IMR Press / FBL / Volume 16 / Issue 2 / DOI: 10.2741/3714

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on as a courtesy and upon agreement with Frontiers in Bioscience.

The cell-elastin-elastase(s) interacting triade directs elastolysis
Show Less
1 Universite de Reims Champagne-Ardenne, UMR 6237 CNRS, Faculte de Medecine, 51 rue Cognacq Jay, 51095 Reims Cedex, France.
Front. Biosci. (Landmark Ed) 2011, 16(2), 707–722;
Published: 1 January 2011

Human elastases have been identified within serine, cysteine and metallopeptidase families. These enzymes are able to adsorb rapidly onto elastin, but they can also bind onto cell surface-associated proteins such as heparan sulfate proteoglycans, both interactions involving enzyme exosites distinct form active site. Immobilization of elastin at the cell surface will create a sequestered microenvironment and will favour elastolysis. Generated elastin peptides are potent matrikines displaying dual biological functions in physiopathology that are described in this review. Among properties, they are potent inducers of protease expression catalyzing collagenolysis or amplifying elastin degradation. The ability of unsaturated fatty acids and heparin(s) to control elastases action are delineated.

Back to top