalli: The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning. Nat Commun 6 (2015)
[23]Y-m M Huang, M Kang and C-e A Chang: Switches of hydrogen bonds during ligand-protein association processes determine binding kinetics. J Mol Recogn 27(9), 537-548 (2014)
[24]DE Shaw, JP Grossman, JA Bank, B Batson, JA Butts, JC Chao, MM Deneroff, RO Dror, A Even, CH Fenton, A Forte, J Gagliardo, G Gill, B Greskamp, CR Ho, DJ Ierardi, L Iserovich, JS Kuskin, RH Larson, T Layman, L Li-Siang, AK Lerer, C Li, D Killebrew, KM Mackenzie, SYH Mok, MA Moraes, R Mueller, LJ Nociolo, JL Peticolas, T Quan, D Ramot, JK Salmon, DP Scarpazza, UB Schafer, N Siddique, CW Snyder, J Spengler, PTP Tang, M Theobald, H Toma, B Towles, B Vitale, SC Wang and C Young: Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. SC14: International Conference for High Performance Computing, Networking, Storage and Analysis 41-53 (2014)
[25]A Arkhipov, Y Shan, R Das, NF Endres, MP Eastwood, DE Wemmer, J Kuriyan and DE Shaw: Architecture and membrane interactions of the EGF receptor. Cell 152(3), 557-569 (2013)
[26]LCT Pierce, R Salomon-Ferrer, CAF de Oliveira, JA McCammon and RC Walker: Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8(9), 2997-3002 (2012)
[27]GM Torrie and JP Valleau: Non-physical sampling distributions in Monte-Carlo free-energy estimation - umbrella sampling. J Comput Phys 23(2), 187-199 (1977)
[28]C Pangali, M Rao and BJ Berne: Novel Monte-Carlo scheme for simulating water and aqueous-solutions. Chem Phys Lett 55(3), 413-417 (1978)
[29]PJ Rossky, JD Doll and HL Friedman: Brownian dynamics as smart Monte-Carlo simulation. J Chem Phys 69(10), 4628-4633 (1978)
[30]SDuane, AD Kennedy, BJ Pendleton and D Roweth: Hybrid Monte-Carlo. Phys Lett B 195(2), 216-222 (1987)
[31]DD Frantz, DL Freeman and JD Doll: Reducing quasi-ergodic behavior in Monte-Carlo simulations by J-walking - applications to atomic clusters. J Chem Phys 93(4), 2769-2784 (1990)
[32]AP Lyubartsev, AA Martsinovski, SV Shevkunov and PN Vorontsovvelyaminov: New approach to Monte-Carlo calculation of the free-energy - method of expanded ensembles. J Chem Phys 96(3), 1776-1783 (1992)
[33]E Marinari and G Parisi: Simulated tempering - a new Monte-Carlo scheme. EPL 19(6), 451-458 (1992)
[34]CJ Geyer and EA Thompson: Annealing markov-chain Monte-Carlo with applications to ancestral inference. J Amer Statist Assoc 90(431), 909-920 (1995)
[35]K Hukushima and K Nemoto: Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn 65(6), 1604-1608 (1996)
[36]RE Caflisch: Monte Carlo and quasi-Monte Carlo methods. Acta Numer 7, 1-49 (1998)
[37]I Andricioaei, JE Straub and AF Voter: Smart darting Monte Carlo. J Chem Phys 114(16), 6994-7000 (2001)
[38]S Brown and T Head-Gordon: Cool walking: a new Markov chain Monte Carlo sampling method. J Comput Chem 24(1), 68-76 (2003)
[39]N Kantarci-Carsibasi, T Haliloglu and P Doruker: Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes. Biophys J 95(12), 5862-5873 (2008)
[40]CY Xu, D Tobi and I Bahar: Allosteric changes in protein structure computed by a simple mechanical model: Hemoglobin T <-> R2 transition. J Mol Biol 333(1), 153-168 (2003)
[41]ED Akten, S Cansu and P Doruker: A docking study using atomistic conformers generated via elastic network model for cyclosporin a/cyclophilin a complex. J Biomol Struct Dyn 27(1), 13-25 (2009)
[42]WJ Zheng and BR Brooks: Modeling protein conformational changes by iterative fitting of distance constraints using reoriented normal modes. Biophys J 90(12), 4327-4336 (2006)
[43]DA Case, JT Berryman, RM Betz, DS Cerutti, TE Cheatham, TA Darden, RE Duke, TJ Giese, H Gohlke, AW Goetz, N Homeyer, S Izadi, P Janowski, J Kaus, A Kovalenko, TS Lee, S LeGrand, P Li, T Luchko, R Luo, B Madej, KM Merz, G Monard, P Needham, H Nguyen, HT Nguyen, I Omelyan, A Onufriev, DR Roe, A Roitberg, R Salomon-Ferrer, CL Simmerling, W Smith, J Swails, RC Walker, J Wang, RM Wolf, X Wu, DM York and PA Kollman: Amber 2015. In: University of California, San Francisco. (2015)
[44]BR Brooks, RE Bruccoleri, BD Olafson, DJ States, S Swaminathan and M Karplus: CHARMM - a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2), 187-217 (1983)
[45]HJC Berendsen, D Vanderspoel and R Vandrunen: GROMACS - a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1-3), 43-56 (1995)
[46]JC Phillips, R Braun, W Wang, J Gumbart, E Tajkhorshid, E Villa, C Chipot, RD Skeel, L Kale and K Schulten: Scalable molecular dynamics with NAMD. J Comput Chem 26(16), 1781-1802 (2005)
[47]DC Swinney: The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel 12(1), 31-39 (2009)
[48]DA Lauffenburger and JJ Linderman: Receptors: models for binding, trafficking and signaling. In: Oxford University Press, (1993)
[49]G Schreiber, G Haran and HX Zhou: Fundamental aspects of protein-protein association kinetics. Chem Rev 109(3), 839-860 (2009)
[50]R Zhang and F Monsma: The importance of drug-target residence time. Curr Opin Drug Discov Devel 12(4), 488-496 (2009)
[51]H Lu, K England, CA Ende, JJ Truglio, S Luckner, BG Reddy, NL Marlenee, SE Knudson, DL Knudson, RA Bowen, C Kisker, RA Slayden and PJ Tonge: Slow-onset inhibition of the Fabl enoyl reductase from francisella tularensis: residence time and in vivo activity. ACS Chem Biol 4(3), 221-231 (2009)
[52]H Lu and PJ Tonge: Inhibitors of Fabl, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc Chem Res 41(1), 11-20 (2008)
[53]D Guo, T Mulder-Krieger, AP Ijzerman and LH Heitman: Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 166(6), 1846-1859 (2012)
[54]DA Sykes, MR Dowling and SJ Charlton: Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M-3 receptor. Mol Pharmacol 76(3), 543-551 (2009)
[55]I Dierynck, M De Wit, E Gustin, I Keuleers, J Vandersmissen, S Hallenberger and K Hertogs: Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol 81(24), 13845-13851 (2007)
[56]CF Wong: Flexible ligand-flexible protein docking in protein kinase systems. Biochim Biophys Acta, Proteins Proteomics 1784(1), 244-251 (2008)
[57]DC Miller, G Lunn, P Jones, Y Sabnis, NL Davies and P Driscoll: Investigation of the effect of molecular properties on the binding kinetics of a ligand to its biological target. Med Chem Commun 3(4), 449-452 (2012)
[58]DS Millan, ME Bunnage, JL Burrows, KJ Butcher, PG Dodd, TJ Evans, DA Fairman, SJ Hughes, IC Kilty, A Lemaitre, RA Lewthwaite, A Mahnke, JP Mathias, J Philip, RT Smith, MH Stefaniak, M Yeadon and C Phillips: Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease. J Med Chem 54(22), 7797-7814 (2011)
[59]JM Wang, RM Wolf, JW Caldwell, PA Kollman and DA Case: Development and testing of a general amber force field. J Comput Chem 25(9), 1157-1174 (2004)
[60]JD Doll and DR Dion: Generalized Langevin equation approach for atom-solid-surface scattering - numerical techniques for gaussian generalized Langevin dynamics. J Chem Phys 65(9), 3762-3766 (1976)
[61]SA Adelman: Generalized Langevin theory for many-body problems in chemical-dynamics - general formulation and the equivalent harmonic chain representation. J Chem Phys 71(11), 4471-4486 (1979)
[62]RJ Loncharich, BR Brooks and RW Pastor: Langevin dynamics of peptides - the frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers 32(5), 523-535 (1992)
[63]EA Koopman and CP Lowe: Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J Chem Phys 124(20) (2006)
[64]JP Ryckaert and G Ciccotti: Andersen canonical-ensemble molecular-dynamics for molecules with constraints. Mol Phys 58(6), 1125-1136 (1986)
[65]DJ Evans and BL Holian: The Nose-Hoover thermostat. J Chem Phys 83(8), 4069-4074 (1985)
[66]JA McCammon, BR Gelin and M Karplus: Dynamics of folded proteins. Nature 267(5612), 585-590 (1977)
[67]T Schlick, R Collepardo-Guevara, LA Halvorsen, S Jung and X Xiao: Biomolecular modeling and simulation: a field coming of age. Q Rev Biophys 44(2), 191-228 (2011)
[68]R Anandakrishnan, A Drozdetski, RC Walker and AV Onufriev: Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations. Biophys J 108(5), 1153-1164 (2015)
[69]M Feig: Kinetics from implicit solvent simulations of biomolecules as a function of viscosity. J Chem Theory Comput 3(5), 1734-1748 (2007)
[70]A Onufriev, D Bashford and DA Case: Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55(2), 383-394 (2004)
[71]G Chopra, CM Summa and M Levitt: Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci USA 105(51), 20239-20244 (2008)
[72]M Tarek and DJ Tobias: Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88(13) (2002)
[73]J Luccarelli, J Michel, J Tirado-Rives and WL Jorgensen: Effects of water placement on predictions of binding affinities for p38 alpha map kinase inhibitors. J Chem Theory Comput 6(12), 3850-3856 (2010)
[74]R Abel, T Young, R Farid, BJ Berne and RA Friesner: Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130(9), 2817-2831 (2008)
[75]M Chaplin: Opinion - Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7(11), 861-866 (2006)
[76]MJ Harvey, G Giupponi and G De Fabritiis: ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5(6), 1632-1639 (2009)
[77]M Ahmad, W Gu and V Helms: Mechanism of fast peptide recognition by SH3 domains. Angew Chem Int Ed 47(40), 7626-7630 (2008)
[78]I Kurisaki, C Barberot, M Takayanagi and M Nagaoka: Dewetting of Si-pocket via water channel upon thrombin-substrate association reaction. J Phys Chem B 119(52), 15807-15812 (2015)
[79]AC Bastidas, LC Pierce, RC Walker, DA Johnson and SS Taylor: Influence of N-myristylation and ligand binding on the flexibility of the catalytic subunit of protein kinase A. Biochemistry 52(37), 6368-6379 (2013)
[80]DE Shaw, MM Deneroff, RO Dror, JS Kuskin, RH Larson, JK Salmon, C Young, B Batson, KJ Bowers, JC Chao, MP Eastwood, J Gagliardo, JP Grossman, CR Ho, DJ Ierardi, I Kolossvary, JL Klepeis, T Layman, C McLeavey, MA Moraes, R Mueller, EC Priest, Y Shan, J Spengler, M Theobald, B Towles and SC Wang: Anton, a special-purpose machine for molecular dynamics simulation. Commun Acm 51(7), 91-97 (2008)
[81]DE Shaw, P Maragakis, K Lindorff-Larsen, S Piana, RO Dror, MP Eastwood, JA Bank, JM Jumper, JK Salmon, Y Shan and W Wriggers: Atomic-level characterization of the structural dynamics of proteins. Science 330(6002), 341-346 (2010)
[82]R Harada and A Kitao: Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway. J Chem Phys 139(3), 10 (2013)
[83]R Harada, Y Takano and Y Shigeta: Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins. J Chem Phys 140(12) (2014)
[84]J Shao, SW Tanner, N Thompson and TE Cheatham, III: Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3(6), 2312-2334 (2007)
[85]M Bacci, A Vitalis and A Caflisch: A molecular simulation protocol to avoid sampling redundancy and discover new states. BBA-Gen Subjects 1850(5), 889-902 (2015)
[86]T Zhou and A Caflisch: Free energy guided sampling. J Chem Theory Comput 8(6), 2134-2140 (2012)
[87]SJ Marrink, HJ Risselada, S Yefimov, DP Tieleman and AH de Vries: The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111(27), 7812-7824 (2007)
[88]A Nagarajan, JP Andersen and TB Woolf: Coarse-grained simulations of transitions in the E2-to-E1 conformations for Ca ATPase (SERCA) show entropy-enthalpy compensation. J Mol Biol 422(4), 575-593 (2012)
[89]V Tozzini: Coarse-grained models for proteins. Curr Opin Struct Biol 15(2), 144-150 (2005)
[90]R Elber and M Karplus: Enhanced sampling in molecular-dynamics - use of the time-dependent hartree approximation for a simulation of carbon-monoxide diffusion through myoglobin. J Am Chem Soc 112(25), 9161-9175 (1990)
[91]L Martinez, MT Sonoda, P Webb, JD Baxter, MS Skaf and I Polikarpov: Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors. Biophys J 89(3), 2011-2023 (2005)
[92]AF Voter: Hyperdynamics: Accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20), 3908-3911 (1997)
[93]D Hamelberg, J Mongan and JA McCammon: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24), 11919-11929 (2004)
[94]U Doshi and D Hamelberg: Achieving rigorous accelerated conformational sampling in explicit solvent. J Phys Chem Lett 5(7), 1217-1224 (2014)
[95]V Hornak and C Simmerling: Development of softcore potential functions for overcoming steric barriers in molecular dynamics simulations. J Mol Graph Model 22(5), 405-413 (2004)
[96]L Mollica, S Decherchi, SR Zia, R Gaspari, A Cavalli and W Rocchia: Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep 5 (2015)
[97]Y Miao, VA Feher and JA McCammon: Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11(8), 3584-3595 (2015)
[98]J Leech, JF Prins and J Hermans: SMD: Visual steering of molecular dynamics for protein design. Ieee Comput Sci Eng 3(4), 38-45 (1996)
[99]P Nicolini, D Frezzato, C Gellini, M Bizzarri and R Chelli: Toward quantitative estimates of binding affinities for protein-ligand systems involving large inhibitor compounds: A steered molecular dynamics simulation route. J Comput Chem, 34(18), 1561-1576 (2013)
[100]J Schlitter, M Engels and P Kruger: Targeted molecular-dynamics - a new approach for searching pathways of conformational transitions. J Mol Graphics 12(2), 84-89 (1994)
[101]A Barducci, M Bonomi and M Parrinello: Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1(5), 826-843 (2011)
[102]A Cavalli, A Spitaleri, G Saladino and FL Gervasio: Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms. Acc Chem Res 48(2), 277-285 (2015)
[103]XW Wu and BR Brooks: Self-guided Langevin dynamics simulation method. Chem Phys Lett 381(3-4), 512-518 (2003)
[104]X Wu, BR Brooks and E Vanden-Eijnden: Self-Guided Langevin Dynamics via Generalized Langevin Equation. J Comput Chem 37(6), 595-601 (2016)
[105]P Labute: LowModeMD-implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50(5), 792-800 (2010)
[106]DWH Swenson and PG Bolhuis: A replica exchange transition interface sampling method with multiple interface sets for investigating networks of rare events. J Chem Phys 141(4) (2014)
[107]AF Voter: Parallel replica method for dynamics of infrequent events. Phys Rev B 57(22), 13985-13988 (1998)
[108]Y Sugita and Y Okamoto: Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1-2), 141-151 (1999)
[109]SH Northrup, SA Allison and JA McCammon: Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J Chem Phys 80(4), 1517-1524 (1984)
[110]JA McCammon, SH Northrup and SA Allison: Diffusional dynamics of ligand-receptor association. J Phys Chem 90(17), 3901-3905 (1986)
[111]H-X Zhou: On the calculation of diffusive reaction rates using Brownian dynamics simulations. J Chem Phys 92(5), 3092–3095 (1990)
[112]G Zou, RD Skeel and S Subramaniam: Biased Brownian dynamics for rate constant calculation. Biophys J 79(2), 638–645 (2000)
[113]GA Huber and S Kim: Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys J 70(1), 97 (1996)
[114]BW Zhang, D Jasnow and DM Zuckerman: The “weighted ensemble” path sampling method is statistically exact for a broad class of stochastic processes and binning procedures. J Chem Phys 132(5), 054107 (2010)
[115]A Rojnuckarin, S Kim and S Subramaniam: Brownian dynamics simulations of protein folding: Access to milliseconds time scale and beyond. Proc Natl Acad Sci USA 95(8), 4288-4292 (1998)
[116]JD Madura, JM Briggs, RC Wade, ME Davis, BA Luty, A Ilin, J Antosiewicz, MK Gilson, B Bagheri, LR Scott and JA McCammon: Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91(1–3), 57-95 (1995)
[117]SH Northrup, T Laughner and G Stevenson: MacroDox macromolecular simulation program. Tennessee Technological University, Department of Chemistry, Cookeville, TN (1999)
[118]GA Huber and JA McCammon: Browndye: a software package for Brownian dynamics. Comput Phys Commun 181(11), 1896–1905 (2010)
[119]BA Luty, RC Wade, JD Madura, ME Davis, JM Briggs and JA McCammon: Brownian dynamics simulations of diffusional encounters between triose phosphate isomerase and glyceraldehyde phosphate: electrostatic steering of glyceraldehyde phosphate. J Phys Chem 97(1), 233–237 (1993)
[120]J Antosiewicz, JM Briggs and JA McCammon: Orientational steering in enzyme-substrate association: ionic strength dependence of hydrodynamic torque effects. Eur Biophys J 24(3), 137–141 (1996)
[121]E Blachut-Okrasińska, E Bojarska, A Niedźwiecka, L Chlebicka, E Darżynkiewicz, R Stolarski, J Stępiński and JM Antosiewicz: Stopped-flow and Brownian dynamics studies of electrostatic effects in the kinetics of binding of 7-methyl-GpppG to the protein eIF4E. Eur Biophys J 29(7), 487–498 (2000)
[122]T Shen, CF Wong and JA McCammon: Atomistic Brownian dynamics simulation of peptide phosphorylation. J Am Chem Soc 123(37), 9107–9111 (2001)
[123]T Shen, CF Wong and JA McCammon: Brownian dynamics simulation of helix-capping motifs. Biopolymers 70(2), 252–259 (2003)
[124]DD Minh, C-e Chang, J Trylska, V Tozzini and JA McCammon: The influence of macromolecular crowding on HIV-1 protease internal dynamics. J Am Chem Soc 128(18), 6006–6007 (2006)
[125]C-E Chang, T Shen, J Trylska, V Tozzini and JA McCammon: Gated binding of ligands to HIV-1 protease: Brownian dynamics simulations in a coarse-grained model. Biophys J 90(11), 3880–3885 (2006)
[126]M Długosz, JM Antosiewicz and J Trylska: Association of aminoglycosidic antibiotics with the ribosomal a-site studied with Brownian dynamics. J Chem Theory Comput 4(4), 549-559 (2008)
[127]T Geyer: Many-particle Brownian and Langevin dynamics simulations with the Brownmove package. BMC Biophys 4, 7 (2011)
[128]RR Gabdoulline and RC Wade: Simulation of the diffusional association of barnase and barstar. Biophys J 72(5), 1917-1929 (1997)
[129]RR Gabdoulline and RC Wade: Protein-protein association: investigation of factors influencing association rates by Brownian dynamics simulations. J Mol Biol 306(5), 1139–1155 (2001)
[130]E Blachut-Okrasinska and JM Antosiewicz: Brownian dynamics simulations of binding mRNA cap analogues to eIF4E protein. J Phys Chem B 111(45), 13107–13115 (2007)
[131]H Long, CH Chang, PW King, ML Ghirardi and K Kim: Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. Biophys J 95(8), 3753–3766 (2008)
[132]Y Xin, G Gadda and D Hamelberg: The cluster of hydrophobic residues controls the entrance to the active site of choline oxidase. Biochemistry 48(40), 9599–9605 (2009)
[133]M Harel, A Spaar and G Schreiber: Fruitful and futile encounters along the association reaction between proteins. Biophys J 96(10), 4237–4248 (2009)
[134]KM ElSawy, LS Caves and R Twarock: The impact of viral RNA on the association rates of capsid protein assembly: bacteriophage MS2 as a case study. J Mol Biol 400(4), 935–947 (2010)
[135]C Chen and BM Pettitt: The binding process of a nonspecific enzyme with DNA. Biophys J 101(5), 1139–1147 (2011)
[136]K ElSawy, CS Verma, DP Lane and L Caves: On the origin of the stereoselective affinity of Nutlin-3 geometrical isomers for the MDM2 protein. Cell Cycle 12(24), 3727–3735 (2013)
[137]K ElSawy, CS Verma, TL Joseph, DP Lane, R Twarock and L Caves: On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study. Cell Cycle 12(3), 394–404 (2013)
[138]VT Metzger, C Eun, PM Kekenes-Huskey, G Huber and JA McCammon: Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling. Biophys J 107(10), 2394–2402 (2014)
[139]Y-m M Huang, G Huber and JA McCammon: Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Prot Sci 24(11), 1884–1889 (2015)
[140]N Wang and JA McCammon: Substrate channeling between the human dihydrofolate reductase and thymidylate synthase. Prot Sci 25(1), 79-86 (2016)
[141]CC Roberts and C-e A Chang: Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration. J Chem Theory Comput 11(1), 286–292 (2015)
[142]R Christopher and C-e Chang: Analysis of Ligand−Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations. J Phys Chem B In Press (2016)
[143]AK Faradjian and R Elber: Computing time scales from reaction coordinates by milestoning. J Chem Phys 120(23), 10880-10889 (2004)
[144]JM Bello-Rivas and R Elber: Exact milestoning. J Chem Phys 142(9) (2015)
[145]EB Krissinel’ and N Agmon: Spherical symmetric diffusion problem. J Comput Chem 17(9), 1085-1098 (1996)
[146]Y Song, Y Zhang, T Shen, CL Bajaj, JA McCammon and NA Baker: Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. Biophys J 86(4), 2017-2029 (2004)
[147]M Holst: Adaptive numerical treatment of elliptic systems on manifolds. Adv Comput Math 15(1-4), 139–191 (2001)
[148]E Darve and A Pohorille: Calculating free energies using average force. J Chem Phys 115(20), 9169-9183 (2001)
[149]E Darve, D Rodríguez-Gómez and A Pohorille: Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128(14), 144120 (2008)
[150]K Minoukadeh, C Chipot and T Lelièvre: Potential of mean force calculations: a multiple-walker adaptive biasing force approach. J Chem Theory Comput 6(4), 1008-1017 (2010)
[151]J Comer, JC Gumbart, J Hénin, T Lelièvre, A Pohorille and C Chipot: The adaptive biasing force method: Everything you always wanted to know but were afraid to ask. J Phys Chem B 119(3), 1129–1151 (2014)
[152]CC Roberts and C-e A Chang: Ligand binding pathway elucidation for cryptophane host-guest complexes. J Chem Theory Comput 9(4), 2010-2019 (2013)
[153]CE Chang and MK Gilson: Free energy, entropy, and induced fit in host-guest recognition: Calculations with the second-generation mining minima algorithm. J Am Chem Soc 126(40), 13156-13164 (2004)
[154]S Nishikawa, T Ugawa and T Fukahori: Molecular recognition kinetics of beta-cyclodextrin for several alcohols by ultrasonic relaxation method. J Phys Chem B 105(31), 7594-7597 (2001)
[155]TC Barros, K Stefaniak, JF Holzwarth and C Bohne: Complexation of naphthylethanols with beta-cyclodextrin. J Phys Chem A 102(28), 5639-5651 (1998)
[156]T Fukahori, S Nishikawa and K Yamaguchi: Kinetics on isomeric alcohols recognition by alpha- and beta-cyclodextrins using ultrasonic relaxation method. Bull Chem Soc Jpn 77(12), 2193-2198 (2004)
[157]L Wickstrom, P He, E Gallicchio and RM Levy: Large scale affinity calculations of cyclodextrin host-guest complexes: understanding the role of reorganization in the molecular recognition process. J Chem Theory Comput 9(7), 3136-3150 (2013)
[158]W Chen, CE Chang and MK Gilson: Calculation of cyclodextrin binding affinities: Energy, entropy, and implications for drug design. Biophys J 87(5), 3035-3049 (2004)
[159]Y-m M Huang, W Chen, MJ Potter and C-e A Chang: Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes. Biophys J, 103(2), 342-351 (2012)
[160]JD Chodera and DL Mobley: Entropy-Enthalpy Compensation: Role and Ramifications in Biomolecular Ligand Recognition and Design. Annu Rev Biophys, Vol 42, 42, 121-142 (2013)
[161]RO Dror, AC Pan, DH Arlow, DW Borhani, P Maragakis, Y Shan, H Xu and DE Shaw: Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108(32), 13118-13123 (2011)
[162]JA McCammon: Gated diffusion-controlled reactions. BMC Biophys 4 (2011)
[163]PO Markgren, W Schaal, M Hamalainen, A Karlen, A Hallberg, B Samuelsson and UH Danielson: Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J Med Chem 45(25), 5430-5439 (2002)
[164]M Kang, C Roberts, Y Cheng and C-e A Chang: Gating and intermolecular interactions in ligand-protein association: coarse-grained modeling of HIV-1 protease. J Chem Theory Comput 7(10), 3438-3446 (2011)
[165]C-E A Chang, J Trylska, V Tozzini and JA McCammon: Binding pathways of ligands to HIV-1 protease: Coarse-grained and atomistic simulations. Chem Biol Drug Des 69(1), 5-13 (2007)
[166]J Canceill, M Cesario, A Collet, J Guilhem, L Lacombe, B Lozach and C Pascard: Structure and properties of the cryptophane-E/CHCl3 complex, a stable van der Waals molecule. Angew Chem Int Ed Engl 28(9), 1246–1248 (1989)
[167]MM Spence, SM Rubin, IE Dimitrov, EJ Ruiz, DE Wemmer, A Pines, SQ Yao, F Tian and PG Schultz: Functionalized xenon as a biosensor. Proc Natl Acad Sci USA 98(19), 10654–7 (2001)
[168]C Garcia, D Humiliere, N Riva, A Collet and JP Dutasta: Kinetic and thermodynamic consequences of the substitution of SMe for OMe substituents of cryptophane hosts on the binding of neutral and cationic guests. Org Biomol Chem 1(12), 2207-2216 (2003)
[169]KT Holman: Cryptophanes: molecular containers. Encyclopedia of Supramolecular Chemistry 340–348 (2004)
[170]JA Aaron, JM Chambers, KM Jude, L Di Costanzo, IJ Dmochowski and DW Christianson: Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II. J Am Chem Soc 130(22), 6942–3 (2008)
[171]CE Chang and MK Gilson: Tork: Conformational analysis method for molecules and complexes. J Comput Chem 24(16), 1987-1998 (2003)
Article Metrics
Download
- Contents
Information
Download
Contents
Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.
Understanding ligand-receptor non-covalent binding kinetics using molecular modeling
1 Department of Chemistry, University of California, Riverside, CA 92521, USA
Abstract
Kinetic properties may serve as critical differentiators and predictors of drug efficacy and safety, in addition to the traditionally focused binding affinity. However the quantitative structure-kinetics relationship (QSKR) for modeling and ligand design is still poorly understood. This review provides an introduction to the kinetics of drug binding from a fundamental chemistry perspective. We focus on recent developments of computational tools and their applications to non-covalent binding kinetics.
Keywords
- Residence Time
- Enhanced Molecular Dynamics
- Brownian Dynamics
- Drug Discovery
- Host-guest
References
- [1] AC Pan, DW Borhani, RO Dror and DE Shaw: Molecular determinants of drug-receptor binding kinetics. Drug Discov Today 18(13-14), 667-673 (2013)
- [2] RA Copeland, DL Pompliano and TD Meek: Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 6(3), 249-249 (2007)
- [3] PJ Tummino and RA Copeland: Residence time of receptor-ligand complexes and its effect on biological function. Biochemistry 47(32), 8465-8465 (2008)
- [4] A Chang, J Schiebel, W Yu, GR Bommineni, P Pan, MV Baxter, A Khanna, CA Sotriffer, C Kisker and PJ Tonge: Rational optimization of drug-target residence time: insights from inhibitor binding to the staphylococcus aureus Fabl enzyme-product complex. Biochemistry 52(24), 4217-4228 (2013)
- [5] H Lu and PJ Tonge: Drug-target residence time: critical information for lead optimization. Curr Opin Chem Biol 14(4), 467-474 (2010)
- [6] H Guan, ML Lamb, B Peng, S Huang, N DeGrace, J Read, S Hussain, J Wu, C Rivard, M Alimzhanov, G Bebernitz, K Bell, M Ye, M Zinda and S Ioannidis: Discovery of novel Jak2-Stat pathway inhibitors with extended residence time on target. Bioorg Med Chem Lett 23(10), 3105-3110 (2013)
- [7] SJ Ramsey, NJ Attkins, R Fish and H van der Graaf: Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo. Br J Pharmacol 164(3), 992-1007 (2011)
- [8] DC Swinney, P Beavis, KT Chuang, Y Zheng, I Lee, P Gee, J Deval, DM Rotstein, M Dioszegi, P Ravendran, J Zhang, S Sankuratri, R Kondru and G Vauquelin: A study of the molecular mechanism of binding kinetics and long residence times of human CCR5 receptor small molecule allosteric ligands. Br J Pharmacol, 171(14), 3364-3375 (2014)
- [9] CF Shuman, PO Markgren, M Hamalainen and UH Danielson: Elucidation of HIV-1 protease resistance by characterization of interaction kinetics between inhibitors and enzyme variants. Antiviral Res, 58(3), 235-242 (2003)
- [10] BK Ganser-Pornillos, M Yeager and WI Sundquist: The structural biology of HIV assembly. Curr Opin Struct Biol 18(2), 203-217 (2008)
- [11] M Congreve, CW Murray and TL Blundell: Keynote review: structural biology and drug discovery. Drug Discov Today 10(13), 895-907 (2005)
- [12] M Held and F Noe: Calculating kinetics and pathways of protein-ligand association. Eur J Cell Biol 91(4), 357-364 (2012)
- [13] BC Kim, T Young, E Harder, RA Friesner and BJ Berne: Structure and dynamics of the solvation of bovine pancreatic trypsin inhibitor in explicit water: a comparative study of the effects of solvent and protein polarizability. J Phys Chem B 109(34), 16529-16538 (2005)
- [14] I Buch, T Giorgino and G De Fabritiis: Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci USA 108(25), 10184-10189 (2011)
- [15] JB Chaires: Calorimetry and thermodynamics in drug design. Annu Rev Biophys, 37, 135-151 (2008)
- [16] GG Ferenczy and GM Keseru: Thermodynamics guided lead discovery and optimization. Drug Discov Today, 15(21-22), 919-932 (2010)
- [17] GA Holdgate and WHJ Ward: Measurements of binding thermodynamics in drug discovery. Drug Discov Today, 10(22), 1543-1550 (2005)
- [18] AK Ghosh, BD Chapsal, IT Weber and H Mitsuya: Design of HIV protease inhibitors targeting protein backbone: An effective strategy for combating drug resistance. Acc Chem Res, 41(1), 78-86 (2008)
- [19] MD Altman, EA Nalivaika, M Prabu-Jeyabalan, CA Schiffer and B Tidor: Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins, 70(3), 678-694 (2008)
- [20] W You, Y-M Huang, S Kizhake, A Natarajan and C-e Chang: Characterization of Promiscuous Binding of Phosphor Ligands to Breast-Cancer-Gene 1 (BRCA1) C-Terminal (BRCT): Molecular Dynamics, Free Energy, Entropy and Inhibitor Design. PLoS Comput Biol In Press (2016)
- [21] D Shukla, Y Meng, B Roux and VS Pande: Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 5 (2014)
- [22] S Decherchi, A Berteotti, G Bottegoni, W Rocchia and A Cavalli: The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning. Nat Commun 6 (2015)
- [23] Y-m M Huang, M Kang and C-e A Chang: Switches of hydrogen bonds during ligand-protein association processes determine binding kinetics. J Mol Recogn 27(9), 537-548 (2014)
- [24] DE Shaw, JP Grossman, JA Bank, B Batson, JA Butts, JC Chao, MM Deneroff, RO Dror, A Even, CH Fenton, A Forte, J Gagliardo, G Gill, B Greskamp, CR Ho, DJ Ierardi, L Iserovich, JS Kuskin, RH Larson, T Layman, L Li-Siang, AK Lerer, C Li, D Killebrew, KM Mackenzie, SYH Mok, MA Moraes, R Mueller, LJ Nociolo, JL Peticolas, T Quan, D Ramot, JK Salmon, DP Scarpazza, UB Schafer, N Siddique, CW Snyder, J Spengler, PTP Tang, M Theobald, H Toma, B Towles, B Vitale, SC Wang and C Young: Anton 2: raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. SC14: International Conference for High Performance Computing, Networking, Storage and Analysis 41-53 (2014)
- [25] A Arkhipov, Y Shan, R Das, NF Endres, MP Eastwood, DE Wemmer, J Kuriyan and DE Shaw: Architecture and membrane interactions of the EGF receptor. Cell 152(3), 557-569 (2013)
- [26] LCT Pierce, R Salomon-Ferrer, CAF de Oliveira, JA McCammon and RC Walker: Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8(9), 2997-3002 (2012)
- [27] GM Torrie and JP Valleau: Non-physical sampling distributions in Monte-Carlo free-energy estimation - umbrella sampling. J Comput Phys 23(2), 187-199 (1977)
- [28] C Pangali, M Rao and BJ Berne: Novel Monte-Carlo scheme for simulating water and aqueous-solutions. Chem Phys Lett 55(3), 413-417 (1978)
- [29] PJ Rossky, JD Doll and HL Friedman: Brownian dynamics as smart Monte-Carlo simulation. J Chem Phys 69(10), 4628-4633 (1978)
- [30] SDuane, AD Kennedy, BJ Pendleton and D Roweth: Hybrid Monte-Carlo. Phys Lett B 195(2), 216-222 (1987)
- [31] DD Frantz, DL Freeman and JD Doll: Reducing quasi-ergodic behavior in Monte-Carlo simulations by J-walking - applications to atomic clusters. J Chem Phys 93(4), 2769-2784 (1990)
- [32] AP Lyubartsev, AA Martsinovski, SV Shevkunov and PN Vorontsovvelyaminov: New approach to Monte-Carlo calculation of the free-energy - method of expanded ensembles. J Chem Phys 96(3), 1776-1783 (1992)
- [33] E Marinari and G Parisi: Simulated tempering - a new Monte-Carlo scheme. EPL 19(6), 451-458 (1992)
- [34] CJ Geyer and EA Thompson: Annealing markov-chain Monte-Carlo with applications to ancestral inference. J Amer Statist Assoc 90(431), 909-920 (1995)
- [35] K Hukushima and K Nemoto: Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn 65(6), 1604-1608 (1996)
- [36] RE Caflisch: Monte Carlo and quasi-Monte Carlo methods. Acta Numer 7, 1-49 (1998)
- [37] I Andricioaei, JE Straub and AF Voter: Smart darting Monte Carlo. J Chem Phys 114(16), 6994-7000 (2001)
- [38] S Brown and T Head-Gordon: Cool walking: a new Markov chain Monte Carlo sampling method. J Comput Chem 24(1), 68-76 (2003)
- [39] N Kantarci-Carsibasi, T Haliloglu and P Doruker: Conformational transition pathways explored by Monte Carlo simulation integrated with collective modes. Biophys J 95(12), 5862-5873 (2008)
- [40] CY Xu, D Tobi and I Bahar: Allosteric changes in protein structure computed by a simple mechanical model: Hemoglobin T <-> R2 transition. J Mol Biol 333(1), 153-168 (2003)
- [41] ED Akten, S Cansu and P Doruker: A docking study using atomistic conformers generated via elastic network model for cyclosporin a/cyclophilin a complex. J Biomol Struct Dyn 27(1), 13-25 (2009)
- [42] WJ Zheng and BR Brooks: Modeling protein conformational changes by iterative fitting of distance constraints using reoriented normal modes. Biophys J 90(12), 4327-4336 (2006)
- [43] DA Case, JT Berryman, RM Betz, DS Cerutti, TE Cheatham, TA Darden, RE Duke, TJ Giese, H Gohlke, AW Goetz, N Homeyer, S Izadi, P Janowski, J Kaus, A Kovalenko, TS Lee, S LeGrand, P Li, T Luchko, R Luo, B Madej, KM Merz, G Monard, P Needham, H Nguyen, HT Nguyen, I Omelyan, A Onufriev, DR Roe, A Roitberg, R Salomon-Ferrer, CL Simmerling, W Smith, J Swails, RC Walker, J Wang, RM Wolf, X Wu, DM York and PA Kollman: Amber 2015. In: University of California, San Francisco. (2015)
- [44] BR Brooks, RE Bruccoleri, BD Olafson, DJ States, S Swaminathan and M Karplus: CHARMM - a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2), 187-217 (1983)
- [45] HJC Berendsen, D Vanderspoel and R Vandrunen: GROMACS - a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1-3), 43-56 (1995)
- [46] JC Phillips, R Braun, W Wang, J Gumbart, E Tajkhorshid, E Villa, C Chipot, RD Skeel, L Kale and K Schulten: Scalable molecular dynamics with NAMD. J Comput Chem 26(16), 1781-1802 (2005)
- [47] DC Swinney: The role of binding kinetics in therapeutically useful drug action. Curr Opin Drug Discov Devel 12(1), 31-39 (2009)
- [48] DA Lauffenburger and JJ Linderman: Receptors: models for binding, trafficking and signaling. In: Oxford University Press, (1993)
- [49] G Schreiber, G Haran and HX Zhou: Fundamental aspects of protein-protein association kinetics. Chem Rev 109(3), 839-860 (2009)
- [50] R Zhang and F Monsma: The importance of drug-target residence time. Curr Opin Drug Discov Devel 12(4), 488-496 (2009)
- [51] H Lu, K England, CA Ende, JJ Truglio, S Luckner, BG Reddy, NL Marlenee, SE Knudson, DL Knudson, RA Bowen, C Kisker, RA Slayden and PJ Tonge: Slow-onset inhibition of the Fabl enoyl reductase from francisella tularensis: residence time and in vivo activity. ACS Chem Biol 4(3), 221-231 (2009)
- [52] H Lu and PJ Tonge: Inhibitors of Fabl, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. Acc Chem Res 41(1), 11-20 (2008)
- [53] D Guo, T Mulder-Krieger, AP Ijzerman and LH Heitman: Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 166(6), 1846-1859 (2012)
- [54] DA Sykes, MR Dowling and SJ Charlton: Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M-3 receptor. Mol Pharmacol 76(3), 543-551 (2009)
- [55] I Dierynck, M De Wit, E Gustin, I Keuleers, J Vandersmissen, S Hallenberger and K Hertogs: Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol 81(24), 13845-13851 (2007)
- [56] CF Wong: Flexible ligand-flexible protein docking in protein kinase systems. Biochim Biophys Acta, Proteins Proteomics 1784(1), 244-251 (2008)
- [57] DC Miller, G Lunn, P Jones, Y Sabnis, NL Davies and P Driscoll: Investigation of the effect of molecular properties on the binding kinetics of a ligand to its biological target. Med Chem Commun 3(4), 449-452 (2012)
- [58] DS Millan, ME Bunnage, JL Burrows, KJ Butcher, PG Dodd, TJ Evans, DA Fairman, SJ Hughes, IC Kilty, A Lemaitre, RA Lewthwaite, A Mahnke, JP Mathias, J Philip, RT Smith, MH Stefaniak, M Yeadon and C Phillips: Design and synthesis of inhaled p38 inhibitors for the treatment of chronic obstructive pulmonary disease. J Med Chem 54(22), 7797-7814 (2011)
- [59] JM Wang, RM Wolf, JW Caldwell, PA Kollman and DA Case: Development and testing of a general amber force field. J Comput Chem 25(9), 1157-1174 (2004)
- [60] JD Doll and DR Dion: Generalized Langevin equation approach for atom-solid-surface scattering - numerical techniques for gaussian generalized Langevin dynamics. J Chem Phys 65(9), 3762-3766 (1976)
- [61] SA Adelman: Generalized Langevin theory for many-body problems in chemical-dynamics - general formulation and the equivalent harmonic chain representation. J Chem Phys 71(11), 4471-4486 (1979)
- [62] RJ Loncharich, BR Brooks and RW Pastor: Langevin dynamics of peptides - the frictional dependence of isomerization rates of N-acetylalanyl-N’-methylamide. Biopolymers 32(5), 523-535 (1992)
- [63] EA Koopman and CP Lowe: Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J Chem Phys 124(20) (2006)
- [64] JP Ryckaert and G Ciccotti: Andersen canonical-ensemble molecular-dynamics for molecules with constraints. Mol Phys 58(6), 1125-1136 (1986)
- [65] DJ Evans and BL Holian: The Nose-Hoover thermostat. J Chem Phys 83(8), 4069-4074 (1985)
- [66] JA McCammon, BR Gelin and M Karplus: Dynamics of folded proteins. Nature 267(5612), 585-590 (1977)
- [67] T Schlick, R Collepardo-Guevara, LA Halvorsen, S Jung and X Xiao: Biomolecular modeling and simulation: a field coming of age. Q Rev Biophys 44(2), 191-228 (2011)
- [68] R Anandakrishnan, A Drozdetski, RC Walker and AV Onufriev: Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations. Biophys J 108(5), 1153-1164 (2015)
- [69] M Feig: Kinetics from implicit solvent simulations of biomolecules as a function of viscosity. J Chem Theory Comput 3(5), 1734-1748 (2007)
- [70] A Onufriev, D Bashford and DA Case: Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 55(2), 383-394 (2004)
- [71] G Chopra, CM Summa and M Levitt: Solvent dramatically affects protein structure refinement. Proc Natl Acad Sci USA 105(51), 20239-20244 (2008)
- [72] M Tarek and DJ Tobias: Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88(13) (2002)
- [73] J Luccarelli, J Michel, J Tirado-Rives and WL Jorgensen: Effects of water placement on predictions of binding affinities for p38 alpha map kinase inhibitors. J Chem Theory Comput 6(12), 3850-3856 (2010)
- [74] R Abel, T Young, R Farid, BJ Berne and RA Friesner: Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J Am Chem Soc 130(9), 2817-2831 (2008)
- [75] M Chaplin: Opinion - Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7(11), 861-866 (2006)
- [76] MJ Harvey, G Giupponi and G De Fabritiis: ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 5(6), 1632-1639 (2009)
- [77] M Ahmad, W Gu and V Helms: Mechanism of fast peptide recognition by SH3 domains. Angew Chem Int Ed 47(40), 7626-7630 (2008)
- [78] I Kurisaki, C Barberot, M Takayanagi and M Nagaoka: Dewetting of Si-pocket via water channel upon thrombin-substrate association reaction. J Phys Chem B 119(52), 15807-15812 (2015)
- [79] AC Bastidas, LC Pierce, RC Walker, DA Johnson and SS Taylor: Influence of N-myristylation and ligand binding on the flexibility of the catalytic subunit of protein kinase A. Biochemistry 52(37), 6368-6379 (2013)
- [80] DE Shaw, MM Deneroff, RO Dror, JS Kuskin, RH Larson, JK Salmon, C Young, B Batson, KJ Bowers, JC Chao, MP Eastwood, J Gagliardo, JP Grossman, CR Ho, DJ Ierardi, I Kolossvary, JL Klepeis, T Layman, C McLeavey, MA Moraes, R Mueller, EC Priest, Y Shan, J Spengler, M Theobald, B Towles and SC Wang: Anton, a special-purpose machine for molecular dynamics simulation. Commun Acm 51(7), 91-97 (2008)
- [81] DE Shaw, P Maragakis, K Lindorff-Larsen, S Piana, RO Dror, MP Eastwood, JA Bank, JM Jumper, JK Salmon, Y Shan and W Wriggers: Atomic-level characterization of the structural dynamics of proteins. Science 330(6002), 341-346 (2010)
- [82] R Harada and A Kitao: Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway. J Chem Phys 139(3), 10 (2013)
- [83] R Harada, Y Takano and Y Shigeta: Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins. J Chem Phys 140(12) (2014)
- [84] J Shao, SW Tanner, N Thompson and TE Cheatham, III: Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. J Chem Theory Comput 3(6), 2312-2334 (2007)
- [85] M Bacci, A Vitalis and A Caflisch: A molecular simulation protocol to avoid sampling redundancy and discover new states. BBA-Gen Subjects 1850(5), 889-902 (2015)
- [86] T Zhou and A Caflisch: Free energy guided sampling. J Chem Theory Comput 8(6), 2134-2140 (2012)
- [87] SJ Marrink, HJ Risselada, S Yefimov, DP Tieleman and AH de Vries: The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111(27), 7812-7824 (2007)
- [88] A Nagarajan, JP Andersen and TB Woolf: Coarse-grained simulations of transitions in the E2-to-E1 conformations for Ca ATPase (SERCA) show entropy-enthalpy compensation. J Mol Biol 422(4), 575-593 (2012)
- [89] V Tozzini: Coarse-grained models for proteins. Curr Opin Struct Biol 15(2), 144-150 (2005)
- [90] R Elber and M Karplus: Enhanced sampling in molecular-dynamics - use of the time-dependent hartree approximation for a simulation of carbon-monoxide diffusion through myoglobin. J Am Chem Soc 112(25), 9161-9175 (1990)
- [91] L Martinez, MT Sonoda, P Webb, JD Baxter, MS Skaf and I Polikarpov: Molecular dynamics simulations reveal multiple pathways of ligand dissociation from thyroid hormone receptors. Biophys J 89(3), 2011-2023 (2005)
- [92] AF Voter: Hyperdynamics: Accelerated molecular dynamics of infrequent events. Phys Rev Lett 78(20), 3908-3911 (1997)
- [93] D Hamelberg, J Mongan and JA McCammon: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24), 11919-11929 (2004)
- [94] U Doshi and D Hamelberg: Achieving rigorous accelerated conformational sampling in explicit solvent. J Phys Chem Lett 5(7), 1217-1224 (2014)
- [95] V Hornak and C Simmerling: Development of softcore potential functions for overcoming steric barriers in molecular dynamics simulations. J Mol Graph Model 22(5), 405-413 (2004)
- [96] L Mollica, S Decherchi, SR Zia, R Gaspari, A Cavalli and W Rocchia: Kinetics of protein-ligand unbinding via smoothed potential molecular dynamics simulations. Sci Rep 5 (2015)
- [97] Y Miao, VA Feher and JA McCammon: Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11(8), 3584-3595 (2015)
- [98] J Leech, JF Prins and J Hermans: SMD: Visual steering of molecular dynamics for protein design. Ieee Comput Sci Eng 3(4), 38-45 (1996)
- [99] P Nicolini, D Frezzato, C Gellini, M Bizzarri and R Chelli: Toward quantitative estimates of binding affinities for protein-ligand systems involving large inhibitor compounds: A steered molecular dynamics simulation route. J Comput Chem, 34(18), 1561-1576 (2013)
- [100] J Schlitter, M Engels and P Kruger: Targeted molecular-dynamics - a new approach for searching pathways of conformational transitions. J Mol Graphics 12(2), 84-89 (1994)
- [101] A Barducci, M Bonomi and M Parrinello: Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 1(5), 826-843 (2011)
- [102] A Cavalli, A Spitaleri, G Saladino and FL Gervasio: Investigating drug-target association and dissociation mechanisms using metadynamics-based algorithms. Acc Chem Res 48(2), 277-285 (2015)
- [103] XW Wu and BR Brooks: Self-guided Langevin dynamics simulation method. Chem Phys Lett 381(3-4), 512-518 (2003)
- [104] X Wu, BR Brooks and E Vanden-Eijnden: Self-Guided Langevin Dynamics via Generalized Langevin Equation. J Comput Chem 37(6), 595-601 (2016)
- [105] P Labute: LowModeMD-implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50(5), 792-800 (2010)
- [106] DWH Swenson and PG Bolhuis: A replica exchange transition interface sampling method with multiple interface sets for investigating networks of rare events. J Chem Phys 141(4) (2014)
- [107] AF Voter: Parallel replica method for dynamics of infrequent events. Phys Rev B 57(22), 13985-13988 (1998)
- [108] Y Sugita and Y Okamoto: Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1-2), 141-151 (1999)
- [109] SH Northrup, SA Allison and JA McCammon: Brownian dynamics simulation of diffusion-influenced bimolecular reactions. J Chem Phys 80(4), 1517-1524 (1984)
- [110] JA McCammon, SH Northrup and SA Allison: Diffusional dynamics of ligand-receptor association. J Phys Chem 90(17), 3901-3905 (1986)
- [111] H-X Zhou: On the calculation of diffusive reaction rates using Brownian dynamics simulations. J Chem Phys 92(5), 3092–3095 (1990)
- [112] G Zou, RD Skeel and S Subramaniam: Biased Brownian dynamics for rate constant calculation. Biophys J 79(2), 638–645 (2000)
- [113] GA Huber and S Kim: Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys J 70(1), 97 (1996)
- [114] BW Zhang, D Jasnow and DM Zuckerman: The “weighted ensemble” path sampling method is statistically exact for a broad class of stochastic processes and binning procedures. J Chem Phys 132(5), 054107 (2010)
- [115] A Rojnuckarin, S Kim and S Subramaniam: Brownian dynamics simulations of protein folding: Access to milliseconds time scale and beyond. Proc Natl Acad Sci USA 95(8), 4288-4292 (1998)
- [116] JD Madura, JM Briggs, RC Wade, ME Davis, BA Luty, A Ilin, J Antosiewicz, MK Gilson, B Bagheri, LR Scott and JA McCammon: Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 91(1–3), 57-95 (1995)
- [117] SH Northrup, T Laughner and G Stevenson: MacroDox macromolecular simulation program. Tennessee Technological University, Department of Chemistry, Cookeville, TN (1999)
- [118] GA Huber and JA McCammon: Browndye: a software package for Brownian dynamics. Comput Phys Commun 181(11), 1896–1905 (2010)
- [119] BA Luty, RC Wade, JD Madura, ME Davis, JM Briggs and JA McCammon: Brownian dynamics simulations of diffusional encounters between triose phosphate isomerase and glyceraldehyde phosphate: electrostatic steering of glyceraldehyde phosphate. J Phys Chem 97(1), 233–237 (1993)
- [120] J Antosiewicz, JM Briggs and JA McCammon: Orientational steering in enzyme-substrate association: ionic strength dependence of hydrodynamic torque effects. Eur Biophys J 24(3), 137–141 (1996)
- [121] E Blachut-Okrasińska, E Bojarska, A Niedźwiecka, L Chlebicka, E Darżynkiewicz, R Stolarski, J Stępiński and JM Antosiewicz: Stopped-flow and Brownian dynamics studies of electrostatic effects in the kinetics of binding of 7-methyl-GpppG to the protein eIF4E. Eur Biophys J 29(7), 487–498 (2000)
- [122] T Shen, CF Wong and JA McCammon: Atomistic Brownian dynamics simulation of peptide phosphorylation. J Am Chem Soc 123(37), 9107–9111 (2001)
- [123] T Shen, CF Wong and JA McCammon: Brownian dynamics simulation of helix-capping motifs. Biopolymers 70(2), 252–259 (2003)
- [124] DD Minh, C-e Chang, J Trylska, V Tozzini and JA McCammon: The influence of macromolecular crowding on HIV-1 protease internal dynamics. J Am Chem Soc 128(18), 6006–6007 (2006)
- [125] C-E Chang, T Shen, J Trylska, V Tozzini and JA McCammon: Gated binding of ligands to HIV-1 protease: Brownian dynamics simulations in a coarse-grained model. Biophys J 90(11), 3880–3885 (2006)
- [126] M Długosz, JM Antosiewicz and J Trylska: Association of aminoglycosidic antibiotics with the ribosomal a-site studied with Brownian dynamics. J Chem Theory Comput 4(4), 549-559 (2008)
- [127] T Geyer: Many-particle Brownian and Langevin dynamics simulations with the Brownmove package. BMC Biophys 4, 7 (2011)
- [128] RR Gabdoulline and RC Wade: Simulation of the diffusional association of barnase and barstar. Biophys J 72(5), 1917-1929 (1997)
- [129] RR Gabdoulline and RC Wade: Protein-protein association: investigation of factors influencing association rates by Brownian dynamics simulations. J Mol Biol 306(5), 1139–1155 (2001)
- [130] E Blachut-Okrasinska and JM Antosiewicz: Brownian dynamics simulations of binding mRNA cap analogues to eIF4E protein. J Phys Chem B 111(45), 13107–13115 (2007)
- [131] H Long, CH Chang, PW King, ML Ghirardi and K Kim: Brownian dynamics and molecular dynamics study of the association between hydrogenase and ferredoxin from Chlamydomonas reinhardtii. Biophys J 95(8), 3753–3766 (2008)
- [132] Y Xin, G Gadda and D Hamelberg: The cluster of hydrophobic residues controls the entrance to the active site of choline oxidase. Biochemistry 48(40), 9599–9605 (2009)
- [133] M Harel, A Spaar and G Schreiber: Fruitful and futile encounters along the association reaction between proteins. Biophys J 96(10), 4237–4248 (2009)
- [134] KM ElSawy, LS Caves and R Twarock: The impact of viral RNA on the association rates of capsid protein assembly: bacteriophage MS2 as a case study. J Mol Biol 400(4), 935–947 (2010)
- [135] C Chen and BM Pettitt: The binding process of a nonspecific enzyme with DNA. Biophys J 101(5), 1139–1147 (2011)
- [136] K ElSawy, CS Verma, DP Lane and L Caves: On the origin of the stereoselective affinity of Nutlin-3 geometrical isomers for the MDM2 protein. Cell Cycle 12(24), 3727–3735 (2013)
- [137] K ElSawy, CS Verma, TL Joseph, DP Lane, R Twarock and L Caves: On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study. Cell Cycle 12(3), 394–404 (2013)
- [138] VT Metzger, C Eun, PM Kekenes-Huskey, G Huber and JA McCammon: Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling. Biophys J 107(10), 2394–2402 (2014)
- [139] Y-m M Huang, G Huber and JA McCammon: Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Prot Sci 24(11), 1884–1889 (2015)
- [140] N Wang and JA McCammon: Substrate channeling between the human dihydrofolate reductase and thymidylate synthase. Prot Sci 25(1), 79-86 (2016)
- [141] CC Roberts and C-e A Chang: Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration. J Chem Theory Comput 11(1), 286–292 (2015)
- [142] R Christopher and C-e Chang: Analysis of Ligand−Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations. J Phys Chem B In Press (2016)
- [143] AK Faradjian and R Elber: Computing time scales from reaction coordinates by milestoning. J Chem Phys 120(23), 10880-10889 (2004)
- [144] JM Bello-Rivas and R Elber: Exact milestoning. J Chem Phys 142(9) (2015)
- [145] EB Krissinel’ and N Agmon: Spherical symmetric diffusion problem. J Comput Chem 17(9), 1085-1098 (1996)
- [146] Y Song, Y Zhang, T Shen, CL Bajaj, JA McCammon and NA Baker: Finite element solution of the steady-state Smoluchowski equation for rate constant calculations. Biophys J 86(4), 2017-2029 (2004)
- [147] M Holst: Adaptive numerical treatment of elliptic systems on manifolds. Adv Comput Math 15(1-4), 139–191 (2001)
- [148] E Darve and A Pohorille: Calculating free energies using average force. J Chem Phys 115(20), 9169-9183 (2001)
- [149] E Darve, D Rodríguez-Gómez and A Pohorille: Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128(14), 144120 (2008)
- [150] K Minoukadeh, C Chipot and T Lelièvre: Potential of mean force calculations: a multiple-walker adaptive biasing force approach. J Chem Theory Comput 6(4), 1008-1017 (2010)
- [151] J Comer, JC Gumbart, J Hénin, T Lelièvre, A Pohorille and C Chipot: The adaptive biasing force method: Everything you always wanted to know but were afraid to ask. J Phys Chem B 119(3), 1129–1151 (2014)
- [152] CC Roberts and C-e A Chang: Ligand binding pathway elucidation for cryptophane host-guest complexes. J Chem Theory Comput 9(4), 2010-2019 (2013)
- [153] CE Chang and MK Gilson: Free energy, entropy, and induced fit in host-guest recognition: Calculations with the second-generation mining minima algorithm. J Am Chem Soc 126(40), 13156-13164 (2004)
- [154] S Nishikawa, T Ugawa and T Fukahori: Molecular recognition kinetics of beta-cyclodextrin for several alcohols by ultrasonic relaxation method. J Phys Chem B 105(31), 7594-7597 (2001)
- [155] TC Barros, K Stefaniak, JF Holzwarth and C Bohne: Complexation of naphthylethanols with beta-cyclodextrin. J Phys Chem A 102(28), 5639-5651 (1998)
- [156] T Fukahori, S Nishikawa and K Yamaguchi: Kinetics on isomeric alcohols recognition by alpha- and beta-cyclodextrins using ultrasonic relaxation method. Bull Chem Soc Jpn 77(12), 2193-2198 (2004)
- [157] L Wickstrom, P He, E Gallicchio and RM Levy: Large scale affinity calculations of cyclodextrin host-guest complexes: understanding the role of reorganization in the molecular recognition process. J Chem Theory Comput 9(7), 3136-3150 (2013)
- [158] W Chen, CE Chang and MK Gilson: Calculation of cyclodextrin binding affinities: Energy, entropy, and implications for drug design. Biophys J 87(5), 3035-3049 (2004)
- [159] Y-m M Huang, W Chen, MJ Potter and C-e A Chang: Insights from Free-Energy Calculations: Protein Conformational Equilibrium, Driving Forces, and Ligand-Binding Modes. Biophys J, 103(2), 342-351 (2012)
- [160] JD Chodera and DL Mobley: Entropy-Enthalpy Compensation: Role and Ramifications in Biomolecular Ligand Recognition and Design. Annu Rev Biophys, Vol 42, 42, 121-142 (2013)
- [161] RO Dror, AC Pan, DH Arlow, DW Borhani, P Maragakis, Y Shan, H Xu and DE Shaw: Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA 108(32), 13118-13123 (2011)
- [162] JA McCammon: Gated diffusion-controlled reactions. BMC Biophys 4 (2011)
- [163] PO Markgren, W Schaal, M Hamalainen, A Karlen, A Hallberg, B Samuelsson and UH Danielson: Relationships between structure and interaction kinetics for HIV-1 protease inhibitors. J Med Chem 45(25), 5430-5439 (2002)
- [164] M Kang, C Roberts, Y Cheng and C-e A Chang: Gating and intermolecular interactions in ligand-protein association: coarse-grained modeling of HIV-1 protease. J Chem Theory Comput 7(10), 3438-3446 (2011)
- [165] C-E A Chang, J Trylska, V Tozzini and JA McCammon: Binding pathways of ligands to HIV-1 protease: Coarse-grained and atomistic simulations. Chem Biol Drug Des 69(1), 5-13 (2007)
- [166] J Canceill, M Cesario, A Collet, J Guilhem, L Lacombe, B Lozach and C Pascard: Structure and properties of the cryptophane-E/CHCl3 complex, a stable van der Waals molecule. Angew Chem Int Ed Engl 28(9), 1246–1248 (1989)
- [167] MM Spence, SM Rubin, IE Dimitrov, EJ Ruiz, DE Wemmer, A Pines, SQ Yao, F Tian and PG Schultz: Functionalized xenon as a biosensor. Proc Natl Acad Sci USA 98(19), 10654–7 (2001)
- [168] C Garcia, D Humiliere, N Riva, A Collet and JP Dutasta: Kinetic and thermodynamic consequences of the substitution of SMe for OMe substituents of cryptophane hosts on the binding of neutral and cationic guests. Org Biomol Chem 1(12), 2207-2216 (2003)
- [169] KT Holman: Cryptophanes: molecular containers. Encyclopedia of Supramolecular Chemistry 340–348 (2004)
- [170] JA Aaron, JM Chambers, KM Jude, L Di Costanzo, IJ Dmochowski and DW Christianson: Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II. J Am Chem Soc 130(22), 6942–3 (2008)
- [171] CE Chang and MK Gilson: Tork: Conformational analysis method for molecules and complexes. J Comput Chem 24(16), 1987-1998 (2003)
