IMR Press / FBL / Volume 14 / Issue 7 / DOI: 10.2741/3409

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on as a courtesy and upon agreement with Frontiers in Bioscience.

Vision tests in the mouse: Functional phenotyping with electroretinography
Show Less
1 Ocular Neurodegeneration Research Group, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Schleichstrasse 4/3, D-72076 Tuebingen, Germany
2 Ocular Genetics Unit, Department of Genetics, Trinity College, Dublin 2, Ireland
3 Center for Integrated Protein Science CIPS-M and Zentrum fuer Pharmaforschung -Department Pharmazie, Pharmakologie fuer Naturwissenschaften, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr. 5 -13, D-81377 Muenchen, Germany
Front. Biosci. (Landmark Ed) 2009, 14(7), 2730–2737;
Published: 1 January 2009

Electroretinography (ERG) is an established diagnostic technique in clinical ophthalmology and provides objective information about retinal function. This technique is also applied in basic research, where animal models of hereditary retinopathies have significantly contributed to our understanding of the composition of ERG responses in general and how retinal degenerative pathologies alter retinal function specifically. Indeed, electrophysiologic assessment of transgenic mice, which are genetically engineered to mimic human mutations that lead to retinal diseases, can be well compared with clinical data. Furthermore, limitations on examinations (e.g. length of measurement, range of light intensity) are much less of a concern when assessing mice compared to human patients. In order to measure and analyze retinal responses properly, several important aspects have to be considered. This paper focuses on these aspects, and shows exemplary ERG data which were obtained from normal wild-type mice and from transgenic mice with specific functional properties, namely Rho-/- (rod opsin knockout, cone function only), and Cnga3-/- (cone CNG channel deficient, rod function only) to illustrate rod and cone system contributions to ERG responses.

Back to top