IMR Press / FBL / Volume 17 / Issue 6 / DOI: 10.2741/4048

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on as a courtesy and upon agreement with Frontiers in Bioscience.

Cobalt chloride improves angiogenic potential of CD133+ cells
Show Less
1 Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Medical College of Jiao Tong University, Shanghai, China
Front. Biosci. (Landmark Ed) 2012, 17(6), 2247–2258;
Published: 1 June 2012

Umbilical cord blood-derived CD133+ cells exhibit the ability to differentiate into endothelial cells and induce new blood vessel growth. Hypoxia-inducible factor-1 (HIF-1), a regulator of hypoxia or the hypoxia-mimetic agent response, actives the SDF-1/CXCR4 signaling pathway and thus plays an important role in angiogenesis in-vivo. In this study we aim to investigate whether CD133+ cells enhance angiogenic ability through hypoxia or CoCl2 in vitro. The CD133+ cells were cultured in normoxia (20 Percent O2), hypoxia (10 Percent O2, 3 Percent O2), or in various concentrations of CoCl2 (50 microM/L, 100 microM/L, 200 microM/L) and subjected to in vitro flow cytometric analysis, tubule formation, as well as migration and proliferation assays. The results demonstrate that both environmental hypoxia and CoCl2 induced hypoxia result in significantly increased CD133+ cell migration, proliferation, and tubule-like structure formation compared with normoxia culture conditions. The HIF-1a, SDF-1, and VEGF protein and gene expression level in conditions of hypoxia is higher than that found in normaxia conditions. Collectively, these data suggest that angiogenic potential of CD133+ cells is influenced by hypoxia or a hypoxia mimetic agent in vitro.

Back to top