IMR Press / FBL / Volume 20 / Issue 2 / DOI: 10.2741/4307

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on as a courtesy and upon agreement with Frontiers in Bioscience.

Protective action of green tea catechins in neuronal mitochondria during aging
Show Less
1 Faculty of Medicine, University of Porto, Al. Prof. Hernani Monteiro, 4200-319 Porto, Portugal
2 Department of Anatomy, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
Front. Biosci. (Landmark Ed) 2015, 20(2), 247–262;
Published: 1 January 2015

Mitochondria are central players in the regulation of cell homeostasis. They are essential for energy production but at the same time, reactive oxygen species accumulate as byproducts of the electron transport chain causing mitochondrial damage. In the central nervous system, senescence and neurodegeneration occur as a consequence of mitochondrial oxidative insults and impaired electron transfer. The accumulation of several oxidation products in neurons during aging prompts the idea that consumption of antioxidant compounds may delay neurodegenerative processes. Tea, one of the most consumed beverages in the world, presents benefits to human health that have been associated to its abundance in polyphenols, mainly catechins, that possess powerful antioxidant properties in vivo and in vitro. In this review, the focus will be placed on the effects of green tea catechins in neuronal mitochondria. Although these compounds reach the brain in small quantities, there are several possible targets, signaling pathways and molecular machinery impinging in the mitochondria that will be highlighted. Accumulated evidence thus far seems to indicate that catechins help prevent neurodegeneration and delay brain function decline.

Green tea
Back to top