IMR Press / FBL / Volume 14 / Issue 13 / DOI: 10.2741/3570

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Article

Evolution of altruists and cheaters in near-isogenic populations of Escherichia coli

Show Less
1 University of Louisville, Louisville, Kentucky 40292 USA
2 Present Address: Ohio University, Athens, OH 45701 USA
Front. Biosci. (Landmark Ed) 2009, 14(13), 4815–4824; https://doi.org/10.2741/3570
Published: 1 June 2009
Abstract

Emergence of antibiotic-resistant bacteria threatens the continued efficacy of many critical drugs used to treat serious infections. What if such resistant organisms could also act as altruists and "share" their resistance with sensitive cohorts without any actual genetic exchange? We competed resistant strains that differ solely in their ability to secrete a plasmid-encoded beta-lactamase. Sensitive strains were otherwise isogenic with their resistant counterparts and were either plasmid-free or contained a "Dummy" plasmid of roughly the same size as that of the resistance plasmids. Absent antibiotic selection, plasmid-free sensitive strains outperformed the plasmid-bearing strains. In the presence of ampicillin, the outcome depended on whether the resistant strain secreted its beta-lactamase (Altruist) or retained it (Selfish). In the latter case, only resistant cells survived. When beta-lactamase was secreted, some sensitive cohorts were also provided protection, with the largest fitness increase provided to plasmid-free cells. However, some Altruist strains appeared to be at a disadvantage, as a great deal of their enzyme broke off cells. Thus, additional variables must be considered when designing microbial competition experiments.

Share
Back to top