IMR Press / FBL / Volume 13 / Issue 5 / DOI: 10.2741/2801

Frontiers in Bioscience-Landmark (FBL) is published by IMR Press from Volume 26 Issue 5 (2021). Previous articles were published by another publisher on a subscription basis, and they are hosted by IMR Press on imrpress.com as a courtesy and upon agreement with Frontiers in Bioscience.

Open Access Article
Chemical and biochemical oxidations in spinal fluid after subarachnoid hemorrhage
Show Less
1 Department of Neurology, University of Cincinnati, Cincinnati Ohio 45267-0536

Academic Editor: John Zhang

Front. Biosci. (Landmark Ed) 2008, 13(5), 1806–1812; https://doi.org/10.2741/2801
Published: 1 January 2008
(This article belongs to the Special Issue New frontiers in neurosurgery research)
Abstract

Subarachnoid hemorrhage (SAH) is a stroke with high rates of mortality and morbidity. SAH-induced cerebral vasospasm can lead to ischemic injury or death and is a common complication of SAH. Recently there has been an accumulation of emerging evidence that oxidation of heme-derived bilirubin into bilirubin oxidation products (BOXes) may be involved in cerebral vasospasm. BOXes are produced by the oxidation of bilirubin yielding a mixture of isomers: 4-methyl-5-oxo-3-vinyl-(1,5-dihydropyrrol-2-ylidene)acetamide (BOX A) and 3-methyl-5-oxo-4-vinyl- (1,5-dihydropyrrol-2-ylidene)acetamide (BOX B). BOXes have been a subject of interest in the neurosurgical and neurological fields for several years because of their purported correlation with and or role in subarachnoid hemorrhage induced cerebral vasospasm. We believe that it is critical to understand the chemical and biochemical environment in the hemorrhagic spinal fluid after SAH that leads to the oxidation of bilirubin. There is a growing body of information concerning their putative role in vasospasm; however, there is a dearth of information concerning the chemical and biochemical characteristics of BOXes.

Share
Back to top